Quantify the Protein–Protein Interaction Effects on Adsorption Related Lubricating Behaviors of α-Amylase on a Glass Surface
Abstract
:1. Introduction
2. Materials and Methods
2.1. Protein and Material Surfaces
2.2. Material Surface Preparation and Characterization
2.2.1. Preparation of Material Surfaces
2.2.2. Characterization of Material Surfaces
2.3. Protein Concentration and Adsorption Process
2.4. Analysis of Adsorbed Proteins Using CD Spectroscopy
2.5. Bioactivity Assay
2.5.1. Preparation of DNS Reagent
2.5.2. Determination of α-Amylase Activity
2.6. Friction Coefficient Determination of α-Amylase Covered Glass Surfaces
2.7. Statistical Analysis
3. Results and Discussion
3.1. Surface Characterization
3.2. The Areal Density of Adsorbed Protein and PPI Effects
3.3. Influence of PPI Effects on Conformational Changes of Adsorbed Proteins
3.4. Influence of PPI Effects on the Bioactivity of Adsorbed Proteins
3.5. Influence of PPI Effects on Friction Coefficients
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Zhang, Y.; Kelly, J.R. Dental Ceramics for Restoration and Metal Veneering. Dent. Clin. North Am. 2017, 61, 797–819. [Google Scholar] [CrossRef]
- Christensen, G.J. Is the rush to all-ceramic crowns justified? J. Am. Dent. Assoc. 2014, 145, 192–194. [Google Scholar] [CrossRef]
- Peumans, M.; Van Meerbeek, B.; Lambrechts, P.; Vanherle, G. Porcelain veneers: A review of the literature. J. Dent. 2000, 28, 163–177. [Google Scholar] [CrossRef]
- Preis, V.; Behr, M.; Kolbeck, C.; Hahnel, S.; Handel, G.; Rosentritt, M. Wear performance of substructure ceramics and veneering porcelains. Dent. Mater. 2011, 27, 796–804. [Google Scholar] [CrossRef] [PubMed]
- Fraga, S.; Amaral, M.; Bottino, M.A.; Valandro, L.F.; Kleverlaan, C.J.; May, L.G. Impact of machining on the flexural fatigue strength of glass and polycrystalline CAD/CAM ceramics. Dent. Mater. 2017, 33, 1286–1297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ekendahl, D.; Judas, L.; Sukupova, L. OSL and TL retrospective dosimetry with a fluorapatite glass-ceramic used for dental restorations. Radiat. Meas. 2013, 58, 138–144. [Google Scholar] [CrossRef]
- Anusavice, K.J.; Esquivel-Upshaw, J. Less abrasive ceramic esthetic materials. In The Changing Practice of Restorative Dentistry; Duke, E.S., Ed.; Indiana University School of Dentistry: Indianapolis, IN, USA, 2002; pp. 215–236. [Google Scholar]
- Suputtamongkol, K.; Anusavice, K.J.; Suchatlampong, C.; Sithiamnuai, P.; Tulapornchai, C. Clinical performance and wear characteristics of veneered lithia-disilicate-based ceramic crowns. Dent. Mater. 2008, 24, 667–673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naert, I. Materials in Fixed Prosthodontics for Indirect Dental Restorations. Compr. Biomater. 2011, 353–365. [Google Scholar]
- Zhou, Z.R.; Zheng, J. Tribology of dental materials: A review. J. Phys. D: Appl. Phys. 2008, 41, 113001. [Google Scholar] [CrossRef]
- Zeng, J.; Sato, Y.; Ohkubo, C.; Hosoi, T. In vitro wear resistance of three types of composite resin denture teeth. J. Prosthet. Dent. 2005, 94, 453–457. [Google Scholar] [CrossRef]
