Correlation between Tribological Properties and the Quantified Structural Changes of Lysozyme on Poly (2-hydroxyethyl methacrylate) Contact Lens
Abstract
:1. Introduction
2. Materials and Methods
2.1. Contact Lens and Reagents
2.2. Method for Protein Adsorption on Contact Lenses
2.3. Preparation of pHEMA Surfaces
2.4. Analysis of the pHEMA Surface
2.5. Protein Adsorption Areal Density Measurement
2.6. Measurement of the Structural Changes of Lysozyme Adsorbed on Soft Contact Lens
2.7. In Vitro Testing System of Friction Coefficient
2.8. Statistical Analysis
3. Results
3.1. Characteristics of pHEMA Surfaces
3.2. The Areal Density of Adsorbed Proteins and Protein–Protein Effects
3.3. The Protein–Protein Effects and Protein Secondary Structure
3.4. The Structural Changes of Adsorbed Lysozyme and the Friction Coefficient of Lysozyme Covered pHEMA Contact Lens Surface
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Autrata, R.; Krejcirova, I.; Griscikova, L.; Dolezel, Z. Refractive Surgery in Children with Myopic Anisometropia and Amblyopia in Comparison with Conventional Treatment by Contact Lenses. Cesk. Slov. Oftalmol. 2016, 72, 12–19. [Google Scholar] [PubMed]
- Callina, T.; Reynolds, T.P. Traditional methods for the treatment of presbyopia: Spectacles, contact lenses, bifocal contact lenses. Ophthalmol. Clin. N. Am. 2006, 19, 25–33. [Google Scholar]
- Boost, M.; Cho, P.; Wang, Z. Disturbing the balance: Effect of contact lens use on the ocular proteome and microbiome. Clin. Exp. Optom. 2017, 100, 459–472. [Google Scholar] [CrossRef] [Green Version]
- Nichols, K.K.; Redfern, R.L.; Jacob, J.T.; Nelson, J.D.; Fonn, D.; Forstot, S.L.; Huang, J.-F.; Holden, B.A.; Nichols, J.J. The TFOS International Workshop on Contact Lens Discomfort: Report of the Definition and Classification Subcommittee. Investig. Ophthalmol. Vis. Sci. 2013, 54, TFOS14–TFOS19. [Google Scholar] [CrossRef] [PubMed]
- Nichols, J.J.; Willcox, M.D.P.; Bron, A.J.; Belmonte, C.; Ciolino, J.B.; Craig, J.P.; Dogru, M.; Foulks, G.N.; Jones, L.; Nelson, J.D.; et al. The TFOS International Workshop on Contact Lens Discomfort: Executive summary. Investig. Ophthalmol. Vis. Sci. 2013, 54, TFOS7–TFOS13. [Google Scholar] [CrossRef] [Green Version]
- Coles, M.-L.C.; Brennan, N.A.; Shuley, V.; Woods, J.; Prior, C.; Vehige, J.G.; Simmons, P.A. The influence of lens conditioning on signs and symptoms with new hydrogel contact lenses. Clin. Exp. Optom. 2004, 87, 367–371. [Google Scholar] [CrossRef]
- Corbin, G.S.; Bennett, L.; Espejo, L.; Carducci, S.; Sacco, A.; Hannigan, R.; Schatz, S. A multicenter investigation of OPTI-FREE RepleniSH multi-purpose disinfecting solution impact on soft contact lens patient comfort. Clin. Ophthalmol. 2010, 4, 47–57. [Google Scholar] [CrossRef] [Green Version]
- Diec, J.; Naduvilath, T.; Tilia, D. Subjective Ratings and Satisfaction in Contact Lens Wear. Optom. Vis. Sci. 2018, 95, 256–263. [Google Scholar] [CrossRef]
- Sorbara, L.; Maram, J.; Simpson, T.; Hutchings, N. Corneal, Conjunctival effects and blood flow changes related to silicone hydrogel lens wear and their correlations with end of day comfort. Contact Lens Anterior Eye 2018, 41, 193–200. [Google Scholar] [CrossRef]
- Alipour, F.; Khaheshi, S.; Soleimanzadeh, M.; Heidarzadeh, S.; Heydarzadeh, S. Contact Lens-related Complications: A Review. J. Ophthalmic Vis. Res. 2017, 12, 193–204. [Google Scholar]
- Roba, M.; Naka, M.; Gautier, E.; Spencer, N.D.; Crockett, R. The adsorption and lubrication behavior of synovial fluid proteins and glycoproteins on the bearing-surface materials of hip replacements. Biomaterials 2009, 30, 2072–2078. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, A.; Andablo-Reyes, E.; Bryant, M.; Dowson, D.; Neville, A. Lubrication of soft oral surfaces. Curr. Opin. Colloid Interface Sci. 2019, 39, 61–75. [Google Scholar] [CrossRef]
- Skotnitsky, C.; Sankaridurg, P.R.; Sweeney, D.F.; DSc, B.A.H.P. General and local contact lens induced papillary conjunctivitis (CLPC). Clin. Exp. Optom. 2002, 85, 193–197. [Google Scholar] [CrossRef] [PubMed]
