An Integrated Approach to Optimizing Cellulose Mercerization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Mercerization Protocol
2.3. Wide-Angle X-Ray Diffraction: Sample Preparation and Data Collection
2.4. Principal Component Analysis
2.5. Design of Experiments
2.6. Scanning Electron Microscopy
3. Results and Discussion
3.1. Structural Characterization
3.2. Morphological Characterization
3.3. Principal Component Analysis
3.4. Design of Experiments
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fan, L.; Gharpuray, M.M.; Lee, Y. Nature of cellulosic material. In Cellulose Hydrolysis; Springer-Verlag: Berlin/Heidelberg, Germany, 1987; Volume 3. [Google Scholar]
- Klemm, D.; Heublein, B.; Fink, H.P.; Bohn, A. Cellulose: Fascinating biopolymer and sustainable raw material. Angew. Chem. Int. Ed. 2005, 44, 3358–3393. [Google Scholar] [CrossRef] [PubMed]
- Nishiyama, Y.; Langan, P.; Chanzy, H. Crystal Structure and Hydrogen-Bonding System in Cellulose Iβ from Synchrotron X-ray and Neutron Fiber Diffraction. J. Am. Chem. Soc. 2002, 124, 9074–9082. [Google Scholar] [CrossRef]
- Klemm, D.; Philip, B.; Heinze, T.; Heinze, U.; Wagenknecht, W. Comprehensive Cellulose Chemistry, Volume 2: Derivatization of Cellulose; Wiley: Weinheim, Germany, 1998; Volume 2, ISBN 3527294899. [Google Scholar]
- Zugenmaier, P. Crystalline Cellulose and Cellulose Derivatives: Characterization and Structures; Springer Science & Business Media: Berlin, Germany, 2008; ISBN 9783540739333. [Google Scholar]
- Stone, B. Cellulose: Structure and Distribution. Biotechnology 2001, 1, 1–8. [Google Scholar]
- Atalla, R.H.; Vanderhart, D.L. Native Cellulose: A Composite of Two Distinct Crystalline Forms. Science 1984, 223, 283–285. [Google Scholar] [CrossRef] [PubMed]
- Mozdyniewicz, D.J.; Nieminen, K.; Sixta, H. Alkaline Steeping of Dissolving Pulp. Part I: Cellulose Degradation Kinetics. Cellulose 2013, 20, 1437–1451. [Google Scholar] [CrossRef]
- Albán Reyes, D.C.; Gorzsás, A.; Stridh, K.; de Wit, P.; Sundman, O. Alkalization of dissolving cellulose pulp with highly concentrated caustic at low NaOH stoichiometric excess. Carbohydr. Polym. 2017, 165, 213–220. [Google Scholar] [CrossRef] [PubMed]
- Fischer, S.; Thümmler, K.; Volkert, B.; Hettrich, K.; Schmidt, I.; Fischer, K. Properties and Applications of Cellulose Acetate. Macromol. Symp. 2008, 262, 89–96. [Google Scholar] [CrossRef]
- Tait, C.W.; Vetter, R.J.; Swanson, J.M.; Debye, P. Physical characterization of cellulose xanthate in solution. J. Polym. Sci. 1951, 7, 261–276. [Google Scholar] [CrossRef]
- Ferro, M.; Castiglione, F.; Panzeri, W.; Dispenza, R.; Santini, L.; Karlsson, H.J.; De Wit, P.P.; Mele, A. Non-destructive and direct determination of the degree of substitution of carboxymethyl cellulose by HR-MAS 13C NMR spectroscopy. Carbohydr. Polym. 2017, 169, 16–22. [Google Scholar] [CrossRef]
- Hollabaugh, C.B.; Burt, L.H.; Walsh, A.P. Carboxymethylcellulose. Uses and Applications. Ind. Eng. Chem. 1945, 37, 943–947. [Google Scholar] [CrossRef]
- Wustenberg, T. Sodium Carboxymethylcellulose. In Cellulose and Cellulose Derivatives in the Food Industry; John Wiley & Sons: Hoboken, NJ, USA, 2014; pp. 387–478. [Google Scholar]
