Eco-Conversion of Two Winery Lignocellulosic Wastes into Fillers for Biocomposites: Vine Shoots and Wine Pomaces
Abstract
:1. Introduction
2. Materials and Method
2.1. Materials
2.2. Methods
2.2.1. Extraction of Polyphenols
2.2.2. Production of Fillers
2.2.3. Production of Biocomposites
2.2.4. Scanning Electron Microscopy (SEM)
2.2.5. Laser Granulometry
2.2.6. Color
2.2.7. Biochemical Composition
2.2.8. Differential Scanning Calorimetry
2.2.9. Thermogravimetric Analysis
2.2.10. Mechanical Properties
2.2.11. Water Vapor Permeability (WVP)
3. Results and discussion
3.1. Intrinsic Properties of Wine Pomace and Vine Shoots Particles
3.1.1. Particle Biochemical Composition
3.1.2. Particle Color
3.1.3. Particle Morphology, Size and Density
3.1.4. Thermal Stability of the Fillers
3.2. Impact of Biomass Origin and Treatments on the Properties of Biocomposites
3.2.1. Visual Appearance of Films
3.2.2. Observation of the Microstructure by SEM
3.2.3. Differential Scanning Calorimetry (DSC) characterization
3.2.4. Thermal Stability
3.2.5. Mechanical Properties
3.2.6. Water Vapor Permeability
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Isikgor, F.H.; Becer, C.R. Lignocellulosic biomass: A sustainable platform for the production of bio-based chemicals and polymers. Polym. Chem. 2015, 6, 4497–4559. [Google Scholar] [CrossRef] [Green Version]
- Zégers, J.P.; Bonnard, P.; Mhiri, T. L’observatoire National des Ressources en Biomasse: Évaluation des Ressources Disponibles en France; FranceAgriMer: Paris, France, 2015. [Google Scholar]
- PlasticsEurope. Plastics—The Facts 2018; PlasticsEurope: Brussels, Belgium, 2018. [Google Scholar]
- Väisänen, T.; Haapala, A.; Lappalainen, R.; Tomppo, L. Utilization of agricultural and forest industry waste and residues in natural fiber-polymer composites: A review. Waste Manag. 2016, 54, 62–73. [Google Scholar] [CrossRef] [PubMed]
- No Agricultural Waste. NoAW Project H2020; No Agricultural Waste: Paris, France, 2020. [Google Scholar]
- Nabais, J.M.V.; Laginhas, C.; Carrott, P.J.M.; Carrott, M.M.L.R. Thermal conversion of a novel biomass agricultural residue (vine shoots) into activated carbon using activation with CO2. J. Anal. Appl. Pyrolysis 2010, 87, 8–13. [Google Scholar] [CrossRef]
- Galanakis, C.M. Handbook of Grape Processing by-Products; Galanakis, C., Ed.; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Ceps et Sarments de Vigne. PACA, ADEME. 2012. Available online: https://www.biomasse-territoire.info/wp-content/uploads/2018/02/Fiche_ceps_et_sarments.pdf (accessed on 9 July 2020).
- Jiménez, L.; Angulo, V.; Ramos, E.; De la Torre, M.J.; Ferrer, J.L. Comparison of various pulping processes for producing pulp from vine shoots. Ind. Crops Prod. 2006, 23, 122–130. [Google Scholar] [CrossRef]
- Dávila, I.; Gordobil, O.; Labidi, J.; Gullón, P. Assessment of suitability of vine shoots for hemicellulosic oligosaccharides production through aqueous processing. Bioresour. Technol. 2016, 211, 636–644. [Google Scholar] [CrossRef]
