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Abstract: Infrared thermography (IRT) is a competitive method for nondestructive testing; yet it
is susceptible to errors when testing objects with complex geometries. This work investigates the
effects of regulating different thermographic testing parameters to optimize the IRT outcomes when
testing complex shaped geometries, particularly cylindrical coupons. These parameters include the
scanning routine, feed-rate, and heat intensity. Fine-tuning these parameters will be performed with
respect to three different variables consisting of workpiece density, defect size, and defect depth.
The experimental work is designed around 3D-printed cylindrical coupons, then the obtained thermal
images are stitched via image processing tool to expose defects from different scans. The analysis
employs a Signal-to-Noise Ratio (SNR) metric in an orthogonal tabulation following a Taguchi Design
of Experiment. Moreover, test sensitivity and the best combination of factor levels are determined
using Analysis of Means (ANOM) and Analysis of Variance (ANOVA). The outcomes show that the
heating intensity factor is the most dominant in exposing flaws with close to 40% mean shift and up
to 47% variance fluctuation. The paper introduces the tools employed in the study, and then explains
the methodology followed to test one sample quadrant. The results for running the testing on all the
scenarios are presented, interpreted, and their implications are recommended.

Keywords: complex geometries; nondestructive testing; infrared thermography; line scan
thermography (LST); signal to noise ratio (SNR); analysis of means (ANOM); analysis of variance
(ANOVA); aspect ratio (AR)

1. Introduction

Quality inspection is a vital but challenging process. Manual inspection tends to be inclusive
but exhaustive and prone to human errors. Automatic inspection, on the other hand, may not be
comprehensive, as it may be limited by the adopted technique. Nonetheless, internal, and inconspicuous
defects may be more challenging, as conventional inspection methods have limited subsurface
penetration. Such, conventional destructive methods may also require specialized experts, thus,
limiting their industrial adoption [1]. Conversely, nondestructive testing (NDT) methods improve the
inspection quality by detecting embedded defects without altering the material structure or geometrical
shape [2,3]. Infrared Thermography (IRT) offers great potential due to its contactless nature, and fast
inspection rates [4]. Nonetheless, IRT inspection routines are still sensitive to the size, the shape, the
material thermal properties, and lastly the depth of the defects [5]. More precisely, complex-shaped
objects may pose more challenges for thermal imaging due to optical and emissivity issues. Some of
these challenges include irregular heat distribution, emissivity variations, and other radiation-based
complications (shape factor) due to line-of-sight nature. Zhu et al. affirmed that artifacts with several
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embedded components are more challenging to inspect because, of the different emissivity values at
the same surface (or Field of View); hence, the thermal image may not be accurate [6]. Furthermore,
the specimen’s emitted radiation to the detector can be affected by environmental, thermal noise,
contributions such as background reflection, and contributing media [7].

Line Scan Thermography (LST) is a scanning routine that operates by passing a heating source
and an infrared detector to scan a specimen in real time [8]. Robotized versions of the LST techniques
offer new capabilities in terms of accuracy/consistency of the scanning head parameters, which might
be essential for optimizing the thermography detection. In other words, a robotized LST provides
enhanced detection probability by maintaining the heating uniformity, while reducing the cost of
inspecting complex objects and surfaces [9]. Khodayar et al. proposed a novel systematic algorithm
to optimize such parameters including scanning speed, source power, heating intensity, and other
parameters in [10]. A 3D finite element simulation is used to investigate the optimal parameters of
a specimen, made of a porous and anisotropic structure. The results of the referred study showed
improved detection and accuracy of the depth at a higher Signal-to-Noise Ratio SNR [10].

Vavilov et al. discussed different test procedures of Thermography NDT to detect defects
in cylindrical parts. The study employed one-sided and two-sided tests with three scanning approaches
including spot heating, uniform heating, and line heating. The spot and line heating approaches are
carried out while the specimen is rotating and being subjected to a heating source. According to the
results obtained from the experiments, uniform and line heating modes managed to detect artificial
defects at a depth of 1.64 mm given a 4 mm depth detection limit [11]. Peeters et al. performed
a study on a bicycle frame of Carbon Fiber Reinforced Plastics (CFRP), aiming to check for defects
using active thermography. The experiment is composed of a six-axis robot equipped with an infrared
camera and an excitation source [12]. Further studies pushed on to employ a statistical method called
Probability of Detection (POD) to estimate the proportion of defects with line scan thermography
detection. The proposed work shows that as the POD decreases and the complexity of the samples
increases the accuracy and scanning speed are significantly enhanced [13]. In another study, the optimal
locations of the excitation and measurement points were determined by incorporating both the robotic
arm and an advanced path planning tool. Hence, numerical simulation is used to interrogate the
optimal experimental parameters, to efficiently detect defects using active thermography. COMSOL®

Multiphysics 5.0 software (Stockholm, Sweden) was used to generate the numerical model and then
correlate the results with the NDT data [14].