- Horii, F.; Hirai, A.; Kitamaru, R. Cross-Polarization-Magic Angle Spinning Carbon-13 NMR Approach to the Structural Analysis of Cellulose. In The Structures of Cellulose; ACS Symposium Series; American Chemical Society: Washington, DC, USA, 1987; Volume 340, pp. 119–134. ISBN 0-8412-1032-2. [Google Scholar]
- Ye, D.; Farriol, X. Improving accessibility and reactivity of celluloses of annual plants for the synthesis of methylcellulose. Cellulose 2005, 12, 507–515. [Google Scholar] [CrossRef]
- Maurer, A.; Fengel, D. Parallel orientation of the molecular chains in cellulose I and cellulose II deriving from higher plants. Holz Roh Werkst. 1992, 50, 493. [Google Scholar] [CrossRef]
- Verlhac, C.; Dedier, J.; Chanzy, H. Availability of surface hydroxyl groups in valonia and bacterial cellulose. J. Polym. Sci. Part A Polym. Chem. 1990, 28, 1171–1177. [Google Scholar] [CrossRef]
- Köpcke, V. Improvement on Cellulose Accessibility and Reactivity of Different Wood Pulps. Ph.D. Thesis, KTH, Stockholm, Sweden, 2008. [Google Scholar]
- Kolpak, F.; Francis, J. Determination of the Structure of Cellulose II. Macromolecules 1976, 9, 273–278. [Google Scholar] [CrossRef]
- Kolpak, F.J.; Weih, M.; Blackwell, J. Mercerization Cellulose: 1. Determination of the structure of mercerized cotton. Polymer 1978, 19, 123–131. [Google Scholar] [CrossRef]
- Dinand, E.; Vignon, M.; Chanzy, H.; Heux, L. Mercerization of primary wall cellulose and its implication for the conversion of cellulose I to cellulose II. Cellulose 2002, 9, 7–18. [Google Scholar] [CrossRef]
- Gupta, P.K.; Uniyal, V.; Naithani, S. Polymorphic transformation of cellulose i to cellulose II by alkali pretreatment and urea as an additive. Carbohydr. Polym. 2013, 94, 843–849. [Google Scholar] [CrossRef]
- Nishimura, H.; Okano, T.; Sarko, A. Mercerization of cellulose. Crystal and molecular structure of Na-cellulose I. Macromolecules 1991, 24, 759–770. [Google Scholar] [CrossRef]
- Langan, P.; Nishiyama, Y.; Chanzy, H. X-ray Structure of Mercerized Cellulose II at 1 Å Resolution. Biomacromolecules 2001, 2, 410–416. [Google Scholar] [CrossRef]
- Raymond, S.; Kvick, A.; Chanzy, H. The structure of cellulose II: A revisit. Macromolecules 1995, 28, 8422–8425. [Google Scholar] [CrossRef]
- Langan, P.; Nishiyama, Y.; Chanzy, H. A Revised Structure and Hydrogen-Bonding System in Cellulose II from a Neutron Fiber Diffraction Analysis. J. Am. Chem. Soc. 1999, 121, 9940–9946. [Google Scholar] [CrossRef]
- Jeffries, R. The amorphous fraction of cellulose and its relation to moisture sorption. J. Appl. Polym. Sci. 1964, 8, 1213–1220. [Google Scholar] [CrossRef]
- Pönni, R.; Rautkari, L.; Hill, C.A.S.; Vuorinen, T. Accessibility of hydroxyl groups in birch kraft pulps quantified by deuterium exchange in D2O vapor. Cellulose 2014, 21, 1217–1226. [Google Scholar] [CrossRef]
- Jin, E.; Guo, J.; Yang, F.; Zhu, Y.; Song, J.; Jin, Y.; Rojas, O.J. On the polymorphic and morphological changes of cellulose nanocrystals (CNC-I) upon mercerization and conversion to CNC-II. Carbohydr. Polym. 2016, 143, 327–335. [Google Scholar] [CrossRef]
