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Abstract: Esca is a type of grapevine trunk disease that severely affects vine yield and longevity.
Phaeomoniella chlamydospora (P. chlamydospora) is one of the main fungi associated with esca. The aim
of the present study was to obtain eco-friendly materials with potential antifungal activity against
P. chlamydospora based on biodegradable and biocompatible poly(3-hydroxybutyrate) (PHB), nanosized
TiO2-anatase (nanoTiO2), and chitosan oligomers (COS) by conjunction of electrospinning and
electrospraying. One-pot electrospinning of a suspension of nanosized TiO2 nanoparticles in PHB
solution resulted in materials in which TiO2 was incorporated within the fibers (design type “in”).
Simultaneous electrospinning of PHB solution and electrospraying of the dispersion of nanosized
TiO2 in COS solution enabled the preparation of materials consisting of PHB fibers on which TiO2

was deposited on the fibers’ surface (design type “on”). Several methods including scanning electron
microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy
(FT-IR), X-ray diffraction analysis (XRD), thermogravimetric analyses (TGA) and water contact angle
were utilized to characterize the obtained materials. The incorporation of nanoTiO2 in the PHB fibers,
as well as nanoTiO2 deposition onto the surface of the PHB fibers resulted in increased roughness
and hydrophobicity of the obtained composite fibrous materials. Moreover, TiO2-on-PHB fibrous
material exhibited complete inhibition of fungal growth of P. chlamydospora. Therefore, the obtained
eco-friendly fibrous materials based on PHB and nanoTiO2 are promising candidates for protection
against esca in agriculture.

Keywords: antifungal activity; TiO2; electrospinning; electrospraying; PHB; Phaeomoniella chlamydospora;
esca

1. Introduction

Esca is a disease of grapevines that causes trunk damage and entire-plant wilting and
has been known about since ancient times [1–3]. This grapevine disease is caused mainly by
Phaeoacremonium chlamydospora and Phaeoacremonium aleophilum species [4,5]. Over the last three
decades, the impact of esca disease has become an issue of great importance. Symptoms of the disease
manifest in severe or chronic forms, which may affect the entire plant or individual canes of the same
plant [1,6]. In addition, the fruits can be affected as well [7]. The wounds formed on vines during the
pruning procedure are found to be the main point of penetration by P. chlamydospora and P. aleophilum
spores in grapevines [3,8]. Up to now, sodium arsenite is the only known and effective agent for
combating esca. However, arsenic and its compounds have been classified as carcinogenic and currently
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are not allowed for use [9]. Therefore, it cannot be applied for the production of plant protection
products. To date, there are no curative approaches to fight against esca, and only preventative methods
are applied [10]. Treatments with hot water are sometimes used to obtain commercial plants with good
sanitary conditions. This process is generally performed at 50 ◦C for 30 min; however, it is stressful for
the plants [11].

Nanotechnologies are utilized in the design, characterization, production, and application of new
generations of materials, structures, devices, and systems, having one or more dimensions of about
100 nanometers or less, and therefore possessing unique size-related properties. Nanotechnology has
the potential to solve diverse problems with significant social and economic impacts. For instance,
electrospinning allows simple and versatile preparation of polymer fibers with micro- and nanosized
diameters, with extremely long lengths, up to several meters, and with unique properties—large specific
surface area and fine porous structure [12,13]. In our previous study, we showed that electrospinning
could be easily applied for the preparation of fibers containing chitosan and Trichoderma viride spores
for agricultural crop protection. The prepared biohybrid fibrous mats inhibited the growth of Fusarium
and Alternaria strains. Moreover, the facile covering of different plant parts by direct electrospinning
was demonstrated [14].

Soy protein, polyvinyl alcohol and polycaprolactone have been electrospun on rayon membranes
in order to obtain a material that hinders the penetration of fungal spores [15]. However, physical
blocking has proven unsatisfactory and the inclusion of a component with antifungal activity has been
put forward. Therefore, one recent report has been published on the use of electrospun materials
from poly(lactide-co-glycolide) and poly(butyleneadipate-co-terephthalate), and it incorporated an
antifungal agent, polyhexamethylene guanidine, as bandages to prevent esca disease by blocking
the penetration of P. chlamydospora spores [16]. In addition, the fibrous membranes prepared by
electrospinning enable air and moisture permeation, allowing a plant wound to “breathe”. The authors
reported, however, that further optimization was needed to find more efficient polymers and a more
appropriate choice of antifungal additives.

