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Abstract: Polytetrafluoroethylene (PTFE) is a synthetic fluoropolymer known for its excellent
hydrophobic properties. In this work, samples from PTFE dispersions with different combinations of
water and carbon microparticles were prepared using an electrospraying method. The morphologies
and sizes of carbon particles were investigated and the properties of layers including roughness,
hydrophobicity and electrical resistivity were investigated. The non-conductive carbon microparticles
were selected as a model particle to check the compatibility and electrospraying ability, and it
had no effect on the hydrophobic and electrical properties. Carbon microparticles in polymer
solution increased the degree of ionization and was found to be beneficial for the shape control
of materials. The results showed that PTFE dispersion with the composition of water and carbon
microparticles produced fine sphere particles and the layer fabricated with increased roughness.
It was also found that the electrical resistivity and hydrophobicity of all the layers comparatively
increased. The fabricated microporous layers can be used in various applications like interlining layer
in multilayer textile sandwiches.
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1. Introduction

Polytetrafluoroethylene (PTFE) is a synthetic fluoropolymer with repeated units [(−CF2−)n],
where the inner strongly bonded fluorine atoms make it a high molecular weight compound
characterized with semi-crystalline nature, and a strong C-F bond prevents reaction between other
chemicals and PTFE [1]. PTFE is known for its excellent hydrophobic, dielectric, mechanical and
thermal properties [2]. It is widely used in films, coating materials and fibers in industry domains such
as polymeric gears [3], cables [4], implants [5], textiles [6] and so on. Casting PTFE polymer in sphere
or PTFE particles via common methods such as molding, emulsion [7], suspension polymerization [8],
etc., is very difficult. This is due to the inhomogeneous particle fabrication and a restricted number of
processable polymers that cannot be avoided technically. Precipitation [9], spraying drying [10] and
supercritical fluid [11] processes are considered to be better options to produce particles. However,
it is hard to generate monodisperse particles.

Electrospraying, otherwise called electro-hydrodynamic spraying or electro-hydrodynamic
atomization or steady cone-jet mode, is known as a unique technology to produce novel materials
including particles, films or coatings [12]. The fundamental mechanism is similar to electrospinning

Polymers 2020, 12, 1352; doi:10.3390/polym12061352 www.mdpi.com/journal/polymers

http://www.mdpi.com/journal/polymers
http://www.mdpi.com
https://orcid.org/0000-0002-8977-1244
http://dx.doi.org/10.3390/polym12061352
http://www.mdpi.com/journal/polymers
https://www.mdpi.com/2073-4360/12/6/1352?type=check_update&version=2


Polymers 2020, 12, 1352 2 of 12

except for the final output. It is a well-established process based on the application of high electrical
voltage on the polymer solution of suitable surface tension and viscosity. In this process, the polymer
liquid flows out from the capillary nozzle in the applied electric field and then forms a fine jet
followed by atomization of polymer liquid into the fine droplets. The particles are collected on a
grounded conductive substrate. The degree of ionization in polymer solution affects the shapes and
diameters of final polymeric particles during electrospray, which is influenced by the components of
the polymer solution. The hydrophobic behavior of the electrospray surface can result from the high
surface roughness through reduction of the interfacial energy between solid and liquid [13]. However,
a relationship between diameters of PTFE particles and components of PTFE solution will have an
effect on sizes, shapes and other properties of PTFE particles produced by electrospraying.

Several research groups have proved that the surface energy of materials was closely related to
the surface properties, especially surface roughness [14]. This is a novel way to control material surface
wettability. Many theoretical research studies on electrospinning process have been conducted [15–17]
which showed that distance between nozzle and collector affects morphology, structure, physical and
chemical properties of electrospinning fibers and properties based on evaporation rate, deposition
time and inconsistency interval. Literature review also revealed that recent research was focused on
needle-based electrospraying [18].