- Gullón, B.; Eibes, G.; Moreira, M.T.; Dávila, I.; Labidi, J.; Gullón, P. Antioxidant and antimicrobial activities of extracts obtained from the refining of autohydrolysis liquors of vine shoots. Ind. Crops Prod. 2017, 107, 105–113. [Google Scholar] [CrossRef]
- Karacabey, E.; Mazza, G.; Bayindirli, L.; Artik, N. Extraction of Bioactive Compounds from Milled Grape Canes (Vitis vinifera) Using a Pressurized Low-Polarity Water Extractor. Food Bioprocess Technol. 2012, 5, 359–371. [Google Scholar] [CrossRef]
- Rayne, S.; Karacabey, E.; Mazza, G. Grape cane waste as a source of trans-resveratrol and trans-viniferin: High-value phytochemicals with medicinal and anti-phytopathogenic applications. Ind. Crops Prod. 2008, 27, 335–340. [Google Scholar] [CrossRef]
- European Commission Council Regulation. No 479/2008 of 29 April 2008 on the common organisation of the market in wine, amending Regulations (EC). Off. J. Eur. Union 2008, 148, 9–40. [Google Scholar]
- Beres, C.; Costa, G.N.S.; Cabezudo, I.; da Silva-James, N.K.; Teles, A.S.C.; Cruz, A.P.G.; Mellinger-Silva, C.; Tonon, R.V.; Cabral, L.M.C.; Freitas, S.P. Towards integral utilization of grape pomace from winemaking process: A review. Waste Manag. 2017, 68, 581–594. [Google Scholar] [CrossRef]
- García-Lomillo, J.; González-SanJosé, M.L. Applications of Wine Pomace in the Food Industry: Approaches and Functions. Compr. Rev. Food Sci. Food Saf. 2017, 16, 3–22. [Google Scholar] [CrossRef]
- Devesa-Rey, R.; Vecino, X.; Varela-Alende, J.L.; Barral, M.T.; Cruz, J.M.; Moldes, A.B. Valorization of winery waste vs. the costs of not recycling. Waste Manag. 2011, 31, 2327–2335. [Google Scholar] [CrossRef] [PubMed]
- Antoniolli, A.; Fontana, A.R.; Piccoli, P.; Bottini, R. Characterization of polyphenols and evaluation of antioxidant capacity in grape pomace of the cv. Malbec. Food Chem. 2015, 178, 172–178. [Google Scholar] [CrossRef] [PubMed]
- Muhlack, R.A.; Potumarthi, R.; Jeffery, D.W. Sustainable wineries through waste valorisation: A review of grape marc utilisation for value-added products. Waste Manag. 2018, 72, 99–118. [Google Scholar] [CrossRef]
- Georgiev, V.; Ananga, A.; Tsolova, V. Recent advances and uses of grape flavonoids as nutraceuticals. Nutrients 2014, 6, 391–415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brenes, A.; Viveros, A.; Chamorro, S.; Arija, I. Use of polyphenol-rich grape by-products in monogastric nutrition: A review. Anim. Feed Sci. Technol. 2016, 211, 1–17. [Google Scholar] [CrossRef]
- Girones, J.; Vo, L.T.T.; Di Giuseppe, E.; Navard, P. Natural filler-reinforced composites: Comparison of reinforcing potential among technical fibers, stem fragments and industrial by-products. Cell. Chem. Technol. 2017, 51, 839–855. [Google Scholar]
- Kilinc, A.C.; Atagur, M.; Ozdemir, O.; Sen, I.; Kucukdogan, N.; Sever, K.; Seydibeyoglu, O.; Sarikanat, M.; Seki, Y. Manufacturing and characterization of vine stem reinforced high density polyethylene composites. Compos. Part B Eng. 2016, 91, 267–274. [Google Scholar] [CrossRef]
- Mansouri, S.; Khiari, R.; Bendouissa, N.; Saadallah, S.; Mhenni, F. Chemical composition and pulp characterization of Tunisian vine stems. Ind. Crops Prod. 2012, 36, 22–27. [Google Scholar] [CrossRef]