In the present study, we propose the facile fabrication of fibrous materials containing an easily
available, naturally occurring compound with antifungal activity—titanium dioxide. Titanium dioxide
is one of the most extensively studied, and used, metal oxide with photocatalytic and antibacterial
properties [17,18]. Moreover, TiO2 (anatase and rutile) is well known for its ability to produce reactive
oxygen species [19]. Recently, we demonstrated that nanostructured composite materials containing
TiO2 nanoparticles evoke particular interest due to their potential applications in biomedicine,
biotechnologies, and for environmental protection [20,21].

The aim of the present study was to prepare nanostructured composite mats with diverse design
based on PHB and nanoTiO2 by electrospinning, or in combination with electrospraying. The effect
of the composition and material design on morphology and wetting was investigated. Moreover,
we assessed the antifungal activity of the prepared electrospun materials using a model fungus,
Phaeoacremonium chlamydospora, which is one of the main species associated with esca disease. We have
determined that the proposed approach is very promising for plant protection against esca.

2. Materials and Methods

2.1. Materials

Poly(3-hydroxybutyrate) (PHB, 330,000 g/mol, Biomer, Schwalbach, Germany), titanium (IV)
oxide (nanoTiO2) (99.7% anatase nanopowder, <25 nm, Sigma–Aldrich, St. Louis, MO, USA) and
chitosan oligomers (COS, average molecular weight 3000–5000 g/mol, Kitto Life Co. LTD, Korea)
were used. N,N-dimethylformamide (DMF), chloroform (CHCl3) and ethanol were delivered from
Merck (Darmstadt, Germany) and used as received. Potato dextrose agar medium was purchased
also from Merck (Darmstadt, Germany). Disposable consumables were supplied by Orange Scientific,
Braine-l’Alleud, Belgium.
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2.2. Fabrication of Fibrous Materials

Fibrous PHB, TiO2-in-PHB and TiO2-on-PHB materials were fabricated by electrospinning or by
simultaneous electrospinning and electrospraying, as described in detail elsewhere [21]. In brief, prior
to electrospinning, the PHB spinning solution (14% w/v) in CHCl3/DMF (4/1 v/v) was obtained by heating
(60 ◦C) using a reflux condenser. PHB fibrous materials were prepared by direct electrospinning of PHB
solution. TiO2-in-PHB fibrous materials were obtained by electrospinning of a mixture of PHB solution
with nanoTiO2 (7% w/v). The obtained PHB solution and nanoTiO2/PHB mixture (total nanoTiO2

concentration 33 wt.%) were placed in syringes and delivered (NE-300, New Era Pump Systems, Inc.)
at a constant feeding rate of 3 mL/h and 5 mL/h, respectively. Electrospinning was performed at a
voltage of 25 kV, tip-to-collector distance of 25 cm and 1500 rpm collector rotation speed. TiO2-on-PHB
fibrous materials were prepared using a PHB spinning solution (14% w/v) for electrospinning and
nanoTiO2-COS dispersion for electrospraying. For this purpose, an aqueous COS solution (0.5%) was
added to the nanoTiO2 (10% w/v) dispersion in ethanol. The prepared (nanoTiO2-COS) dispersion in
ethanol/water (4/1 v/v) was sonicated (Bandelin Sonorex, 160/640 W, 35 kHz) for 1 h. Then, the PHB
spinning solution and the prepared nanoTiO2-COS dispersion were placed in two separate syringes.
The syringes were positioned at an angle of 180◦ relative to each other. A rotating drum collector
(1500 rpm) was used. Schematic representation of the electrospinning/electrospraying setup is shown
in Figure 1. A high voltage of 25 kV was applied to the both needles. The PHB solution was fed at a
rate of 3 mL/h, and that of nanoTiO2-COS at 2 mL/h. The distance from the tip to collector was 25 and
10 cm for electrospinning and electrospraying, respectively.
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Figure 1. Schematic diagram of the electrospinning/electrospraying setup.

2.3. Characterization of the Fibrous Composite Materials

The morphology of the materials was observed by scanning electron microscopy (SEM).
The samples were vacuum-coated with carbon and analyzed by a Philips 515 SEM (Tokyo, Japan).
The mean fiber diameter was determined by using ImageJ software [22]. The criteria for overall
evaluation of electrospun materials were applied [23]. Transmission electron microscopy (TEM) was
conducted on a JEM 2100 (JEOL Co. Ltd., Freising, Germany) operating at a voltage of 200 kV. Samples
were prepared by direct depositing on a copper grid.