The objective of this research was to prepare PTFE microporous layers via electrospraying
method [19–21] and study its various properties. It would include a study to improve the particles
of PTFE by adjusting its solution components and addition of non-conductive carbon microparticles.
The relative properties of the prepared PTFE microporous layers including morphology, roughness,
hydrophobicity and electrical resistivity were investigated. Addition of carbon microparticles in
polymer solution was meant to study the increase in the degrees of ionization and find out if it is
beneficial for the compatibility and shape control of materials during electrospinning. In future, it may
be possible to add new functionalities via using of activated carbon, conductive carbon or surface
coated carbon. The prepared layers can be used for various applications by optimizing the solution
and also the spinning parameters.

2. Experimental

2.1. Materials

For this work, Teflon@ PTFE 30 containing 60% wt. PTFE particles and 40% wt. water with
surfactant (Chemours, Neu Isenburg, Germany) was used. Tetraethylammonium bromide (TEAB)
(Sigma Aldrich, Prague, Czech Republic) was used as salt to increase the conductivity and viscosity of
solutions in which the interactions among macromolecules are extensive. A polymer network becomes
more solid. It leads to a higher spinning performance of a solution [22,23]. Non-conductive carbon
microparticles were milled from pitch-based carbon fiber yarn. The milling process was carried out on
a Fritsch pulverisette 7 planetary ball mill. The average size of the carbon microparticle was 1640 nm
as shown in Figure 1. The PTFE dispersion was obtained after 24 h-stir of Teflon@ PTFE 30 mixed with
TEAB at room temperature. Non-conductive carbon microparticles were added in PTFE solution before
electrospraying to functionalize the final PTFE layers. The details of the PTFE dispersion preparation
are shown in Table 1.

Table 1. Description of PTFE Dispersion (%) Based on different Compositions.

Sample No. PTFE Carbon Microparticle Water & Surfactant

S1 60 - 40
S2 60 0.04 ≈40
S3 55 - 45
S4 55 0.04 ≈45
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solution tank, rotating roller electrode, grounded collector and support material. During the 
electrospraying process, the electrostatic force produced between the high-voltage supplier and 
grounded collector draw the charged polymer solution into forms of particles which will be collected 
on the surface of support material. The electro-rotating cylinder keeps the electrospraying process 
ongoing to continuously produce the particles and the even layer of particles is obtained with 
coordination of the movement of support material. 

 
Figure 2. Schematic diagram of the electrospraying method (Nanospider). 

The PTFE solution was first prepared to be used for electrospraying. As PTFE was insoluble in 
water, it was introduced in particle form in the water-based dispersion. During the electrospraying 
process, the PTFE dispersion was drawn to the form layer being collected on the surface of support 
materials. The particles and their layers are marked as P1, P2, P3 and P4 corresponding to PTFE 
dispersion S1, S2, S3 and S4. The spinning parameters, including substrate speed (mm/min), applied 
voltage of high-voltage supplier and grounded voltage (kV), speed of electrode (rev/min), the 
temperature of air (°C) and the relative humidity (%). The suitable parameters for producing PTFE 
layers were optimized and selected shown in Table 2. To achieve the optimized conditions, different 
combinations of solutions were prepared and trialed on Nanospider to set the spinning parameters. 
The adjusting of process parameters was necessary for the needleless electrospinning system of 
Nanospider for preparation of layers with tunable porosity. 

Figure 1. Morphology and size distribution of carbon microparticles.

2.2. Preparation of PTFE Microporous Layers

The Nanospider instrument (Figure 2) is a needleless electrospinning system that was used to
prepare the PTFE layers by electrospraying method. Its parts include a high-voltage supplier, solution
tank, rotating roller electrode, grounded collector and support material. During the electrospraying
process, the electrostatic force produced between the high-voltage supplier and grounded collector
draw the charged polymer solution into forms of particles which will be collected on the surface
of support material. The electro-rotating cylinder keeps the electrospraying process ongoing to
continuously produce the particles and the even layer of particles is obtained with coordination of the
movement of support material.
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Figure 2. Schematic diagram of the electrospraying method (Nanospider).