- Nanni, A.; Messori, M. A comparative study of different winemaking by-products derived additives on oxidation stability, mechanical and thermal proprieties of polypropylene. Polym. Degrad. Stab. 2018, 149, 9–18. [Google Scholar] [CrossRef]
- Saccani, A.; Manzi, S.; Baldazzi, L.; Sisti, L. Epoxy composites containing wastes from wine production as fillers. J. Appl. Polym. Sci. 2018, 135, 6–11. [Google Scholar] [CrossRef]
- Borsoi, C.; Menin, C.; Lavoratti, A.; Zattera, A.J. Grape stalk fibers as reinforcing filler for polymer composites with a polystyrene matrix. J. Appl. Polym. Sci. 2019, 136, 1–10. [Google Scholar] [CrossRef]
- Jiang, Y.; Simonsen, J.; Zhao, Y. Compression-Molded Biocomposite Boards from Red and White Wine Grape Pomaces. J. Appl. Polym. Sci. 2010, 119, 2834–2846. [Google Scholar] [CrossRef]
- Saccani, A.; Sisti, L.; Manzi, S.; Fiorini, M. PLA composites formulated recycling residuals of the winery industry. Polym. Compos. 2019, 40, 1378–1383. [Google Scholar] [CrossRef]
- Gowman, A.; Wang, T.; Rodriguez-Uribe, A.; Mohanty, A.K.; Misra, M. Bio-poly(butylene succinate) and Its Composites with Grape Pomace: Mechanical Performance and Thermal Properties. ACS Omega 2018, 3, 15205–15216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- David, G. Eco-Conversion of Agricultural Lignocellulosic Residues into Bioplyester-Based Composite Materials; University of Montpellier: Montpellier, France, 2019. [Google Scholar]
- Singh, S.; Mohanty, A.K.; Sugie, T.; Takai, Y. Renewable resource based biocomposites from natural fiber and polyhydroxybutyrate-co-valerate (PHBV) bioplastic. Compos. Part A 2008, 39, 875–886. [Google Scholar] [CrossRef]
- Angelini, S.; Cerruti, P.; Immirzi, B.; Santagata, G.; Scarinzi, G.; Malinconico, M. From biowaste to bioresource: Effect of a lignocellulosic filler on the properties of poly(3-hydroxybutyrate). Int. J. Biol. Macromol. 2014, 71, 163–173. [Google Scholar] [CrossRef]
- Berthet, M.A.; Angellier-Coussy, H.; Chea, V.; Guillard, V.; Gastaldi, E.; Gontard, N. Sustainable food packaging: Valorising wheat straw fibres for tuning PHBV-based composites properties. Compos. Part A Appl. Sci. Manuf. 2015, 72, 139–147. [Google Scholar] [CrossRef]
- David, G.; Michel, J.; Gastaldi, E.; Gontard, N.; Angellier-Coussy, H. How vine shoots as fillers impact the biodegradation of PHBV-based composites. Int. J. Mol. Sci. 2020, 21, 228. [Google Scholar] [CrossRef] [Green Version]
- Krouit, M.; Belgacem, M.N.; Bras, J. Chemical versus solvent extraction treatment: Comparison and influence on polyester based bio-composite mechanical properties. Compos. Part A 2010, 41, 703–708. [Google Scholar] [CrossRef]
- Ferri, M.; Vannini, M.; Ehrnell, M.; Eliasson, L.; Monari, S.; Sisti, L.; Marchese, P.; Celli, A.; Tassoni, A. From winery waste to bioactive compounds and new polymeric biocomposites: A contribution to the circular economy concept. J. Adv. Res. 2020, 24, 1–11. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.R. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- American Society for Testing and Materials. Standard Practice for Calculation of Color Tolerances and Color Differences from Instrumentally Measured Color Coordinates; American Society for Testing and Materials: West Conshohocken, PA, USA, 2005. [Google Scholar]