- Yilmaz, E.C. Effect of contact load upon attrition-corrosion wear behavior of bio-composite materials: In vitro off-axis sliding contact-chewing simulation. Biomed. Res. J. 2020, 7, 17. [Google Scholar] [CrossRef]
- D’Arcangelo, C.; Vanini, L.; Rondoni, G.D.; De Angelis, F. Wear properties of dental ceramics and porcelains compared with human enamel. J. Prosthet. Dent. 2016, 115, 350–355. [Google Scholar] [CrossRef] [PubMed]
- Nakashima, J.; Taira, Y.; Sawase, T. In vitro wear of four ceramic materials and human enamel on enamel antagonist. Eur. J. Oral Sci. 2016, 124, 295–300. [Google Scholar] [CrossRef] [PubMed]
- Scarano, E.; Fiorita, A.; Picciotti, P.M.; Passali, G.C.; Calò, L.; Cabras, T.; Inzitari, R.; Fanali, C.; Messana, I.; Castagnola, M.; et al. Proteomics of saliva: Personal experience. Acta Otorhinolaryngol. Ital. 2010, 30, 125–130. [Google Scholar] [PubMed]
- Hemadi, A.S.; Huang, R.; Zhou, Y.; Zou, J. Salivary proteins and microbiota as biomarkers for early childhood caries risk assessment. Int. J. Oral Sci. 2017, 9, e1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiappin, S.; Antonelli, G.; Gatti, R.; De Palo, E.F. Saliva specimen: A new laboratory tool for diagnostic and basic investigation. Clin. Chim. Acta 2007, 383, 30–40. [Google Scholar] [CrossRef]
- Nater, U.M.; Rohleder, N.; Gaab, J.; Berger, S.; Jud, A.; Kirschbaum, C.; Ehlert, U. Human salivary alpha-amylase reactivity in a psychosocial stress paradigm. Int. J. Psychophysiol. 2005, 55, 333–342. [Google Scholar] [CrossRef]
- Edgar, W.M. Saliva: Its secretion, composition and functions. Br. Dent. J. 1992, 172, 305–312. [Google Scholar] [CrossRef]
- Lassen, B.; Holmberg, K.; Brink, C.; Olsson, J. Binding of salivary proteins and oral bacteria to hydrophobic and hydrophilic surfaces in vivo and in vitro. Colloid Polym. Sci. 1994, 272, 1143–1150. [Google Scholar] [CrossRef]
- Bongaerts, J.; Rossetti, D.; Stokes, J.R. The Lubricating Properties of Human Whole Saliva. Tribol. Lett. 2007, 27, 277–287. [Google Scholar] [CrossRef]
- Berg, I.C.H.; Rutland, M.W.; Arnebrant, T. Lubricating Properties of the Initial Salivary Pellicle — an AFM Study. Biofouling 2003, 19, 365–369. [Google Scholar] [CrossRef] [PubMed]
- Stokes, J.R. Saliva Lubrication. In Encyclopedia of Tribology; Wang, Q.J., Chung, Y.-W., Eds.; Springer: Boston, MA, USA, 2013; pp. 2971–2977. [Google Scholar]
- Veeregowda, D.H.; Van Der Mei, H.C.; De Vries, J.; Rutland, M.W.; Valle-Delgado, J.; Sharma, P.K.; Busscher, H.J. Boundary lubrication by brushed salivary conditioning films and their degree of glycosylation. Clin. Oral Investig. 2011, 16, 1499–1506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mystkowska, J.; Karalus, W.; Sidorenko, J.; Dąbrowski, J.R.; Kalska-Szostko, B. Biotribological properties of dentures lubricated with artificial saliva. J. Frict. Wear 2016, 37, 544–551. [Google Scholar] [CrossRef]
- Kelleher, M.; Bishop, K. Tooth surface loss: An overview. Br. Dent. J. 1999, 186, 61–66. [Google Scholar] [CrossRef] [PubMed]