- Halonen, H.; Larsson, P.T.; Iversen, T. Mercerized cellulose biocomposites: A study of influence of mercerization on cellulose supramolecular structure, water retention value and tensile properties. Cellulose 2013, 20, 57–65. [Google Scholar] [CrossRef]
- Wang, H.; Farooq, A.; Memon, H. Influence of cotton fiber properties on the microstructural characteristics of mercerized fibers by regression analysis. Wood Fiber Sci. 2020, 52, 13–27. [Google Scholar] [CrossRef]
- Younesi, M.; Wu, X.; Akkus, O. Controlled mercerization of bacterial cellulose provides tunability of modulus and ductility over two orders of magnitude. J. Mech. Behav. Biomed. Mater. 2019, 90, 530–537. [Google Scholar] [CrossRef]
- Gralén, N. Cellulose and cellulose derivatives. J. Polym. Sci. 1955, 18, 443–444. [Google Scholar] [CrossRef]
- Ranby, B. The Mercerisation of Cellulose. I. A Thermodynamic Discussion. Acta Chem. Scand. 1952, 6, 110–115. [Google Scholar] [CrossRef]
- Shen, L.; Worrell, E.; Patel, M.K. Environmental impact assessment of man-made cellulose fibres. Resour. Conserv. Recycl. 2010, 55, 260–274. [Google Scholar] [CrossRef]
- George, M.; Bressler, D.C. Comparative evaluation of the environmental impact of chemical methods used to enhance natural fibres for composite applications and glass fibre based composites. J. Clean. Prod. 2017, 149, 491–501. [Google Scholar] [CrossRef]
- Keshk, S.M.A.S. Effect of different alkaline solutions on crystalline structure of cellulose at different temperatures. Carbohydr. Polym. 2015, 115, 658–662. [Google Scholar] [CrossRef] [PubMed]
- Nomura, S.; Kugo, Y.; Erata, T. 13C NMR and XRD studies on the enhancement of cellulose II crystallinity with low concentration NaOH post-treatments. Cellulose 2020, 27, 3553–3563. [Google Scholar] [CrossRef]
- Sisson, W.; Saner, W. The Effect of the Temperature and the Concentration of Sodium Hydroxide on the X-ray Diffraction Behavior of Raw and of Degraded Cotton. J. Phys. Chem. 2002, 45, 717–730. [Google Scholar] [CrossRef]
- Liu, Y.; Hu, H. X-ray diffraction study of bamboo fibers treated with NaOH. Fibers Polym. 2008, 9, 735–739. [Google Scholar] [CrossRef]
- Colom, X.; Carrillo, F. Crystallinity changes in lyocell and viscose-type fibres by caustic treatment. Eur. Polym. J. 2002, 38, 2225–2230. [Google Scholar] [CrossRef]
- Reyes, D.; Skoglund, N.; Svedberg, A.; Eliasson, B.; Sundman, O. The influence of different parameters on the mercerisation of cellulose for viscose production. Cellulose 2016, 23, 1061–1072. [Google Scholar] [CrossRef] [Green Version]
- Ottani, S.; Riello, P.; Polizzi, S. Complete sets of factors for absorption correction and air scattering subtraction in X-ray powder diffraction of loosely packed sample. Powder Diffr. 1993, 8, 149–154. [Google Scholar] [CrossRef]
- Sluiter, A.; Hames, B.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D.; Crocker, D.L.A.P. Determination of Structural Carbohydrates and Lignin in Biomass. Natl. Renew. Energy Lab. 2008, 1617, 1–16. [Google Scholar]
- Park, S.; Johnson, D.K.; Ishizawa, C.I.; Parilla, P.A.; Davis, M.F. Measuring the crystallinity index of cellulose by solid state 13C nuclear magnetic resonance. Cellulose 2009, 16, 641–647. [Google Scholar] [CrossRef]
