Durability of Accoya Wood in Ground Stake Testing after 10 Years of Exposure in Greece
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rowell, R.M. Chemical modification of wood. For. Prod. Abstr. 1983, 6, 366–382. [Google Scholar]
- Kumar, S. Chemical modification of wood. Wood Fiber Sci. 1996, 26, 270–280. [Google Scholar]
- Hon, D.N.S. Chemical Modification of Lignocellulosics; Marcel Dekker: New York, NY, USA, 2006. [Google Scholar]
- Papadopoulos, A.N. Moisture adsorption isotherms of two esterified Greek hardwoods. Holz Roh Werkst. 2004, 63, 123–128. [Google Scholar] [CrossRef]
- Gold, V.; Jefferson, E.G. The hydrolysis of acetic anhydride. Part III. The catalytic efficiency of a series of tertiary amines. J. Chem. Soc. 1953, 1409–1415. [Google Scholar] [CrossRef]
- Papadopoulos, A.N.; Bikiaris, D.N.; Mitropoulos, A.C.; Kyzas, G.Z. Nanomaterials and chemical modification technologies for enhanced wood properties: A review. Nanomaterials 2019, 9, 607. [Google Scholar] [CrossRef] [Green Version]
- Fuschs, W. Zur kenntnis des genuimen lignis, I: De acetylierung des Finchtenholzes. Beriche Dtsch. Chem. Gasellschaft 1928, 61, 948–951. [Google Scholar] [CrossRef]
- Horn, O. Beriche Der Deutsehem. Chem. Gasellschaft 1928, 61, 2542. Available online: https://chemistry-europe.onlinelibrary.wiley.com/doi/abs/10.1002/cber.19280611122 (accessed on 22 July 2020).
- Stamm, A.J.; Tarkow, H. Dimensional stabilisation of wood. J. Colloid Chem. 1947, 51, 493–505. [Google Scholar] [CrossRef]
- Rowell, R.M. The Chemistry of Solid Wood; ACS: Washington, DC, USA, 1984. [Google Scholar]
- Papadopoulos, A.N. Chemical modification of solid wood and wood raw materials for composites production with linear chain carboxylic acid anhydrides: A brief Review. BioResources. 2010, 5, 499–506. [Google Scholar]
- Hill, C.A.S. Wood Modification—Chemical, Thermal and Other Processes; John Wiley and Sons Ltd.: West Sussex, UK, 2006. [Google Scholar]
- Tarkow, H. Decay Resistance of Acetylated Balsa; USDA Forest Service, Forest Products Laboratory: Madison, WI, USA, 1945; p. 4. [Google Scholar]
- Beckers, E.P.J.; Militz, H.; Stevens, M. Acetylated Solid Wood. Laboratory Durability Test (Part II) and Field Tests; Document no. IRG/WP/95-40048; International Research Group on Wood Preservation: Stockholm, Sweden, 1995. [Google Scholar]
- Larsson-Brelid, P.; Simonson, R.; Bergman, O.; Nilsson, T. Resistance of acetylated wood to biological degradation. Holz Roh Werkst. 2000, 58, 331–337. [Google Scholar] [CrossRef]
- Suttie, E.D.; Hill, C.A.S.; Jones, D.; Orsler, R.J. Chemically modified solid wood. I. Resistance to fungal attack. Mater. Org. 1999, 32, 159–182. [Google Scholar]
- Papadopoulos, A.N.; Hill, C.A.S. The biological effectiveness of wood modified with linear chain carboxylic acid anhydrides against Coniophora puteana. Holz Roh Werkst. 2002, 60, 329–332. [Google Scholar] [CrossRef]
- Papadopoulos, A.N.; Militz, H.; Pfeffer, A. The biological behaviours of pine wood modified with linear chain carboxylic acid anhydrides against soft rot decay. Int. Biodeg. Biodeterior. 2010, 64, 409–412. [Google Scholar] [CrossRef]