Eitzinger et al. presented a study on the parameters associated with calculating the path on
a 3D object such as the optimal distance between the camera and the specimen while ensuring the
maximum field of view; in this study, the path planning develops a set of viewpoints covered by the
robot [15]. Obtaining a maximum coverage of viewpoints could be similar to the “greedy-generate
and test” algorithm used by robotizing the in-line scanning experiment in [9]. According to Ng et al.,
there are several parameters to be identified before running an NDT experiment; some are controllable,
and some are driven by noise factors [16]. The controllable factors are the ones that can be manipulated
during the experiment and have direct effects on the process outcomes. The signal factor has an average
effect on the response value, while the noise factor has a complete effect. Thus, altering these factors
using high, low, and medium levels will allow the capturing and analyzing of different responses [16].

Different numbers of factors and levels are considered for different experiments. After designing
the experiment and identifying the factors and levels for each factor, a Taguchi-method with orthogonal
arrays exploited for the experiment design and testing campaign. An orthogonal array is a standardized
approach that enables the determination of the number of experiments to be conducted and in which
combination [17]. After analyzing the results obtained from the experiment, the SNR ratio can be
calculated. According to Chen et al., there are three different perspectives on the signal-to-noise
ratio: the smaller the better, the larger the better, or the more proximal to a nominal value the
better [17]. In addition, two more statistical analyses are considered in order to test the sensitivity of
detection: one probes the population averages, i.e., analysis of means (ANOM), while the second one
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is called analysis of variance, which evaluates the consistency of factors (ANOVA) [18]. While typical
IRT testing is done per usage protocol or standards with simple flat geometry, this work employs
a design of experiment for infrared inspection routines coupled with unique cylindrical geometries.
Three major control factors are manipulated while observing four measurable outcomes that quantify
the detectability of hidden defects. Furthermore, the testing is carried out on 40 different defects
with varying sizes, shapes, depths, and material densities to ensure outcome validity. Employing
finite element analyses simulation and validate it with 3D-printed test coupons complements to the
novelty of the work. The presented study demonstrates a testing campaign and a procedure that can
be duplicated under different sample conditions.

Section 2 provides the steps followed to perform the experimentation along with the needed
equipment, materials, and setups. Section 3 presents the results obtained by running the
experimentations seeking to test the different factors that impact the detectability of hidden defects
with IRT. Section 4 discusses the interpretation of the results and their implication on the testing
methodology. Ultimately, Section 5 presents the conclusions made from modifying the designated
factors in the performance of the Infrared Thermography testing.

2. Materials and Methods

The methodology of the proposed research follows a step-by-step systematic approach that ensures
feasible and effective investigation as shown in Figure 1. The testing will feature an automated setup
in addition to a manual one. The design of the experiment includes a set of controllable factors such
as the speed of the automated arm and the heating intensity. On the other hand, the fixed-scanning
experiment controllable factors include the speed of the servo motor and the heating intensity. The
number of experiments conducted, and the different combinations are determined by the standardized
table of orthogonal arrays, which is based on the common industrial use of the different level factors [19].
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Figure 1. Methodology flow chart.

Two Polylactic Acid Plastic (PLA) samples were designed for validation. Each cylinder has a 2 cm
diameter, 20 cm height and 2.5 mm wall thickness. PLA is common in many industries including piping
due to many advantages including strength, durability, and low carbon footprints. Each sample is
constructed with 20 different embedded defects. As presented in Figure 2, the investigated samples are
cylindrical tubes with different densities. The embedded defects are circular, rectangular, and square,
while the depth of the defects ranges from 0.3 mm to 1.5 mm (see Table 1).