- Ju, X.; Bowden, M.; Brown, E.E.; Zhang, X. An improved X-ray diffraction method for cellulose crystallinity measurement. Carbohydr. Polym. 2015, 123, 476–481. [Google Scholar] [CrossRef] [Green Version]
- Zhao, H.; Kwak, J.H.; Conrad Zhang, Z.; Brown, H.M.; Arey, B.W.; Holladay, J.E. Studying cellulose fiber structure by SEM, XRD, NMR and acid hydrolysis. Carbohydr. Polym. 2007, 68, 235–241. [Google Scholar] [CrossRef]
- Leppänen, K.; Andersson, S.; Torkkeli, M.; Knaapila, M.; Kotelnikova, N.; Serimaa, R. Structure of cellulose and microcrystalline cellulose from various wood species, cotton and flax studied by X-ray scattering. Cellulose 2009, 16, 999–1015. [Google Scholar] [CrossRef]
- Andersson, S.; Serimaa, R.; Paakkari, T.; SaranpÄÄ, P.; Pesonen, E. Crystallinity of wood and the size of cellulose crystallites in Norway spruce (Picea abies). J. Wood Sci. 2003, 49, 531–537. [Google Scholar] [CrossRef] [Green Version]
- Terinte, N.; Ibbett, R.; Schuster, K.C. Overview on Native Cellulose and Microcrystalline Cellulose I Structure Studied By X-Ray Diffraction (Waxd): Comparison Between Measurement Techniques. Lenzing. Ber. 2011, 89, 118–131. [Google Scholar]
- French, A.D. Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 2014, 21, 885–896. [Google Scholar] [CrossRef]
- Wojdyr, M. Fityk: A general-purpose peak fitting program. J. Appl. Crystallogr. 2010, 43, 1126–1128. [Google Scholar] [CrossRef]
- Chen, R.; Jakes, K.A.; Foreman, D.W. Peak-fitting analysis of cotton fiber powder X-ray diffraction spectra. J. Appl. Polym. Sci. 2004, 93, 2019–2024. [Google Scholar] [CrossRef]
- Thygesen, A.; Oddershede, J.; Lilholt, H.; Thomsen, A.B.; Ståhl, K. On the determination of crystallinity and cellulose content in plant fibres. Cellulose 2005, 12, 563–576. [Google Scholar] [CrossRef]
- Oh, S.Y.; Dong, I.Y.; Shin, Y.; Hwan, C.K.; Hak, Y.K.; Yong, S.C.; Won, H.P.; Ji, H.Y. Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy. Carbohydr. Res. 2005, 340, 2376–2391. [Google Scholar] [CrossRef]
- Xia, J.; Wishart, D. Using MetaboAnalyst 3.0 for Comprehensive Metabolomics Data Analysis. Curr. Protoc. Bioinform. 2016, 55, 14.10.1–14.10.91. [Google Scholar] [CrossRef]
- Box, G.; Stuart Hunter, J.; Hunter, W.G. Statistics for Experimenters: Design, Innovation, and Discovery; Wiley: Hoboken, NJ, USA, 2005; Chapter 10; pp. 363–424. [Google Scholar]
- Borysiak, S.; Garbarczyk, J. Applying the WAXS method to estimate the supermolecular structure of cellulose fibres after mercerisation. Fibres Text. East. Eur. 2003, 11, 104–106. [Google Scholar]
- Mansikkamäki, P.; Lahtinen, M.; Rissanen, K. The conversion from cellulose I to cellulose II in NaOH mercerization performed in alcohol–water systems: An X-ray powder diffraction study. Carbohydr. Polym. 2007, 68, 35–43. [Google Scholar] [CrossRef]
- Mansikkamäki, P.; Lahtinen, M.; Rissanen, K. Structural changes of cellulose crystallites induced by mercerisation in different solvent systems; determined by powder X-ray diffraction method. Cellulose 2005, 12, 233–242. [Google Scholar] [CrossRef]
- Duchemin, B.J.C. Mercerisation of cellulose in aqueous NaOH at low concentrations. Green Chem. 2015, 17, 3941–3947. [Google Scholar] [CrossRef]