Static contact angle measurements of the fibrous materials were performed using an Easy Drop
DSA20E Krűss GmbH drop shape analysis system (Hamburg, Germany) at 20 ± 0.2 ◦C. A sessile drop
of deionized water with a volume of 5 µL, controlled by a computer dosing system, was deposited
onto the fibrous materials. The contact angles were calculated by computer analysis of the acquired
images of the droplet. The data were averaged from 20 measurements for each sample.

X-ray diffraction (XRD) analyses were performed using a computer-controlled D8 Bruker Advance
diffractometer with filtered Cu Kα radiation and a LynxEye detector at room temperature. Data were
collected in the 2θ range from 5.3◦ to 80◦ with a step of 0.02◦ and counting time of 1 s step−1. Diffracplus
EVA using the ICDD-PDF2 database was used for phase identification.
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Fourier-transform infrared (FT-IR) spectroscopy analyses were performed using an IRAffinity-1
spectrophotometer (Shimadzu Co., Kyoto, Japan), supplied with a MIRacle ATR device (diamond
crystal; depth of penetration of the IR beam into the sample—approximately 2 µm) (PIKE Technologies,
Madison, WI, USA) in the range of 600–4000 cm−1 with a resolution of 4 cm−1. All spectra were
corrected for H2O and CO2 using the IRsolution software program.

Thermogravimetric analyses (TGA) were carried out in the 25–1000 ◦C range at 10 ◦C/min rate
under nitrogen with a TA Instruments Q500 (HiRes method).

2.4. In Vitro Antifungal Assay

The fungi P. chlamydospora CBS 239.74 (Westerdijk Fungal Biodiversity Institute, Utrecht,
The Netherlands) were used in the in vitro antifungal assay. For the preparation of the conidia
suspension, test microorganisms were grown on potato dextrose agar (PDA) medium for 14 days.

Conidia were obtained by pouring 5 mL of sterile water onto the plate and washing off with a
sterile loop. Conidia suspensions were filtered through two layers of sterile round cloth to remove
mycelial fragments. The final concentration of conidia was adjusted to 107 conidia/mL with sterile
water. The fibrous materials were cut in disks with diameters of 4.5 cm and thickness ~1 µm. Digital
Thickness Gauge FD 50 (Käfer GmbH, Villingen-Schwenningen, Germany) was used to determine
the thickness of the fibrous materials. All fibrous materials were sterilized for 30 min under UV light
in the laminar box before being used for further experiments. Then, the fibrous material (in a disk
form) was placed between the two parts of the filtration device and supplied with a pump. The two
parts of the device were pinched with a clip. After that, 20 mL of spore conidia suspension was passed
through each type the fibrous material. Then, every used disk was taken with pincers and placed on a
surface of a solid PDA medium in a Petri dish. The Petri dishes were placed for 96 h at 28 ◦C under
light irradiation by a 10 W lamp at wavelength of 420 nm. Then, the fungal growth was assessed.
The concentration of conidia, passed through the materials, was determined using a hemocytometer.

3. Results and Discussion

Three types of fibrous materials based on biocompatible and biodegradable PHB and nanosized
TiO2-anatase were fabricated by electrospinning alone or in conjunction with electrospraying (Figure 2).
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Figure 2. Schematic representation of fibers: (A) PHB, (B) TiO2-in-PHB and (C) TiO2-on-PHB.

SEM micrographs and fiber diameter distributions of the prepared PHB, TiO2-in-PHB and
TiO2-on-PHB electrospun materials are shown in Figure 3. It can be clearly seen that the selected
conditions for electrospinning resulted in the fabrication of uniform and defect-free PHB fibers.
The electrospinning of PHB solution resulted in the preparation of continuous fibers with a mean fiber
diameter of 750 ± 130 nm (Figure 3A). Adding nanoTiO2 to the PHB solution resulted in an increase in
the mean fiber diameter to 1900 ± 300 nm. It was found that incorporation of nanoTiO2 resulted in
the preparation of fibers with a rough surface (Figures 3B and 4A). Moreover, it could be easily seen
that some of the TiO2 particles are very close to the fiber surface. This morphological alteration of the
type “in” materials is a result of the incorporation of nanoTiO2 particles in the fibers. It was detected
that part of the particles aggregated during the electrospinning. Representative SEM images of the
obtained TiO2-on-PHB fibrous materials are shown in Figure 3C,D. It can be seen that electrospraying
of the dispersions containing nanoTiO2-COS resulted in the decoration of the surface of the PHB fibers
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with nanoTiO2. The presented SEM at high magnification showed that the TiO2 particles possessed
spherical form with small (ca. 20 nm) and large (500 nm) diameters (Figure 3D). Apparently, COS
stabilized the nanoTiO2 dispersion and served as a sticking agent for TiO2 onto the PHB fibers.
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(C) TiO2-on-PHB (×1000) and (D) TiO2-on-PHB (×5000). The fiber diameter distributions are given for
(A) and (B).