The PTFE solution was first prepared to be used for electrospraying. As PTFE was insoluble in water,
it was introduced in particle form in the water-based dispersion. During the electrospraying process,
the PTFE dispersion was drawn to the form layer being collected on the surface of support materials.
The particles and their layers are marked as P1, P2, P3 and P4 corresponding to PTFE dispersion S1,
S2, S3 and S4. The spinning parameters, including substrate speed (mm/min), applied voltage of
high-voltage supplier and grounded voltage (kV), speed of electrode (rev/min), the temperature of air
(◦C) and the relative humidity (%). The suitable parameters for producing PTFE layers were optimized
and selected shown in Table 2. To achieve the optimized conditions, different combinations of solutions
were prepared and trialed on Nanospider to set the spinning parameters. The adjusting of process



Polymers 2020, 12, 1352 4 of 12

parameters was necessary for the needleless electrospinning system of Nanospider for preparation of
layers with tunable porosity.

Table 2. Spinning parameters.

Substrate
Speed

(mm/min)

Voltage (kV)
Speed of
Electrode
(rev/min)

In Tent Air

RH (%) T (◦C) RH (%) T (◦C) RH (%) T (◦C)

Static 10/30 5.0 42 22.3 46.8 22.8 49.9 22.4

2.3. Characterization of PTFE Microporous Layers

2.3.1. Morphologies

To observe the attachment of the PTFE microporous layer to the surface of support materials,
scanning electron microscope (SEM), VEGA TESCAN Inc., Lincoln, NE, USA, was used. The HORIBA
laser scattering particle size distribution analyzer LA-920 was used to analyze the size distribution of
PTFE particles produced by various PTFE solutions as described in Table 1. The refractive index was
set as 1.6. Mean size and S.D. size were calculated as well.

2.3.2. Roughness of PTFE Microporous Layers

The roughness of PTFE layers was tested using the OLS5000 LEXT measuring laser microscope.
During the test, every ten different lines of the scanned PTFE layers were recorded and then calculated
automatically into the main roughness parameters including arithmetic average height (Ra), root mean
square roughness (Rq), skewness (Rsk) and kurtosis (Rku), as seen in Figure 2. The Ra, known as the
central line average (CLA), is the most universal parameter for general roughness control given by
Equation (1). Rq is the parameter describing the standard deviation of the distribution of surface
heights and is given by Equation (2). Rq, Rsk and Rku are separately obtained by Equations (3) and (4).
Rsk is used to measure the symmetry of profile about the mean line and is very sensitive to peak or
valley height. The point is that Rsk will be positive if the profile has more high peaks or flat valleys and,
oppositely, the profile with few peaks gives negative Rsk values, contributing to distinguishing the
different profiles with the same Ra and Rq. Rku describes the sharpness of the probability density of the
profile. If Rku < 3, the profile will have relatively few high peaks and low valleys and, oppositely, the
profile will have relatively more high peaks and low valleys with Rku > 3.

Ra =
1
lr

∫ lr

0

∣∣∣Z(x)∣∣∣dx (1)

Rq =

√
1
lr

∫ lr

0
Z2(x)dx (2)

Rsk =
1

R3
q

 1
lr

∫ lr

0
Z3(x)dx

 (3)

Rku =
1

R4
q

 1
lr

∫ lr

0
Z4(x)dx

 (4)

where x is the direction of calculation, lr is the reference length along x direction and Z(x) is the height
at x position.

2.3.3. Contact Angle Analysis

A See System E instrument is a portable computer-based instrument to measure the contact angle
with a special purpose software following ISO 27448:2009 test method. Before measuring, the samples
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were washed for 6 mins in distilled water to remove the salts and were dried at room temperature.
Deionized water was dropped onto each PTFE layer from a needle on a microsyringe (5 µL) and a
picture of the drop was taken. The contact angles could be calculated by analyzing the shape of the
drop, which is displayed in the PC. In total, 10 drops were measured for each sample. Two minutes
were allowed from the time of water drop until the measurement of the contact angle.