Vavilov et al. concur that the performance of each NDT technique depends mainly on the context
of the inspection routine and its accuracy in terms of detection. For example, the size, shape, type,
and depth of defectives sought, affects the quality and performance of the inspection routine. Thus,
being able to provide a fast, accurate and reliable inspection while meeting the required quantification
level is highly critical [20]. The defects in the cylindrical samples are placed around four quadrants of the
sample. Comsol® multiphysics software was used to model and design the specimens. Subsequently,
a 3D printer (commercial name Makerbot-Z18®, from Makerbot, LLC, New York City, NY, USA) was
used to print two cylindrical shaped samples; one with 100% infill density (C100 sample) and the other
with 10% infill density (C10 sample). The main objective of printing different samples with different
infill densities is to help investigate the defect detection rate, against the scanning routine then conduct
a benchmark based on the thermograms.
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Table 1. Descriptions of the 20 different defects employed to test the impact of varying factors on
IRT detectability.

Defect Name Defect Width (mm) Defect Length (mm) Defect Height (mm) Defect Depth (mm)

D1-R (Rectangular) 3 4 2 0.3
D2-R (Rectangular) 3 4 2 0.6
D3-R (Rectangular) 3 4 2 0.9
D4-R (Rectangular) 3 4 2 1.2
D5-R (Rectangular) 3 4 2 1.5

D1-S (Square) 4 4 3 0.3
D2-S (Square) 4 4 3 0.6
D3-S (Square) 4 4 3 0.9
D4-S (Square) 4 4 3 1.2
D5-S (Square) 4 4 3 1.5

Defect Name (Circular) Defect Radius (mm) Defect Height (mm) Defect Depth (mm)

D1-C2r 2 2 0.3
D2-C2r 2 2 0.6
D3-C2r 2 2 0.9
D4-C2r 2 2 1.2
D5-C2r 2 2 1.5
D1-C3r 3 3 0.3
D2-C3r 3 3 0.6
D3-C3r 3 3 0.9
D4-C3r 3 3 1.2
D5-C3r 3 3 1.5

2.1. Line Scan Experiment

Illustrated in Figure 3, the main experimental setup consists of a thermal camera, heat source,
and a PC. A sophisticated infrared camera is put to work to run different scanning thermography
experiments. The objective of acquiring thermograms from the infrared camera is to investigate
the limitations and strengths with regards to the camera’s sensing sophistication and capabilities.
Specifically, the integration time at the array surface or thermal inertia with a cooled micro-bolometer.
Furthermore, noise sensitivity is investigated as well as the equivalent temperature difference (NETD)
effect on thermal contrast values [21].

The work adopts a FLIR GF309 camera (FLIR Systems, Wilsonville, Oregon, USA) with
a 0.025 K (NETD) [22]. FLIR GF309 has an Indium Antimonide cooled Focal Plane Array (FPA),
with a Sterling-cycle cooler attached to the imaging sensor to increase the quantum efficiency.
Additionally, FLIR GF309 is capable to capture frames with a rate that ranges from 15 to 30 frames
per second [23]. For the line and fixed scan experiment, the excitation source used is a 1000-Watt
halogen linear heater. The tested samples were thermally excited using the linear heater to detect the
defects embedded in the samples. The interactive convective and radiative thermal are defined for
the surfaces of the artifacts which dissipate its heat energy into the surroundings. The coefficient of
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heat convection is assumed to be five W/m2. K and 25% of the lamp energy is assumed to be emitted
to the PLA artifact. The halogen heater produces continuous energy of up to one Kilojoule with
an incident beam with varying angles as the source of the artifacts move [24]. The artificial defects are
air pockets; thus, it creates a barrier for the heat diffusion process, which should appear as hot spots
in the thermal image.
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The testing work aims to collect large datasets from multiple combinations of variables and factors.
Explicitly, the study considers three scenarios running on the two different setups which include
the line scan setup and the fixed scan setup (Section 3.4). The analyses will be performed on two
samples with 40 different defects. Pursuing effective presentation of the methodology, one track is
followed to rundown the step-by-step procedure then map it to the rest of the trials. The first step
selects the scanning scheme to target the defects at a specific linear-scanning mechanism trajectory.
The second step identifies and presents proper image stitching and processing protocol. The third step
presents the four main metrics of detectability which include Signal to Noise Ratio (SNR), Analysis of
Means (ANOM), Analysis of Variance (ANOVA), and the Aspect Ratio (AR). The foremost metric is
the signal-to-noise ratio which compares the level of the desired signal (defect heat) to the level of
background (surroundings) noise considering how the response varies relative to the nominal or target
value under different noise conditions. The fourth step investigates the detection sensitivity based on
two main factors: Factor A, the heat intensity, and Factor B, the scanning speed. The fifth step repeats
the analysis based on the below scenarios:

a. Scenario 1: fixed depth and varying size
b. Scenario 2: fixed size and varying depth
c. Scenario 3: dividing the 20 defects into four clusters according to the aspect ratio (AR) calculations.