The distribution of TiO2 nanoparticles in/on the PHB fibers, depending on the materials type,
was observed by TEM. As seen from the presented TEM micrograph of TiO2-in-PHB, the nanoTiO2

particles were distributed mainly in the bulk of the PHB fibers (Figure 4A). Some of the nanoparticles
formed agglomerates. Electrospraying of TiO2-COS dispersion on the PHB fibers resulted in enrichment
of the fiber surface in the nanoTiO2 particles (Figure 4B). Detailed observation of the TiO2-on-PHB
materials using SEM and TEM revealed that all the fibers were decorated with TiO2 particles.
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The FT-IR spectra of the PHB, TiO2-in-PHB and TiO2-on-PHB fibrous materials (Figure S1) showed
bands characteristic of PHB with the carbonyl stretching band at 1721 cm−1 and the C-O stretching
band at 1055 cm−1. Clearly, no interaction between PHB and nanoTiO2 was detected in the FT-IR
spectra of TiO2-in-PHB and TiO2-on-PHB fibrous materials.

It is known that the affinity to water of the host surface affects the adhesion and growth of fungal
plant pathogens [24]. For this reason, it is important to determine the water contact angle of the
prepared fibrous materials that will be in contact with fungal species. The water contact angle of neat
PHB fibrous materials was a 108◦ ± 3.3◦, i.e., this fibrous material was hydrophobic. The incorporation
of nanoTiO2 in the fibers resulted in the preparation of rough fibers, and the roughness led to the
increase of contact angle value in comparison with the neat PHB fibers. The measured water contact
angles for TiO2-in-PHB and TiO2-on-PHB fibrous materials were 124◦ ± 2.3◦ and 127◦ ± 3.5◦ (Figure 5),
respectively. The structure of TiO2-on-PHB fibrous materials resembled a lotus leaf architecture and
possessed a rougher surface compared with that of the TiO2-in-PHB fibrous materials. However,
the measured water contact angle values for the TiO2-in-PHB and TiO2-on-PHB fibrous materials were
very close. This finding could be explained by the effect of COS, which decreased the water repellency
and this effect could not be compensated by the higher surface roughness of the type “on” materials.Polymers 2020, 12, x FOR PEER REVIEW 7 of 12 
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The crystallinity of the PHB and the crystal phase of the nanoTiO2 were analyzed by X-ray
diffraction analysis. It was of interest to determine if TiO2 incorporated in the PHB fibers was detectable
with XRD analysis. In the XRD patterns of TiO2-in-PHB (Figure 6), characteristic diffraction peaks
of PHB positioned at 13.5◦ (020), 16.9◦ (110), 20.1◦ (021), 21.5◦ (101), 25.5◦ (111) and 27.2◦ (040) were
observed. In addition, the TiO2 anatase phase with peaks at 25.5◦ (101), 37.6◦ (004), 48.2◦ (200), 56.3◦

(211) and 62.8◦ (204) was also identified. The obtained results were in agreement with TiO2 (anatase)
standard data [25]. Characteristic diffraction peaks of TiO2 anatase and PHB were detected in the XRD
spectra of TiO2-on-PHB as well (figure not shown).
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The thermal stability of the fibrous materials was studied by TGA (Figure 7). In general, there were
no significant differences in the thermal stability of the three types of materials. The most considerable
decomposition occurred in the temperature range 250–270 ◦C due to the thermal destruction of the
PHB. The residual weight was close to the weight of TiO2 in the feed.Polymers 2020, 12, x FOR PEER REVIEW 8 of 12 
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Recently, there has been a rising demand for developing novel plant protective agents and
materials that are efficient and non-toxic. Nanostructured TiO2 is an environmentally friendly material
and the prospects for its application in agriculture have already attracted attention. Up to now, TiO2