- Torres-Giner, S.; Hilliou, L.; Melendez-Rodriguez, B.; Figueroa-Lopez, K.J.; Madalena, D.; Cabedo, L.; Covas, J.A.; Vicente, A.A.; Lagaron, J.M. Melt processability, characterization, and antibacterial activity of compression-molded green composite sheets made of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) reinforced with coconut fibers impregnated with oregano essential oil. Food Packag. Shelf Life 2018, 17, 39–49. [Google Scholar] [CrossRef] [Green Version]
- Angellier-Coussy, H.; Gastaldi, E.; Gontard, N.; Guillard, V. Influence of processing temperature on the water vapour transport properties of wheat gluten based agromaterials. Ind. Crops Prod. 2011, 33, 457–461. [Google Scholar] [CrossRef]
- Saura-Calixto, F.; Goñi, I.; Mañas, E.; Abia, R. Klason lignin, condensed tannins and resistant protein as dietary fibre constituents: Determination in grape pomaces. Food Chem. 1991, 39, 299–309. [Google Scholar] [CrossRef]
- Arnous, A.; Meyer, A.S. Comparison of methods for compositional characterization of grape (Vitis vinifera L.) and apple (Malus domestica) skins. Food Bioprod. Process. 2008, 86, 79–86. [Google Scholar] [CrossRef]
- Manara, P.; Zabaniotou, A.; Vanderghem, C.; Richel, A. Lignin extraction from Mediterranean agro-wastes: Impact of pretreatment conditions on lignin chemical structure and thermal degradation behavior. Catal. Today 2014, 223, 25–34. [Google Scholar] [CrossRef]
- Lammi, S.; Le Moigne, N.; Djenane, D.; Gontard, N.; Angellier-Coussy, H. Dry fractionation of olive pomace for the development of food packaging biocomposites. Ind. Crops Prod. 2018, 120, 250–261. [Google Scholar] [CrossRef]
- Silva, G.G.D.; Rouau, S.G.X. Successive centrifugal grinding and sieving of wheat straw. Powder Technol. 2011, 208, 266–270. [Google Scholar] [CrossRef]
- Wolf, C.; Angellier-Coussy, H.; Gontard, N.; Doghieri, F.; Guillard, V. How the shape of fillers affects the barrier properties of polymer/non-porous particles nanocomposites: A review. J. Membr. Sci. 2018, 556, 393–418. [Google Scholar] [CrossRef]
- Khiari, B.; Jeguirim, M. Pyrolysis of grape marc from Tunisian wine industry: Feedstock characterization, thermal degradation and kinetic analysis. Energies 2018, 11, 730. [Google Scholar] [CrossRef] [Green Version]
- Lammi, S.; Barakat, A.; Mayer-Laigle, C.; Djenane, D.; Gontard, N.; Angellier-Coussy, H. Dry fractionation of olive pomace as a sustainable process to produce fillers for biocomposites. Powder Technol. 2018, 326, 44–53. [Google Scholar] [CrossRef] [Green Version]
- Totaro, G.; Sisti, L.; Vannini, M.; Marchese, P.; Tassoni, A.; Lenucci, M.S.; Lamborghini, M.; Kalia, S.; Celli, A. A new route of valorization of rice endosperm by-product: Production of polymeric biocomposites. Compos. Part B Eng. 2018, 139, 195–202. [Google Scholar] [CrossRef]