2.3.4. Electrical Resistance

Electrical resistance measurement was done on a 4339B High resistance meter (Hewlett Packard
ohmmeter) measuring device shown in Figure 3. Calibration of the instrument (high resistance meter) is
done using a standard plate of known electrical resistivity. The electrical surface and volume resistivity
of the samples produced were measured according to the standard ASTM D257-07(2007) at the voltage
of 100 V, at a temperature of 22.3 ◦C, and at a relative humidity (RH) of 40.7%. The measurement results
were recorded 60 s after the electrodes were placed on the textile samples. The volume resistivity
was measured by applying a voltage potential across opposite sides of the sample and measuring the
resultant current through the sample. Volume resistivity ρν (Ω mm) was calculated from the following
Equation (5):

ρv = Rv
S
t

(5)

where Rv(Ω) is volume resistivity reading, t is thickness of the fabric (mm), and S is the surface area of
the electrodes (mm2).
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Surface resistivity is measured by applying a voltage potential between two electrodes of specified
configuration that are in contact with the same side of a material under test (Figure 4). Surface resistivity
ρs (Ω) was calculated from Equation (6):

ρs = Rs
2π

ln R2
R1

(6)

where RS (Ω) is the surface resistance reading, R1 is the outer radius of the center electrode (mm), and
R2 is the inner radius of the outer ring electrode (mm), where R1 = 58 mm and R2 = 51 mm.
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3. Results and Discussions

3.1. Morphology of Microporous Layers

The particles on the surface of the substrate were observed in Figure 5 and their size distribution is
shown in Figure 6. The layers produced from all combinations of PTFE solution ranges from 0.1–10 µm
which proves that the particles are in the range of microns. Figure 5(a2,c2) and Figure 6a,c show the
PTFE microporous layers, where the final PTFE product appears in the form of a sphere and has larger
sizes when there is more H2O in PTFE aqueous solution. In Figure 5(b2), all the layers appear in the
form of a sphere as well, which possibly resulted from the carbon microparticles in PTFE polymers.
In Figure 5(d2), the particles are almost spherical, but the diameters tend to decrease when compared
with Figure 5(b2), which can also be proved by comparing Figure 6b or Figure 6d, suggesting that
PTFE dispersion with carbon microparticles and higher water content has the ability to produce fine
layers via electrospraying method, which is due to the change of viscosity and surface tension of the
solution [24–27]. Also, the presence of surfactant in the PTFE emulsion attributes to the change in fiber
diameter. The formation of finer fibers is facilitated by the presence of surfactant in the solution which
increased the conductivity of the solution and decreased the surface tension [28]. The morphology
of the microporous membrane depends, on the temperature, solvent, voltage, physical properties of
liquid phase, distance of collector, doping agents and the time of solvent evaporation. The fibers tend
to form beadlike structures when the concentration of the polymer solution is lower [29,30].
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Figure 5. Scanning electron microscope images of PTFE layers (P1: a1,a2; P2: b1,b2; P3: c1,c2; and
P4: d1,d2).
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Figure 6. Size distribution of particles (q: density distribution of the particle size; Q: cumulative
distribution of the particle size). (a) P1; (b) P2; (c) P3; and (d) P4)

3.2. Roughness of PTFE Microporous Layers

Exact distribution of the PTFE layer on the surface of support materials is explained by roughness.
Table 3 shows the key parameters of roughness of the PTFE layer, and the 3D morphology of the PTFE
microporous layer is shown in Figure 6. PTFE layers P1 and P3, which were separately produced by
the S1 and S3 solutions, have the similar surface roughness parameters, shown in Table 3, and the 3D
morphologies of the P1 and P3 layers are almost the same as those seen in Figure 7a,c. The Ra mean
values are much smaller than others, suggesting that the PTFE layer does not have a rough surface
compared with the P2 and P4 layers, which may possibly result in a smoother particle shape. However,
the P3 layers have Rku values which are smaller than 3, and partial P3 layers have Rku values which are
bigger than 3, suggesting that its surface roughness has two kinds of characters. For P2 layers, the Ra

mean value increases when compared with P1 and P3 layers, which is caused by carbon microparticles
in the PTFE polymer, and Figure 7b proves it well. However, all the surface roughness parameters of
the P2 layers have no essential difference from the P1 and P3 PTFE layers, and the Rsk is negative and
all the Rku values are bigger than 3. The Ra mean value of the P4 layers increases a lot and reaches
14.617 µm, meaning that it has the largest surface roughness. The P4 layers have a positive Rsk mean
value and an Rku mean value which is smaller than 3, suggesting that the P4 layer surface is totally
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different from that of the other three particle layers. Figure 7d shows that the P4 layer tends to be
sunken and its surface is even. As described in Section 3.1, with PTFE dispersed in water and with the
addition of the right amount of water, the viscosity and the surface tension were adjusted, which in
turn led to more evenness of the layers.