Toward the end of this section, the data from the remaining trials will be conditioned and
used to perform the sensitivity analyses. This analysis will be used to present conclusions and
propose recommendations for industrial and future investigations. As stated earlier, there are two
different cylindrical samples prototyped for this work. Each cylinder is divided into four quadrants;
each quadrant is tested against its lateral surface area, which encompasses four different defects.
The first quadrant is placed manually on the inspection table with the line scan inspection traverses at
a speed of 23.5 mm/s and a 500 W heating intensity. After the line inspection for the first quadrant
is done, the cylinder is rotated clockwise to conduct the same experiment for the second quadrant.
The same procedure is applied until the entire area of the cylinder is inspected. The rotation mechanism
uses a servomotor controlled with an Arduino system (Boston, MA, USA). Driven with a smart
controller, the motor speed and direction are synchronized with the acquisition system to maintain
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accurate input. Table 2 shows the groupings of the two factors and three levels that are used in all the
line scan experiments. Table 3 displays the combinations applied for the line scan.

Table 2. Factors and levels for line scan experiment.

Factors Level 1 Level 2 Level 3

A: Speed (mm/s) 23 27 30

B: Heat Intensity (W) 500 750 950

Table 3. Combinations for line scan.

Experiment # Speed (mm/s) Intensity (W)

1 23 500
2 27 750
3 30 900
4 23 750
5 27 900
6 30 500
7 23 900
8 27 500
9 30 750

2.1.1. SNR for Scenario 1 (Fixed Depth and Varying Size)

The infrared camera was put to work to capture the thermal images of a high-density cylinder
embedded with defects that have fixed depths and varying sizes. A video is extracted from the thermal
sequence and inputted into a stitching code developed in MATLAB® platform (MathWorks Inc., Natick,
MA, USA). Afterward, the SNR across the 20 defects in 36 experiments (9 SNRs for 4 quadrant) is
calculated using the stitching protocol.

Subsequently, the SNR, ANOM, and ANOVA are computed according to each of the
above-mentioned scenarios. There are three different equations that can be applied to find the
signal-to-noise ratio, and they are as follows [25]:

SNR = 10 x log

 y2

S2

 (1)

SNR = −10 x log
( 1

n
Σ

1
yi2

)
(2)

SNR = −10 x log
( 1

n
Σyi2

)
(3)

where n is the number of observations, y is the observed data, y is the average of observed data and S2

is the variation depicted in y. The SNR for Quadrant 1 of the first cylinder is displayed in Figure 4.

2.1.2. ANOM for C100\Q1

The objective of ANOM calculation is to investigate the effect of each factor and its corresponding
level. ANOM assists in distinguishing the least dominant experimental combination and eliminate it
from the orthogonal array. Equation (4) was used to calculate the ANOM for the nine experiments,
whereas, Equation (5) finds the ANOM for three experiments, representing the investigation of the two
main factors: Factor A is heat intensity, and Factor B is the scanning speed.

µ1 =

∑9
1 ni

N
(4)
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µ2 =

∑3
1 ni

N
(5)

where µ1 is the mean of SNRs for the nine experiments, µ2 is the mean of SNRs for each defect, N is the
total number of experiments and ni is the SNR value for each experiment.
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ANOM of the Nine Experiments for the First Defect (Defect D1-C3r)

Recollecting the SNR values, the ANOM for the first circular defect (D1-C3r) can be calculated
with nine different combinations of varying speeds and heat intensities, as follows.

µ1 =
5.4627 + 5.9563 + 5.9971 + 6.0183 + 5.4219 + 5.9755 + 4.8965 + 5.3911 + 5.4626

9
= 5.62 dB

The calculation is applied for the rest of the defects, with the outcomes tabulated in Table 4.
One can observe from the ANOM outcomes that the deviation in the SNR values is less than 16%,
which indicates that the procedure is valid for all defects.

Table 4. ANOM values for nine experiments (C100\Q1).