- Persico, P.; Ambrogi, V.; Baroni, A.; Santagata, G.; Carfagna, C.; Malinconico, M.; Cerruti, P. Enhancement of poly(3-hydroxybutyrate) thermal and processing stability using a bio-waste derived additive. Int. J. Biol. Macromol. 2012, 51, 1151–1158. [Google Scholar] [CrossRef]
- Hassaini, L.; Kaci, M.; Touati, N.; Pillin, I.; Kervoelen, A.; Bruzaud, S. Valorization of olive husk flour as a filler for biocomposites based on poly(3-hydroxybutyrate-co-3-hydroxyvalerate): Effects of silane treatment. Polym. Test. 2017, 59, 430–440. [Google Scholar] [CrossRef]
- David, G.; Gontard, N.; Angellier-Coussy, H. Mitigating the Impact of Cellulose Particles on the Performance of Biopolyester-Based Composites by Gas-Phase Esterification. Polymers 2019, 11, 200. [Google Scholar] [CrossRef] [Green Version]
- Berthet, M.A.; Angellier-Coussy, H.; Machado, D.; Hilliou, L.; Staebler, A.; Vicente, A.; Gontard, N. Exploring the potentialities of using lignocellulosic fibres derived from three food by-products as constituents of biocomposites for food packaging. Ind. Crops Prod. 2015, 69, 110–122. [Google Scholar] [CrossRef]
- Le Moigne, N.; Otazaghine, B.; Corn, S.; Angellier-Coussy, H.; Bergeret, A. Surfaces and Interfaces in Natural Fibre Reinforced Composites—Fundamentals, Modifications and Characterization; Navard, P., Ed.; Springer: Cham, Switzerland, 2018. [Google Scholar]
Klason Lignin (%) | Ash (%) | L* | a* | b* | ΔE | |
---|---|---|---|---|---|---|
Cellulose | - | - | 76.8 ± 0.2 | 1.3 ± 0.1 | 5.1 ± 0.1 | - |
ViSh-V | 19.4 ± 0.5 | 3.9 ± 0.2 | 62.2 ± 0.5 | 6.8 ± 0.1 | 22.2 ± 0.3 | 23.2 ± 0.6 |
ViSh-E | 17.7 ± 0.5 | 4.7 ± 0.5 | 65.1 ± 0.4 | 7.0 ± 0.1 | 22.8 ± 0.1 | 21.9 ± 0.2 |
WiPo-V | 34.6 ± 0.9 | 5.5 ± 0.7 | 37.9 ± 0.2 | 12.7 ± 0.1 | 11.7 ± 0.1 | 41.0 ± 0.2 |
WiPo-E | 41.7 ± 1.0 | 6.6 ± 0.2 | 35.9 ± 0.1 | 11.7 ± 0.0 | 12.0 ± 0.0 | 42.7 ± 0.1 |
Sample | Density (g∙cm−3) | d10 (µm) | d50 (µm) | d90 (µm) | Span |
---|---|---|---|---|---|
ViSh-V | 1.449 ± 0.002 | 17 ± 1 | 143 ± 11 | 539 ± 67 | 3.7 |
ViSh-E | 1.445 ± 0.002 | 20 ± 1 | 143 ± 9 | 569 ± 26 | 3.9 |
WiPo-V | 1.420 ± 0.003 | 22 ± 1 | 114 ± 4 | 363 ± 15 | 3.0 |
WiPo-E | 1.414 ± 0.002 | 21 ± 1 | 121 ± 5 | 370 ± 16 | 2.9 |
Sample | Tonset (°C) | Tdeg1 (°C) | Tdeg2 (°C) | Tdeg3 (°C) | Residues at 600 °C (%) |
---|---|---|---|---|---|
ViSh-V | 206 ± 1 | - | 302.4 ± 0.4 | 337.9 ± 0.3 | 26.5 ± 0.7 |
ViSh-E | 218 ± 1 | - | 305.6 ± 0.6 | 342.4 ± 0.3 | 26.2 ± 0.1 |
WiPo-V | 198 ± 1 | 272.9 ± 0.3 | 303.6 ± 0.1 | 336.3 ± 0.3 | 32.2 ± 0.1 |
WiPo-E | 215 ± 1 | 272.7 ± 0.1 | 302.6 ± 0.3 | 341.3 ± 0.2 | 32.2 ± 0.1 |
L* | a* | b* | ΔE | |
---|---|---|---|---|
PHBV | 82.1 ± 0.6 | 1.9 ± 0.2 | 10.4 ± 0.8 | - |
5ViSh-V | 68.8 ± 0.9 | 7.8 ± 0.2 | 10.1 ± 0.5 | 14.5 ± 0.9 |
10ViSh-V | 63.6 ± 0.8 | 8.6 ± 0.1 | 7.1 ± 0.6 | 19.9 ± 0.8 |
20ViSh-V | 59.5 ± 0.3 | 9.0 ± 0.2 | 3.8 ± 0.2 | 24.6 ± 0.3 |
5ViSh-E | 70.9 ± 0.5 | 7.4 ± 0.2 | 11.5 ± 0.6 | 12.5 ± 0.5 |
10ViSh-E | 65.9 ± 0.6 | 8.6 ± 0.1 | 10.0 ± 0.6 | 17.5 ± 0.6 |
20ViSh-E | 61.5 ± 0.5 | 9.4 ± 0.2 | 6.0 ± 0.6 | 22.3 ± 0.5 |
5WiPo-V | 63.4 ± 0.4 | 8.1 ± 0.1 | 5.1 ± 0.4 | 20.4 ± 0.4 |
10WiPo-V | 57.6 ± 0.4 | 7.8 ± 0.2 | 1.9 ± 0.4 | 26.5 ± 0.5 |
20WiPo-V | 55.3 ± 0.2 | 5.6 ± 0.1 | −1.7 ± 0.1 | 29.6 ± 0.2 |
5WiPo-E | 66.4 ± 0.4 | 8.4 ± 0.2 | 6.1 ± 0.2 | 17.5 ± 0.5 |