- Papadopoulos, A.N. Sorption of acetylated pine wood decayed by brown rot, soft rot and white rot: Different fungi—Different behaviours. Wood Sci. Technol. 2012, 46, 919–926. [Google Scholar] [CrossRef]
- Mantanis, G.; Papadopoulos, A.N. Reducing the thickness swelling of wood based panels by applying a nanotechnology compound. Eur. J. Wood Wood Prod. 2010, 68, 237–239. [Google Scholar] [CrossRef] [Green Version]
- Papadopoulos, A.N.; Duquesnoy, P.; Cragg, S.M.; Pitman, A.J. The resistance of wood modified with linear chain carboxylic acid anhydrides to attack by the marine wood borer Limnoria quadripunctata Hothius. Int. Biodegrad. Biodeterior. 2008, 61, 199–202. [Google Scholar] [CrossRef]
- Borges, L.M.S.; Cragg, S.M.; Williams, J.R. Comparing the Resistance of a Number of Lesser Known Species of Tropical Hardwoods to the Marine Borer Limnoria Using a Short-Term Laboratory Assay; Document no. IRG/WP 03-10500; International Research Group on Wood Preservation: Stockholm, Sweden, 2003. [Google Scholar]
- Papadopoulos, A.N.; Avtzis, D.; Avtzis, N. The biological effectiveness of wood modified with linear chain carboxylic acid anhydrides against the subterranean termites Reticulitermes flavipes. Holz Roh Werkst. 2003, 66, 249–252. [Google Scholar] [CrossRef]
- Rowell, R.M. Chemical modification of wood: A short review. Wood Mater. Sci. Eng. 2006, 1, 29–33. [Google Scholar] [CrossRef]
- Larsson-Brelid, P.; Westin, M. Biological degradation of acetylated wood after 18 years in ground contact and 10 years in marine water. In Proceedings of the 41st Annual Meeting of International Research Group (IRG) on Wood Protection, Biarritz, France, 9–13 May 2010. Document No. IRG/WP 10-40522. [Google Scholar]
- Hill, C.A.S.; Forster, S.C.; Farahani, M.R.M.; Hale, M.D.C.; Ormondroyd, G.A.; Williams, G.R. An investigationof cell wall micropore blocking as a possible mechanism for the decay resistance of anhydride modified wood. Int. Biodeterior. Biodegrad. 2005, 55, 69–76. [Google Scholar] [CrossRef]
- Ringman, R.; Pilgard, A.; Brischke, C.; Richter, K. Mode of action of brown rot decay resistance in modified wood: A review. Holzforschung 2014, 68, 239–246. [Google Scholar] [CrossRef]
- Thybring, E.E. The decay resistance of modified wood influenced by moisture exclusion and swelling reduction. Int. Biodeterior. Biodegrad. 2013, 82, 87–95. [Google Scholar] [CrossRef]
- Ringman, R.; Pilgård, A.; Kölle, M.; Brischke, C.; Richter, K. Effects of thermal modification on Postia placenta wood degradation dynamics: Measurements of mass loss, structural integrity and gene expression. Wood Sci. Technol. 2016, 50, 385–397. [Google Scholar] [CrossRef]
- Alfredsen, G.; Fossdal, C.G.; Nagy, N.E.; Jellison, J.; Goodell, B. Furfurylated wood: Impact on Postia placentagene expression and oxalate crystal formation. Holzforschung 2016, 70, 947–962. [Google Scholar] [CrossRef]
- Jakes, J.E.; Hunt, C.G.; Zelinka, S.L.; Ciesielski, P.N.; Plaza, N.Z. Effects of Moisture on Diffusion in Unmodified Wood Cell Walls: A Phenomenological Polymer Science Approach. Forests 2019, 10, 1084. [Google Scholar] [CrossRef] [Green Version]