- Luensmann, D.; Jones, L. Protein deposition on contact lenses: The past, the present, and the future. Contact Lens Anterior Eye 2012, 35, 53–64. [Google Scholar] [CrossRef] [PubMed]
- Willcox, M.D. Tear film, contact lenses and tear biomarkers. Clin Exp Optom 2019, 102, 350–363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Senchyna, M.; Jones, L.; Louie, D.; May, C.; Forbes, I.; Glasier, M.-A. Quantitative and conformational characterization of lysozyme deposited on balafilcon and etafilcon contact lens materials. Curr. Eye Res. 2004, 28, 25–36. [Google Scholar] [CrossRef]
- Subbaraman, L.N.; Glasier, M.-A.; Senchyna, M.; Sheardown, H.; Jones, L. Kinetics of In Vitro Lysozyme Deposition on Silicone Hydrogel, PMMA, and FDA Groups I, II, and IV Contact Lens Materials. Curr. Eye Res. 2006, 31, 787–796. [Google Scholar] [CrossRef]
- Keith, D.J.; Christensen, M.T.; Barry, J.R.; Stein, J.M. Determination of the Lysozyme Deposit Curve in Soft Contact Lenses. Eye Contact Lens 2003, 29, 79–82. [Google Scholar] [CrossRef]
- Su, C.-Y.; Yeh, L.-K.; Lai, C.-C.; Li, K.-Y.; Tseng, C.-L.; Fang, H.-W. Effects of lysosomal deposition on the friction coefficient of hydrogel contact lenses. Contact Lens Anterior Eye 2020, 43, 144–148. [Google Scholar] [CrossRef]
- Castillo, E.J.; Koenig, J.L.; Anderson, J.M.; Lo, J. Protein adsorption on hydrogels: II. Reversible and irreversible interactions between lysozyme and soft contact lens surfaces. Biomaterials 1985, 6, 338–345. [Google Scholar] [CrossRef]
- Rabiah, N.I.; Scales, C.W.; Fuller, G.G. The influence of protein deposition on contact lens tear film stability. Colloids Surf. B Biointerfaces 2019, 180, 229–236. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Thyparambil, A.A.; Latour, R.A. Quantification of the influence of protein-protein interactions on adsorbed protein structure and bioactivity. Colloids Surf. B Biointerfaces 2013, 110, 363–371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Latour, R.A. The langmuir isotherm: A commonly applied but misleading approach for the analysis of protein adsorption behavior. J. Biomed. Mater. Res. Part A 2015, 103, 949–958. [Google Scholar] [CrossRef] [PubMed]
- Su, C.Y.; Lai, C.C.; Yeh, L.K.; Li, K.Y.; Shih, B.W.; Tseng, C.L.; Fang, H.W. The characteristics of a preservative-free contact lens care solution on lysozyme adsorption and interfacial friction behavior. Colloids Surf. B Biointerfaces 2018, 171, 538–543. [Google Scholar] [CrossRef] [PubMed]
- Su, C.-Y.; Tseng, C.-L.; Wu, S.-H.; Shih, B.-W.; Chen, Y.-Z.; Fang, H.-W. Poly-Gamma-Glutamic Acid Functions as an Effective Lubricant with Antimicrobial Activity in Multipurpose Contact Lens Care Solutions. Polymers 2019, 11, 1050. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H. 2—Surface characterization techniques for polyurethane biomaterials. In Advances in Polyurethane Biomaterials; Cooper, S.L., Guan, J., Eds.; Woodhead Publishing: Sawston, UK, 2016; pp. 23–73. [Google Scholar] [CrossRef]
- Sack, R.A.; Tan, K.O.; Tan, A. Diurnal tear cycle: Evidence for a nocturnal inflammatory constitutive tear fluid. Investig. Ophthalmol. Vis. Sci. 1992, 33, 626–640. [Google Scholar]
- Tiffany, J.M. Tears in health and disease. Eye 2003, 17, 923–926. [Google Scholar] [CrossRef]
- Baker, B.R.; Garrell, R.L. g-Factor analysis of protein secondary structure in solutions and thin films. Faraday Discuss. 2004, 126, 209–222. [Google Scholar] [CrossRef]
- Rösch, C.; Kratz, F.; Hering, T.; Trautmann, S.; Umanskaya, N.; Tippkötter, N.; Müller-Renno, C.; Ulber, R.; Hannig, M.; Ziegler, C. Albumin-lysozyme interactions: Cooperative adsorption on titanium and enzymatic activity. Colloids Surf. B Biointerfaces 2017, 149, 115–121. [Google Scholar] [CrossRef]
- Thyparambil, A.A.; Wei, Y.; Latour, R.A. Experimental characterization of adsorbed protein orientation, conformation, and bioactivity. Biointerphases 2015, 10, 019002. [Google Scholar] [CrossRef] [Green Version]
- Kelly, S.M.; Jess, T.J.; Price, N.C. How to study proteins by circular dichroism. BBA Proteins Proteom. 2005, 1751, 119–139. [Google Scholar] [CrossRef] [PubMed]