Defect Name ANOM of Nine Experiments (dB)

D1-C3r 5.62

D2-C3r 5.34

D3-C3r 5.43

D4-C3r 5.47

D5-C3r 5.20

ANOM with Factor A (Heat Intensity)

The next step validates the assumption that varying heat intensities can affect the level of detection.
To test this hypothesis, the ANOM calculations were executed for three trials. The first trial assumes
a fixed speed at 23 mm/s and observes the SNR when the heat intensity is increasing. For example,
Defect D1-C3r shows the SNR values for (23 mm/s, 500 W), (23 mm/s, 750 W) and (23 mm/s, 950 W) to
be 5.4627, 6.0183, and 4.8965, respectively. Observed form the data, increasing the heat to 950 W seems
to diminish the heat gradient between defect and the surroundings. The mean for each defect will be
compared to the mean of the nine experiments; hence, the mean of the SNR for Defect D1-C3r with
fixed 23 mm/s speed is:

µD1− C3r =
SNR(23,500) + SNR(23,750) + SNR(23,950)

3
=

5.4627 + 6.0183 + 4.8965
3

= 5.46 dB
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Table 5 shows the ANOM for the five circular defects. Each defect SNR was tested with three
different heat intensities (500, 750, and 950 W). In other words, the heat intensity is tested against
varying speeds.

Table 5. ANOM results when Factor A is tested on the Quadrant 1 of the high-density sample (C100\Q1).

Defect Name ANOM with Fixed Speed (23 mm/s) ANOM with Fixed Speed (27 mm/s) ANOM with Fixed Speed (30 mm/s)

D1-C3r 5.46 dB 5.59 dB 5.81 dB

D2-C3r 5.34 dB 5.38 dB 5.29 dB

D3-C3r 5.59 dB 5.14 dB 5.57 dB

D4-C3r 5.72 dB 5.20 dB 5.50 dB

D5-C3r 5.00 dB 5.54 dB 5.04 dB

ANOM with Factor B (Scanning Speed)

This is the ANOM equation for Factor B where the SNR values correspond to the experiments
with 500 W intensity and different speed values. Hence, the SNR values for the same defect (µD1-C3r)
were verified based on the following combinations (500 W, 23 mm/s), (500 W, 27 mm/s) and (500 W,
30 mm/s).

µD1− C3r =
SNR(23,500) + SNR(27,500) + SNR(30,500)

3
=

5.4627 + 5.9755 + 5.3911
3

= 5.61 dB

The ANOM for the five circular defects is shown in Table 6. Each defect SNR was tested with
three different heat intensities (500, 750, and 950 W). In other words, the heat intensity is tested against
varying speeds.

Table 6. ANOM results when Factor B is tested on the Quadrant 1 of the high-density sample (C100\Q1).

Defect Name ANOM with Fixed Heat Intensity (500 W) ANOM with Fixed Heat Intensity (750 W) ANOM with Fixed Heat Intensity (950 W)

D1-C3r 5.61 dB 5.81 dB 5.44 dB
D2-C3r 5.11 dB 5.77 dB 5.13 dB
D3-C3r 5.87 dB 5.64 dB 4.79 dB
D4-C3r 5.23 dB 5.34 dB 5.84 dB
D5-C3r 4.79 dB 5.37 dB 5.43 dB

2.1.3. Analysis of Variance (ANOVA)

Conducting the ANOVA analysis is beneficial for identifying the dominant controlling factor for
each experiment. The ANOVA effect test the proportion of variation by the influential factor over the
total variation.

ANOVA =
SSFactor

SST
(6)

Total Sum o f Squares (SST) =
∑9

i=1
(ni− µ)2 (7)

where µ is the ANOM value, and ni is the SNR of each experiment.
The ANOVA of all nine experiments for the first defect (D1-C3r) is as shown in the calculation below.

SST = (5.4627− 5.62)2 + (5.9563− 5.62)2 + (5.9971− 5.62)2 + (6.0183− 5.62)2

+(5.4219− 5.62)2 + (5.9755− 5.62)2 + (4.8965− 5.62)2

+(5.3911− 5.62)2 + (5.4626− 5.62)2 = 1.204 dB

ANOVA with Factor A (Heat Intensity)

The ANOVA is then tested against the three main values that represent Factor A, which calls for
sensitivity analysis of the varying heat intensity with fixed speed. The calculation for Defect D1-C3r

is shown below. Table 7 lists the ANOVA values for the rest of the defects with regard to Factor A.
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Additionally, the table shows the percentage of variation observed when considering the variation of
heat intensities.