- Kölle, M.; Ringman, R.; Pilgård, A. Initial Rhodonia Placenta Gene Expression in Acetylated Wood: Group-Wise Upregulation of Non-Enzymatic Oxidative Wood Degradation Genes Depending on the Treatment Level. Forests 2019, 10, 1117. [Google Scholar] [CrossRef] [Green Version]
- Alfredsen, G.; Flæte, P.O.; Militz, H. Decay resistance of acetic anhydride modified wood: A review. Int. Wood Prod. J. 2013, 4, 137–143. [Google Scholar] [CrossRef]
- Ringman, R.; Beck, G.; Pilgård, A. The Importance of Moisture for Brown Rot Degradation of Modified Wood: A Critical Discussion. Forests 2019, 10, 522. [Google Scholar] [CrossRef] [Green Version]
- Alfredsen, G.; Pilgård, A.; Fossdal, C.G. Characterisation of Postia placenta colonisation during 36 weeks in acetylated southern yellow pine sapwood at three acetylation levels including genomic DNA and gene expression quantification of the fungus. Holzforschung 2016, 70, 1055–1065. [Google Scholar] [CrossRef] [Green Version]
- Ringman, R.; Pilgård, A.; Richter, K. Effect of wood modification on gene expression during incipient Postia placenta decay. Int. Biodeterior. Biodegrad. 2014, 86, 86–91. [Google Scholar] [CrossRef]
- Beck, G.; Hegnar, O.A.; Fossdal, C.G.; Alfredsen, G. Acetylation of Pinus radiata delays hydrolytic depolymerisation by the brown-rot fungus Rhondonia placenta. Int. Biodeterior. Biodegrad. 2018, 135, 39–52. [Google Scholar] [CrossRef]
- Ringman, R.; Pilgård, A.; Richter, K. In vitro oxidative and enzymatic degradation of modified wood. Int. Wood Prod. J. 2015, 6, 36–39. [Google Scholar] [CrossRef]
- Verma, P.; Mai, C. Hydrolysis of cellulose and wood powder treated with DMDHEU by a hydrolase enzymecomplex, Fenton’s reagent, and in a liquid culture of Trametes Versicolor. Holzforschung 2010, 64, 69–75. [Google Scholar] [CrossRef]
- Beckers, E.P.J.; Militz, H. Acetylation of solid wood. Initial trials on lab and semi industrial scale. In Proceedings of the Second Pacific Rim Bio-Based Composites Symposium, Vancouver, BC, Canada, 6–9 November 1994; pp. 125–135. [Google Scholar]
- Hill, C.A.S. Wood modification: An update. BioResources 2011, 6, 918–919. [Google Scholar]
- Mantanis, G.I. Chemical modification of wood by acetylation or furfurylation—A review of the present scaled-up technologies. BioResources 2017, 12, 4478–4489. [Google Scholar] [CrossRef] [Green Version]
- Buckman, H.O.; Brady, N.C. The Nature and Properties of Soils: A College Text of Edaphology; Macmillan: New York, NY, USA, 1952. [Google Scholar]
- Scheffer, T.C. A climate index for estimating potential for decay in wood structures above ground. For. Prod. J. 1971, 21, 25–31. [Google Scholar]
- Brischke, C.; Rapp, A.O. Dose-Response relationships between wood moisture content, wood temperature and fungal decay determined for 23 European field test sites. Wood Sci. Technol. 2008, 42, 507–518. [Google Scholar] [CrossRef]
- ASTM. Standard Test Method of Evaluating Wood Preservatives by Field Tests with Stakes; D1758-02; ASTM International: West Conshohocken, PA, USA, 2002. [Google Scholar]
- DIN. Testing of Wood; Bending Test; 52186; DIN German Institute for Standardisation: Berlin, Germany, 1978. [Google Scholar]
- Accoya. Available online: https://www.accoya.com/app/uploads/2020/05/PB_EN.pdf (accessed on 8 July 2020).