- Whitmore, L.; Wallace, B.A. DICHROWEB, an online server for protein secondary structure analyses from circular dichroism spectroscopic data. Nucleic Acids Res. 2004, 32, W668–W673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whitmore, L.; Wallace, B.A. Protein secondary structure analyses from circular dichroism spectroscopy: Methods and reference databases. Biopolymers 2008, 89, 392–400. [Google Scholar] [CrossRef] [PubMed]
- Laattala, K.; Huhtinen, R.; Puska, M.; Arstila, H.; Hupa, L.; Kellomäki, M.; Vallittu, P.K. Bioactive composite for keratoprosthesis skirt. J. Mech. Behav. Biomed. Mater. 2011, 4, 1700–1708. [Google Scholar] [CrossRef] [PubMed]
- Baino, F. How can bioactive glasses be useful in ocular surgery? J. Biomed. Mater. Res. Part A 2015, 103, 1259–1275. [Google Scholar] [CrossRef] [Green Version]
- Shaw, A.J.; Collins, M.J.; Davis, B.A.; Carney, L.G. Eyelid Pressure and Contact with the Ocular Surface. Investig. Ophthalmol. Vis. Sci. 2010, 51, 1911–1917. [Google Scholar] [CrossRef] [Green Version]
- Hafner, D.; Jordan, R. Substrate-independent Cu(0)-mediated controlled radical polymerization: Grafting of block copolymer brushes from poly(dopamine) modified surfaces. Polym. Chem. 2020, 11, 2129–2136. [Google Scholar] [CrossRef] [Green Version]
- Indolfi, L.; Causa, F.; Netti, P.A. Coating process and early stage adhesion evaluation of poly(2-hydroxy-ethyl-methacrylate) hydrogel coating of 316L steel surface for stent applications. J. Mater. Sci. Mater. Med. 2009, 20, 1541. [Google Scholar] [CrossRef] [Green Version]
- McArthur, S.L.; McLean, K.M.; St. John, H.A.W.; Griesser, H.J. XPS and surface-MALDI-MS characterisation of worn HEMA-based contact lenses. Biomaterials 2001, 22, 3295–3304. [Google Scholar] [CrossRef]
- Wei, T.; Carignano, M.A.; Szleifer, I. Molecular Dynamics Simulation of Lysozyme Adsorption/Desorption on Hydrophobic Surfaces. J. Phys. Chem. B 2012, 116, 10189–10194. [Google Scholar] [CrossRef] [Green Version]
- Musgrave, C.S.A.; Fang, F. Contact Lens Materials: A Materials Science Perspective. Materials 2019, 12, 261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, D.; Cho, S.; Park, H.S.; Kwon, I. Ocular Drug Delivery through pHEMA-Hydrogel Contact Lenses Co-Loaded with Lipophilic Vitamins. Sci. Rep. 2016, 6, 34194. [Google Scholar] [CrossRef] [PubMed]
- Morita, S. Hydrogen-bonds structure in poly(2-hydroxyethyl methacrylate) studied by temperature-dependent infrared spectroscopy. Front. Chem. 2014, 2, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mallamace, D.; Fazio, E.; Mallamace, F.; Corsaro, C. The Role of Hydrogen Bonding in the Folding/Unfolding Process of Hydrated Lysozyme: A Review of Recent NMR and FTIR Results. Int. J. Mol. Sci. 2018, 19, 3825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, M.; Yang, Y.; Lei, M.; Ye, C.; Zhao, C.; Xu, J.; Wu, K.; Yu, M. Experimental studies on soft contact lenses for controlled ocular delivery of pirfinedone: In vitro and in vivo. Drug Deliv. 2016, 23, 3538–3543. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, Y.-C.; Su, C.-Y.; Chang, C.-H.; Fang, H.-W.; Wei, Y. Correlation between Tribological Properties and the Quantified Structural Changes of Lysozyme on Poly (2-hydroxyethyl methacrylate) Contact Lens. Polymers 2020, 12, 1639. https://doi.org/10.3390/polym12081639
Chang Y-C, Su C-Y, Chang C-H, Fang H-W, Wei Y. Correlation between Tribological Properties and the Quantified Structural Changes of Lysozyme on Poly (2-hydroxyethyl methacrylate) Contact Lens. Polymers. 2020; 12(8):1639. https://doi.org/10.3390/polym12081639
Chicago/Turabian StyleChang, You-Cheng, Chen-Ying Su, Chia-Hua Chang, Hsu-Wei Fang, and Yang Wei. 2020. "Correlation between Tribological Properties and the Quantified Structural Changes of Lysozyme on Poly (2-hydroxyethyl methacrylate) Contact Lens" Polymers 12, no. 8: 1639. https://doi.org/10.3390/polym12081639
APA StyleChang, Y. -C., Su, C. -Y., Chang, C. -H., Fang, H. -W., & Wei, Y. (2020). Correlation between Tribological Properties and the Quantified Structural Changes of Lysozyme on Poly (2-hydroxyethyl methacrylate) Contact Lens. Polymers, 12(8), 1639. https://doi.org/10.3390/polym12081639