SSFactor A = 3((5.46 − 5.62)2 + (5.59 − 5.62)2 + (5.81 − 5.62)2) = 0.190 dB

Table 7. Factor A ANOVA for C100\Q1.

Defect Name SST for Factor A (Heat Intensity) Factor B ANOVA

D1-C3r 0.210193749 17.44%

D2-C3r 0.828096062 32.73%

D3-C3r 1.971164069 61.8%

D4-C3r 0.645952376 28.47%

D5-C3r 0.752641176 47.45%

ANOVA with Factor B (Scanning Speed)

Similarly, the sensitivity analyses for the ANOVA values are tested with respect to varying speed
with fixed heat intensities (Factor B). As shown in Table 8, the percentage of variation caused by
Factor B seems to fluctuate, indicating the importance of varying the scanning speed in the detection
process. According to the table, the intensity factor is the most dominant compared to the speed factor
because it has the highest ANOVA values for all the defects with 17.4%, 32%, 61%, 28%, and 47%.
Thus, confirming the results established from the ANOM graphical representation claiming that the
intensity factor is the most sensitive.

Table 8. Factor B ANOVA for C100\Q1.

Defect Name SST for Factor B (Speed) Factor A ANOVA

D1-C3r 0.190628816 0.190628816/1.204934 = 15.82%
D2-C3r 0.010488949 0.010488949/2.530436 = 0.41%
D3-C3r 0.383629976 0.383629976/3.184978 = 12.04%
D4-C3r 0.408384642 0.408384642/2.268846 = 18%
D5-C3r 0.541500082 0.541500082/1.586111 = 34.14%

In the same manner, the rest of the four quadrants are analyzed with SNR, ANOM, and ANOVA
analyses. A summary table demonstrates the best combination of factors and levels associated with
every defect based on the SNR and ANOM results for Quadrants 2, 3, and 4. The SNR results for
Quadrant 2 show that the best heat intensity for all the defect depth is 950 W, whereas the speed
varies. Table 9 lists the combinations of heat intensity and speed factors that scored the highest SNR,
also known as the best factor combinations.

Table 9. Best factor combinations for the defects in the rest of the quadrants.

Quadrant 2 Best Combination Quadrant 3 Best Combination Quadrant 4 Best Combination

D1-R 30 mm/s and 950 W D1-S 23 mm/s and 500 W D1-C2r 23 mm/s and 750 W

D2-R 27 mm/s and 950 W D2-S 27 mm/s and 750 W D2-C2r 27 mm/s and 750 W

D3-R 23 mm/s and 950 W D3-S 23 mm/s and 500 W D3-C2r 23 mm/s and 750 W

D4-R 30 mm/s and 950 W D4-S 30 mm/s and 750 W D4-C2r 27 mm/s and 950 W

D5-R 23 mm/s and 950 W D5-S 27 mm/s and 750 W D5-C2r 27 mm/s and 750 W

3. Results

The steps explained in Section 2 are expanded to cover the 40 different defects, which include
20 defects in the low-density sample and 20 in the high-density sample. Testing the impact of the
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two influential factors (speed and heat intensity) reveals a higher impact of the heat intensity, but the
interaction effect is clearly important. The ANOM and ANOVA outcomes shown in Figure 5 show
that scanning speed failed to improve defect detectability. On the other hand, the heat intensity factor
seems to impose the highest impact on the defect detectability (SNR). The figure shows that 750 W heat
intensity increased the SNR to 5.84 dB, while 500 and 900 W heat intensities show poor detectability.
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Further probing of the factors effect shows a clear interaction between the heating intensity and
the scanning speed factors (Figure 6). The existence of interaction verifies the implications of this
work and upholds the need for simultaneous testing of the factors that affect the detectability of the
embedded defects.
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3.1. Low vs. High Density Sample Results

Endeavoring to test the validity of defect detection with respect to sample density, the analyses
were repeated on the light density cylinder (C10). Running the line inspection based on the orthogonal
array; 45 readings were observed for every quadrant (9 experiments × 5 defects on each quadrant).
The results indicate that some of the defects are not shown as clearly as the full density sample, which
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is due to the existence of air voids. However, after calculating the SNR value for each defect, it is
shown that the maximum difference in the SNR value between the low and the high density samples is
very marginal (around 1.8 dB). Figure 7 shows a comparison between the C10 and C100 SNR values
for the four quadrants of the two cylinders. This response was not anticipated, but could be justified
by the relatively short heating time when running the line scan testing. This is due to the need for
rapid testing and swift coverage of more surface area. In the meantime, high infill specimens take
more time to heat up, while low infill specimens cool down faster. Consequently, the rate of testing
causes the two samples to respond similarly.
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3.2. Results for Fixed Depth Testing (Scenario 2)