Table 3. Roughness of PTFE microporous layers.

No. Ra(µm) Rq(µm) Rsk(µm) Rku(µm)

P1 6.817 ± 2.700 8.679 ± 3.071 −0.213 ± 0.898 4.038 ± 0.995
P2 7.715 ± 1.212 9.820 ± 1.240 −0.9218 ± 0.233 4.108 ± 0.973
P3 6.690 ± 2.122 8.207 ± 2.479 −0.577 ± 0.285 3.154 ± 1.021
P4 14.617 ± 2.453 17.032 ± 2.495 0.074 ± 0.282 1.989 ± 0.289
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3.3. Influence on Hydrophobicity

The results of the static contact angle measurements are shown in Figure 8 and the digital images
of contact angle measurement is shown in Figure 9. The contact angles are over 90◦, which proves that
all of the particle layers are hydrophobic. The P1 and P2 layers have a close mean value of contact
angles, which may be caused by the similarly low Ra and Rku values. The P3 and P4 layers have a
close higher contact angle. The P4 layer has a contact angle of about 140◦. This is because of its high
Ra, given its high contact angle, and Rku values smaller than 3 improve the uniformity of its surface
roughness. The surface roughness of the P3 layer explained in Section 3.2 is complex because the P3
layer has Rku values which are bigger than 3 and other parts have Rku values that are smaller than
3. This complex surface roughness of P3 may lead to higher contact angles than those of P4, but the
difference is small. As explained in Section 3.2, the adjusted surface tension, evenness and surface
roughness of the electrosprayed layer attributes to the hydrophobicity. As seen in Figure 8, samples P3
and P4 showed improved hydrophobicity. Changes in contact angle after 6 minutes of washing (see
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Figure 8) is probably due to time-dependent partial removal of a water-soluble component other than
PTFE which was part of the original PTFE dispersion.Polymers 2020, 12, x FOR PEER REVIEW 9 of 12 
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Stability test under washing in standard conditions was conducted for the PTFE layers. It was
found that the morphology of layers was the same.

3.4. Influence of Electrical Property on Microporous Layers

The thickness and final electrical resistivity values of microporous layers are shown in Table 4.
The surface resistivity and volume resistivity of all the layers range in 109 Ω, which means that all
of the layers belong to the antistatic body. From the definition of Rsk, the Rsk is the key parameter
suggesting the distribution of the continuous layers of materials. The relationship between Rsk and
resistivity is shown in Figure 10. Surface resistivity slightly decreases with increasing Rsk, which
means that the uniform layers of PTFE increase slightly to improve the movement of electric charges
during the resistivity tests. Similarly, the uniform layers of materials also account for volume resistivity,
and the volume resistivity values tend to decrease with increasing Rsk values. Besides, no clear
relationships between contents of carbon microparticles and electrical properties can be found due to
the non-conductive property of the carbon microparticles.
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Table 4. Resistivity values of PTFE layers.

No. Surface Resistivity(Ω)×109 Volume Resistivity(Ωcm)×109 t (mm)

P1 2.6924 ± 0.3692 4.2960 ± 0.3901 0.34
P2 3.7044 ± 0.8918 8.3430 ± 0.9417 0.28
P3 3.4196 ± 0.5939 7.6942 ± 0.5509 0.26
P4 2.1392 ± 0.0642 4.8132 ± 0.2878 0.31
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4. Conclusions
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appear in the form of spheres and tend to be smaller with dilution of the PTFE solution. Compared
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and volume resistivity values ranging in 109 Ω were obtained, suggesting that the particle layers were
antistatic. Non-conductive carbon microparticles have no significant influence on electrical properties
of the layers. However, adding carbon microparticles in polymer solution increased the degrees of
ionization and was found to be beneficial for the shape control of materials during electrospraying.
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