10WiPo-E | 60.4 ± 1.6 | 8.7 ± 0.2 | 2.8 ± 0.5 | 23.9 ± 1.6 |
20WiPo-E | 56.1 ± 0.2 | 7.1 ± 0.0 | −1.0 ± 0.0 | 28.8 ± 0.2 |
Samples | Tma (°C) | ΔHma (J/g) | Tcb (°C) | ΔHcb (J/g) | Tmc (°C) | ΔHmc (J/g) | Xcc (%) | Tonsetd (°C) | Tdegd (°C) |
---|---|---|---|---|---|---|---|---|---|
PHBV ref 1 | 176 | 82 | 113 | 72 | 172 | 83 | 57 | 276 | 291 |
5ViSh-V | 174 | 74 | 113 | 68 | 171 | 78 | 56 | 258 | 274 |
10ViSh-V | 175 | 81 | 112 | 65 | 170 | 75 | 57 | 271 | 281 |
20ViSh-V | 173 | 60 | 111 | 56 | 170 | 65 | 55 | 248 | 268 |
5ViSh-E | 173 | 74 | 113 | 68 | 171 | 79 | 57 | 272 | 283 |
10ViSh-E | 174 | 78 | 112 | 66 | 171 | 76 | 58 | 276 | 284 |
20ViSh-E | 173 | 65 | 112 | 58 | 170 | 66 | 56 | 256 | 271 |
PHBV ref 2 | 172 | 83 | 113 | 74 | 171 | 85 | 58 | 284 | 299 |
5WiPo-V | 175 | 78 | 111 | 69 | 172 | 79 | 57 | 283 | 293 |
10WiPo-V | 174 | 70 | 110 | 64 | 172 | 74 | 56 | 273 | 282 |
20WiPo-V | 174 | 64 | 108 | 57 | 170 | 67 | 57 | 272 | 280 |
5WiPo-E | 174 | 86 | 111 | 71 | 172 | 83 | 60 | 276 | 290 |
10WiPo-E | 174 | 71 | 110 | 65 | 171 | 75 | 59 | 275 | 287 |
20WiPo-E | 173 | 71 | 108 | 58 | 170 | 69 | 59 | 265 | 276 |
Samples | Young’s Modulus (MPa) | Tensile Strength (MPa) | Strain at Break (%) |
---|---|---|---|
PHBV ref 1 | 2160 ± 20 | 40.4 ± 1.6 | 3.5 ± 0.3 |
5ViSh-V | 2212 ± 40 | 40.3 ± 0.9 | 3.7 ± 0.1 |
10ViSh-V | 2300 ± 42 | 38.3 ± 0.3 | 3.0 ± 0.2 |
20ViSh-V | 2500 ± 29 | 35.5 ± 0.6 | 2.6 ± 0.1 |
5ViSh-E | 2234 ± 33 | 39.2 ± 1.1 | 3.5 ± 0.3 |
10ViSh-E | 2264 ± 58 | 37.3 ± 0.9 | 3.1 ± 0.2 |
20ViSh-E | 2433 ± 43 | 34.9 ± 0.6 | 2.6 ± 0.2 |
PHBV ref 2 | 2182 ± 55 | 41.6 ± 1.1 | 4.1 ± 0.2 |
5WiPo-V | 2259 ± 24 | 37.2 ± 1.1 | 3.1 ± 0.2 |
10WiPo-V | 2260 ± 24 | 34.4 ± 0.6 | 2.9 ± 0.1 |
20WiPo-V | 2162 ± 83 | 24.7 ± 1.5 | 2.6 ± 0.2 |
5WiPo-E | 2197 ± 100 | 37.4 ± 1.2 | 3.5 ± 0.1 |
10WiPo-E | 2207 ± 66 | 33.0 ± 1.5 | 3.1 ± 0.2 |
20WiPo-E | 2187 ± 43 | 26.2 ± 0.6 | 2.5 ± 0.2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
David, G.; Vannini, M.; Sisti, L.; Marchese, P.; Celli, A.; Gontard, N.; Angellier-Coussy, H. Eco-Conversion of Two Winery Lignocellulosic Wastes into Fillers for Biocomposites: Vine Shoots and Wine Pomaces. Polymers 2020, 12, 1530. https://doi.org/10.3390/polym12071530
David G, Vannini M, Sisti L, Marchese P, Celli A, Gontard N, Angellier-Coussy H. Eco-Conversion of Two Winery Lignocellulosic Wastes into Fillers for Biocomposites: Vine Shoots and Wine Pomaces. Polymers. 2020; 12(7):1530. https://doi.org/10.3390/polym12071530
Chicago/Turabian StyleDavid, Grégoire, Micaela Vannini, Laura Sisti, Paola Marchese, Annamaria Celli, Nathalie Gontard, and Hélène Angellier-Coussy. 2020. "Eco-Conversion of Two Winery Lignocellulosic Wastes into Fillers for Biocomposites: Vine Shoots and Wine Pomaces" Polymers 12, no. 7: 1530. https://doi.org/10.3390/polym12071530
APA StyleDavid, G., Vannini, M., Sisti, L., Marchese, P., Celli, A., Gontard, N., & Angellier-Coussy, H. (2020). Eco-Conversion of Two Winery Lignocellulosic Wastes into Fillers for Biocomposites: Vine Shoots and Wine Pomaces. Polymers, 12(7), 1530. https://doi.org/10.3390/polym12071530