The second scenario tests the analysis sensitivities based on SNR values of the nine experiments
with fixed defect depth and varying sizes. Thus, a data sheet was created that consists of the SNR
values of each circular “C3”, rectangular “R”, squared “S” and circular “C2” per experiment as rows
and the columns are the defects’ different depth values. The maximum SNR value for each experiment
was found with its corresponding defect size. As shown in Figure 8, defect C3 reached the highest
SNR value of 78% of all of the experiments at 0.3 mm depth. In fact, after inputting the percentage
values for each defect depth in a pie chart, it appears that the C3 defect had the highest percentage
values for all defect depths except for at 1.5 mm. Meanwhile, C2 has the second highest SNR values at
the following depths: 0.3 mm, 0.6 mm, and 1.5 mm. As for depths of 0.9 mm and 1.2 mm, the second
highest SNR values were for R and S, respectively. The results indicate that despite the different defect
depths, overall, a circular shape performs better under the optimized parameters of the simplified
form cylinder. It can be concluded that the shape of the defect and defect depth are very important
factors that can impact the defect detectability.
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3.3. Results for Aspect Ratio (AR) Clustering (Scenario 3)

The aspect ratio (AR) is an attribute that describes the relationship between the defect’s largest
dimension and its depth. Each quadrant of the cylinder contains five defects with the same size,
but different depths; thus, the AR value was obtained for all the defects with respect to the size and
depth. Figure 9 presents the aspect ratios for one of the cylinders.
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Aspect Ratio = (Largest Dimension of the defect (mm))/(Depth of each defect (mm)) (8)

The AR data set obtained through the calculations was divided into four main classes: [1–5),
[5–10], [10–15], and [15–20]. The 50% of the defects showed to be within the AR ratio range [1–5]
and 25% of the defects are in second class, whereas 20% and 5% for classes 3 and 4, respectively.
After grouping each defect to a class based on the AR ratio, the lowest SNR value for the defects in each
class was selected to conduct the ANOM and ANOVA calculations.

3.4. Fixed Scan Experiment Setup

As the name implies, the fixed scan experiment considers a fixed camera and heat source with
the sample rotating. As presented in Figure 10, the approach uses a high-torque full-rotation servo
motor connected to a gear assembly to provide stationary rotation of a base that carries the sample.
On the other side, the camera and heat source are mounted on a structure that allows for tilt, pan,
and height adjustments. The rotation of the base is controlled by a microcontroller that ensures the
correct direction of rotation and accurate rotating speed. The two factors that are manipulated are the
rotational speed of the motor and the heating intensity.
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Figure 10. Fixed scan experiment testbed.

The design of the experiment employed for this experiment employs an L9 standardized table
which proposes a total of nine experiments. Initially, the cylinder is placed manually on the inspection
table and the servomotor starts rotating the cylindrical sample with 0.27 rpm and 500 W heating
intensity. After the first experiment is completed, the sample is cooled down, and then the second
experimental combination is initiated. The same procedure is applied until the cylinder is inspected
with different factors and level combinations. As shown in Figures 11 and 12, the rotational video of
the cylinder obtained from the experiments are flattened using image stitching code in MATLAB®.
The FLIR GF309 software shows a gradient surface temperature that ranges from 43.9 ◦C to 62.7 ◦C.
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Figure 12. Stitched results of the fixed scan experiment for C10-sample (0.27 rpm & 500 W).

Figure 13 shows the ANOM for the two influential factors (the heat intensity and scanning speed).
The outcomes of the means test 45 defects following the orthogonal array combination of the two
factors and three levels that were used in all of the fixed scan experiments based on the L9 standardized
table. Comparing the data to those obtained from the line scan experiment, the data seem to reflect
negligible disparity. Similarly, the data attest that heat intensity is more influential on detectability
than scanning speed.
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4. Discussion

The results show the ability of the ANOM and the ANOVA to accentuate the variation among the
different defects; hence, the defects’ detectability was compared when tested with different approaches.
This second section also compares the results of the two scanning setups and their implications on
the testing methodology. Furthermore, the results from testing samples with different densities are
reviewed aiming to reflect the implications of the established factors on different materials.