has been applied to degrade pesticides, for water purification, for pest and disease control, for plant
growth, and for the detection of pesticides [20,26]. It is well known that pruning wounds are the
main point of entry for a spore invasion of vine plants. The antifungal activity of the fibrous materials
against P. chlamydospora was determined by performing microbiological tests. Initially, the barrier
efficacy of PHB, TiO2-in-PHB and TiO2-on-PHB fibrous materials was studied. For that purpose, 20 mL
of conidia suspension was passed through each fibrous material using a filtration device. A schematic
presentation of the filter position in the device is shown in Figure 8. As can be seen, the conidia
suspension contacted with the central part of the filter.
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In the preliminary experiments, we determined the conidia size in the fungal suspension using
SEM analysis. A SEM micrograph of the P. chlamydospora conidia used in the present study is shown in
Figure 9. The size of the conidia was measured from the SEM micrograph with ImageJ software. It was
determined that their diameters were ~1.5–2 µm and their lengths were ca. 2.5–3 µm.Polymers 2020, 12, x FOR PEER REVIEW 9 of 12 
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The initial concentration in the filtration experiments was 1 × 107 conidia/mL. It was found that in
all cases, after passing through the fibrous materials, the conidia concentration decreased. The final
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spore concentrations were 5.7 × 104, 3.3 × 103 and 1.4 × 103 for the PHB, TiO2-in-PHB and TiO2-on-PHB
materials, respectively. We assumed that the higher roughness and the presence of protuberances in
TiO2-in-PHB and TiO2-on-PHB fibrous materials led to more difficult passage of the conidia through
them and resulted in a higher filtration efficiency compared to the PHB fibrous material. However,
none of the used fibrous materials reached 100% conidia filtration efficiency. Then, the disks used in
filtration experiments were taken off from the filtration device and were placed on a surface of a solid
agar in a Petri dish. The Petri dishes were incubated for 96 h at 28 ◦C under light irradiation, and then
the fungal growth was assessed. Digital images of growth of P. chlamydospora on the fibrous materials
surface are shown in Figure 10. As can be easily seen, the PHB fibrous material used in the filtration
experiments developed colonies of P. chlamydospora on its surface. Moreover, the fungi invaded the
surfaces of all Petri dishes (Figure 10A). Electrospinning of mixed TiO2/PHB dispersion resulted in the
preparation of materials with some antifungal properties (Figure 10B). Nevertheless, there was some
fungal growth on the TiO2-in-PHB surface, especially in the central zone of the material, which was
accessible by the conidia during the filtration experiment. However, they were comparatively much
less than those observed on the surface of the PHB fibrous material. Interestingly, the simultaneous
electrospinning of PHB solution and electrospraying of nanoTiO2-COS dispersion resulted in the
preparation of a fibrous material with antifungal activity. The TiO2-on-PHB fibrous material that
contacted with P. chlamydospora during filtration experiment showed complete inhibition of the growth
of the fungi remaining in the fibrous material after the filtration (Figure 10C). The observation of a wide
zone of inhibition around the TiO2-on-PHB materials evidenced that the nanoTiO2-COS deposited onto
the surface of the PHB fibers imparted antifungal activity to the obtained electrospun material. The
antifungal activity of the TiO2-on-PHB fibrous material could be due to the synergic action of TiO2

nanoparticles that are able to produce significant reactive oxygen species (ROS) [27] and the effect
of chitosan oligomers. There are data in the literature showing that chitosan possesses antifungal
activity against many fungal species [28]. Most probably, the antifungal activity of chitosan is due to
its polycationic nature. We hypothesize that the positive charge of chitosan could interact with the
negatively charged phospholipid parts of the fungal membrane. This will cause the leakage of cellular
contents, thus leading to cell death.Polymers 2020, 12, x FOR PEER REVIEW 10 of 12 
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4. Conclusions

Nanostructured fibrous materials of PHB, TiO2-in-PHB and TiO2-on-PHB were fabricated by
electrospinning or in conjunction with electrospraying. The incorporation of nanoTiO2 into the
PHB fibers or the decoration of PHB fibers with nanoTiO2-COS resulted in increased roughness and
hydrophobicity of the obtained composite materials and imparted a considerable antifungal activity
against P. chlamydospora. Complete suppression of the fungal growth was obtained in the case of the
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TiO2-on-PHB material. Thus, the obtained composite TiO2/PHB fibrous materials are promising for
application in agriculture as eco-friendly materials for plant protection against the penetration and
growth of the main causative fungi causing esca disease.
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