- Revol, J.F.; Dietrich, A.; Goring, D.A.I. Effect of mercerization on the crystallite size and crystallinity index in cellulose from different sources. Can. J. Chem. 1987, 65, 1724–1725. [Google Scholar] [CrossRef]
- Le Moigne, N.; Bikard, J.; Navard, P. Rotation and contraction of native and regenerated cellulose fibers upon swelling and dissolution: The role of morphological and stress unbalances. Cellulose 2010, 17, 507–519. [Google Scholar] [CrossRef] [Green Version]
- Tanimoto, T.; Nakano, T. Side-chain motion of components in wood samples partially non-crystallized using NaOH-water solution. Mater. Sci. Eng. C 2013, 33, 1236–1241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fink, H.-P.; Hofmann, D.; Purz, H.J. Zur Fibrillarstruktur nativer Cellulose. Acta Polym. 1990, 41, 131–137. [Google Scholar] [CrossRef]
- Abdi, H.; Williams, L.J. Principal component analysis. Wiley Interdiscip. Rev. Comput. Stat. 2010, 2, 433–459. [Google Scholar] [CrossRef]
- Jolliffe, I.T. Principal Component Analysis, 2nd ed.; Springer-Verlag: Berlin, Germany, 2002. [Google Scholar]
- Dopar, M.; Kusic, H.; Koprivanac, N. Treatment of simulated industrial wastewater by photo-Fenton process. Part I: The optimization of process parameters using design of experiments (DOE). Chem. Eng. J. 2011, 173, 267–279. [Google Scholar] [CrossRef]
- Alagumurthi, N.; Palaniradja, K.; Soundararajan, V. Optimization of Grinding Process Through Design of Experiment (DOE)—A Comparative Study. Mater. Manuf. Process. 2006, 21, 19–21. [Google Scholar] [CrossRef]
- Mandenius, C.-F.; Brundin, A. Bioprocess optimization using design-of-experiments methodology. Biotechnol. Prog. 2008, 24, 1191–1203. [Google Scholar] [CrossRef] [PubMed]
- Vlahopoulou, G.; Petretto, G.L.; Garroni, S.; Piga, C.; Mannu, A. Variation of density and flash point in acid degummed waste cooking oil. J. Food Process. Preserv. 2018, 42, e13533. [Google Scholar] [CrossRef]
- Weissman, S.A.; Anderson, N.G. Design of Experiments (DoE) and Process Optimization. A Review of Recent Publications. Org. Process Res. Dev. 2015, 19, 1605–1633. [Google Scholar] [CrossRef]
Cellulose | C.I.% | DP a | Hemicellulose Content% | Particle Size (m) |
---|---|---|---|---|
WCK | 58 | 500–700 | 19 | 500 |
WCS | 54 | 1000–1300 | 9 | 500 |
CLC | 73 | 1000–5000 | - | 500 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferro, M.; Mannu, A.; Panzeri, W.; Theeuwen, C.H.J.; Mele, A. An Integrated Approach to Optimizing Cellulose Mercerization. Polymers 2020, 12, 1559. https://doi.org/10.3390/polym12071559
Ferro M, Mannu A, Panzeri W, Theeuwen CHJ, Mele A. An Integrated Approach to Optimizing Cellulose Mercerization. Polymers. 2020; 12(7):1559. https://doi.org/10.3390/polym12071559
Chicago/Turabian StyleFerro, Monica, Alberto Mannu, Walter Panzeri, Con H.J. Theeuwen, and Andrea Mele. 2020. "An Integrated Approach to Optimizing Cellulose Mercerization" Polymers 12, no. 7: 1559. https://doi.org/10.3390/polym12071559
APA StyleFerro, M., Mannu, A., Panzeri, W., Theeuwen, C. H. J., & Mele, A. (2020). An Integrated Approach to Optimizing Cellulose Mercerization. Polymers, 12(7), 1559. https://doi.org/10.3390/polym12071559