4.1. ANOM Results

After computing the ANOM value for each of the defects based on the SNR, the ANOM values
for all the defects demonstrate that the heat intensity factor is more sensitive than the speed factor,
because it has a wide range of values (Figure 14). In addition, the deflection points for defects 1 and 2
are captured in the intensity factor, whereas the rest of the defects’ deflection points lie in the speed
factor. The results imply that all of the defects were within the detectable range because of the small
difference in the SNR values. However, the heat intensity seems to lose its beneficial effects, as it
increases beyond 750 W due to the spreading of the heat causing temperature homogeneity.
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4.2. Sample Density Comparison Results

After comparing the high-density sample (C100) against the low density one (C10), the results
indicate that 50% of the C100 experiments were able to outperform the C10 sample by 5% to 10% more
detectability rate. However, this is a low detection difference, which implies that the infill density is
not impacted immensely during the fixed scanning routine. In fact, the detectability rates for 40% of
the experiments were equivalent for both samples. This verifies that samples with different materials
may require different testing settings. The camera was able to show at least 50% of the defects for the
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C100 sample and 45% for C10. For the lower heating intensity of 500 W, C10 managed to outperform
the C100 sample by a range of 5% to 15%. This implies that samples with lower infill densities require
less heating intensity when compared to full density samples. Moreover, the maximum percentage
difference in the defect detection between the two samples is equal to 20% which implies that the defects
in low infill samples can be detected efficiently despite the filling disadvantage. After comparing the
sample’s defect detectability rate for both scanning routines, it could be seen that the performance was
almost equivalent for both the line and fixed scan routine. Nonetheless, the performance of the C100
was higher than the C10 sample during the line scan with a maximum defect detectability difference of
20%. Consequently, the results indicate a clear relationship between the infill density and the adopted
scanning routine.

The clear interaction among factors reinforces the novelty of this work which seeks the effects
of power intensity, scanning speed and scanning approach. Meanwhile, four measurable scores are
stored in a database that holds the SNR, ANOM, ANOVA and the aspect ratios for each of the factor
combinations. The collected database will be used as training data for artificial intelligent IRT control
and robotics-controlled pipeline testing.

5. Conclusions

This work endeavors to investigate the limitations and sensitivities associated with scanning
complex geometry samples using infrared thermography (IRT). A novel approach is used to
simultaneously examine three major control factors and observe four measurable outcomes while testing
40 hidden defects with different sizes, shapes, depths, and material densities. 3D-printed cylindrical
tubes made of Polylactic Acid Plastic (PLA) were used to validate and compare results. The work
employed three 3D-printed samples consisting of a cylindrical tube with 100% infill density (C100),
a cylindrical tube with a 10% infill density (C10). A Taguchi DOE was exploited to conduct a thorough
investigation of two IRT scanning routines, line scan thermography (LST), and fixed scan thermography
(FST). Two main factors were manipulated during the LST experiments. One was the scanning speed
of the automated arm and the other is heating intensity. While the FST-controllable parameters
considered the rotational speed and heating intensity. The investigations of performance employed
Signal-to-Noise Ratio (SNR), while the test sensitivity and best combination of factor levels were
determined using Analysis of Means (ANOM) and an Analysis of Variance (ANOVA). The SNR values
were very similar, which implies that all the defects were within a detectable range, yet the accuracy
of the shape was shown to be different. The ANOM and ANOVA revealed that the most impactful
factor for the line scan thermography is the heating intensity, as it relates to the heating source and
its coverage to the cylinder. Deeper defects require lower rotational speed to be detected during the
fixed scan thermography. It was also observed that the detection of defects of the sample with 100%
infill density (C100) performed better than in the one with a 10% infill (C10) sample during the line
scan thermography.

Based on these findings, a simulated model is recommended to complement the experimental
work. This would allow for more defect scenarios to be captured even within different host materials
such as composites. Another recommendation is to use the data found in this work to construct
a smart controlling module using open multi-paradigm numerical computing tools to connect the
artificial intelligence models to control each parameter of the Inferred Thermography to optimize
the nondestructive testing of pipes and related fixtures. Finally, the work recommends enhancing
thermograms by applying more sophisticated image processing techniques.
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