- Papadopoulos, A.N. Natural durability of acetylated OSB in ground stake test: Total decay after 102 months of testing. Eur. J. Wood Wood Prod. 2012, 70, 397. [Google Scholar] [CrossRef] [Green Version]
- Rowell, R.M.; Dawson, B.S.; Hadi, Y.S.; Nicholas, D.D.; Nilsson, T.; Placket, D.V.; Simonson, R.; Westin, M. Worldwide in-ground stake test of acetylated composite boards. In Proceedings of the 28th Annual Meeting of International Research Group (IRG) on Wood Protection, Whistler, BC, Canada, 25–30 May 1997. Document No. IRG/WP 97-40088. [Google Scholar]
- Westin, M.; Larsson-Brelid, P.; Nilsson, T.; Rapp, A.; Dickerson, J.; Lande, S.; Cragg, S. Marine borer resistance of acetylated and furfurylated wood—Results from up to 16 years of field exposure. In Proceedings of the 47th Annual Meeting of the International Research Group (IRG) on Wood Protection, Lisbon, Portugal, 15–19 May 2016. Document No. IRG/WP 16-40756. [Google Scholar]
- Rowell, R.M.; Ibach, R.E.; McSweeny, J.; Nilsson, T. Understanding decay resistance, dimensional stability and strength changes in heat-treated and acetylated wood. Wood Mater. Sci. Eng. 2009, 4, 14–22. [Google Scholar] [CrossRef]
- Militz, H.; Lande, S. Challenges in wood modification technology on the way to practical applications. Wood Mater. Sci. Eng. 2009, 4, 23–29. [Google Scholar] [CrossRef]
- Hill, C.A.S. Why does acetylation protect wood from microbiological attack? Wood Mater. Sci. Eng. 2009, 4, 37–45. [Google Scholar] [CrossRef]
- Eaton, R.; Hale, M.D.C. Wood, Decay, Pests and Protection; Chapman and Hall: London, UK, 1993. [Google Scholar]
- Arantes, V.; Goodell, B. Current understanding of brown-rot fungal biodegradation mechanisms: A review. In Deterioration and Protection of Sustainable Biomaterials; Schultz, T.P., Doodell, B., Nicholas, D.D., Eds.; ACS: Washington, DC, USA, 2014; Volume 1158, pp. 3–21. [Google Scholar]
Decay Rating * | ||
---|---|---|
Exposure Time (In Months) | Control | Accoya Wood (Acetyl Weight Gain ~20%) |
0 | 10 | 10 |
12 | 9 | 10 |
60 | 0 | 10 |
120 | - | 10 |
Data from acetylated OSB in field tests performed in Greece [49] | ||
48 | 0 | 10 |
72 | - | 7 |
96 | - | 4 |
102 | - | 0 |
Data from acetylated fiberboards in field tests performed in Mississippi [50] | ||
12 | 4 | 10 |
32 | 0 | 9 |
Data from acetylated fiberboards in field tests performed in Indonesia [50] | ||
1 | 7 | 10 |
12 | 0 | 4 |
Exposure Time (In Months) | Mean Density (g/cm3) | Mechanical Properties * | |
---|---|---|---|
MOE (MPa) | MOR (MPa) | ||
0 | 0.537 (0.042) | 9.530 (1.400) a | 96.8 (18.5) a |
12 | 0.522 (0.029) | 9.460 (1.330) a | 92 (11) a |
120 | 0.508 (0.021) | 6.400 (475) b | 68.1 (7.5) b |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mantanis, G.I.; Lykidis, C.; Papadopoulos, A.N. Durability of Accoya Wood in Ground Stake Testing after 10 Years of Exposure in Greece. Polymers 2020, 12, 1638. https://doi.org/10.3390/polym12081638
Mantanis GI, Lykidis C, Papadopoulos AN. Durability of Accoya Wood in Ground Stake Testing after 10 Years of Exposure in Greece. Polymers. 2020; 12(8):1638. https://doi.org/10.3390/polym12081638
Chicago/Turabian StyleMantanis, George I., Charalampos Lykidis, and Antonios N. Papadopoulos. 2020. "Durability of Accoya Wood in Ground Stake Testing after 10 Years of Exposure in Greece" Polymers 12, no. 8: 1638. https://doi.org/10.3390/polym12081638
APA StyleMantanis, G. I., Lykidis, C., & Papadopoulos, A. N. (2020). Durability of Accoya Wood in Ground Stake Testing after 10 Years of Exposure in Greece. Polymers, 12(8), 1638. https://doi.org/10.3390/polym12081638