- Nečas, D.; Sawae, Y.; Fujisawa, T.; Nakashima, K.; Morita, T.; Yamaguchi, T.; Vrbka, M.; Křupka, I.; Hartl, M. The Influence of Proteins and Speed on Friction and Adsorption of Metal/UHMWPE Contact Pair. Biotribology 2017, 11, 51–59. [Google Scholar] [CrossRef]
- Sarkar, A.; Andablo-Reyes, E.; Bryant, M.; Dowson, D.; Neville, A. Lubrication of soft oral surfaces. Curr. Opin. Colloid Interface Sci. 2019, 39, 61–75. [Google Scholar] [CrossRef]
- Amerongen, A.V.N.; Bolscher, J.; Veerman, E. Salivary Proteins: Protective and Diagnostic Value in Cariology? Caries Res. 2004, 38, 247–253. [Google Scholar] [CrossRef]
- Oppenheim, F.G.; Salih, E.; Siqueira, W.L.; Zhang, W.; Helmerhorst, E.J. Salivary Proteome and Its Genetic Polymorphisms. Ann. New York Acad. Sci. 2007, 1098, 22–50. [Google Scholar] [CrossRef]
- Wei, Y.; Thyparambil, A.A.; Latour, R.A. Quantification of the influence of protein-protein interactions on adsorbed protein structure and bioactivity. Coll. Surf. B Biointerfaces 2013, 110, 363–371. [Google Scholar] [CrossRef] [Green Version]
- Zoungrana, T.; Findenegg, G.H.; Norde, W. Structure, Stability, and Activity of Adsorbed Enzymes. J. Colloid Interface Sci. 1997, 190, 437–448. [Google Scholar] [CrossRef]
- Norde, W.; Lyklema, J. Interfacial behaviour of proteins, with special reference to immunoglobulins. A physicochemical study. Adv. Colloid Interface Sci. 2012, 179, 5–13. [Google Scholar] [CrossRef] [PubMed]
- Zakowski, J.J.; Bruns, D.E. Biochemistry of Human Alpha Amylase Isoenzymes. CRC Crit. Rev. Clin. Lab. Sci. 1985, 21, 283–322. [Google Scholar] [CrossRef] [PubMed]
- Fisher, S.Z.; Govindasamy, L.; Tu, C.; Agbandje-McKenna, M.; Silverman, D.N.; Rajaniemi, H.J.; Mahon, R.M.B.P. Structure of human salivary α-amylase crystallized in a C-centered monoclinic space group. Acta Crystallogr. Sect. F Struct. Boil. Cryst. Commun. 2006, 62, 88–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Engelen, L.; A De Wijk, R.; Prinz, J.F.; Janssen, A.M.; Van Der Bilt, A.; Weenen, H.; Bosman, F. A comparison of the effects of added saliva, α-amylase and water on texture perception in semisolids. Physiol. Behav. 2003, 78, 805–811. [Google Scholar] [CrossRef]
- Zeng, Q.; Ma, G.; Xiao, H.; Yang, D.; Zheng, J.; Zheng, L.; Zhou, Z. Effect of saliva flow rate on the adsorption kinetics and lubrication of salivary pellicle on human tooth enamel surface. Wear 2019, 426, 180–185. [Google Scholar] [CrossRef]
- Al-Hashimi, I.; Levine, M. Characterization of in vivo salivary-derived enamel pellicle. Arch. Oral Boil. 1989, 34, 289–295. [Google Scholar] [CrossRef]
- Zhang, H. Surface characterization techniques for polyurethane biomaterials. In Advances in Polyurethane Biomaterials; Elsevier BV: Amsterdam, The Netherlands, 2016; pp. 23–73. [Google Scholar]
- Wu, L.; Guo, X.; Zhang, J. Abrasive Resistant Coatings—A Review. Lubricants 2014, 2, 66–89. [Google Scholar] [CrossRef] [Green Version]
- Xu, F.; Liamas, E.; Bryant, M.; Adedeji, A.F.; Andablo-Reyes, E.; Castronovo, M.; Ettelaie, R.; Charpentier, T.V.J.; Sarkar, A. A Self-Assembled Binary Protein Model Explains High-Performance Salivary Lubrication from Macro to Nanoscale. Adv. Mater. Interfaces 2019, 7. [Google Scholar] [CrossRef]
- Zheng, J.; Zhou, Z. Study of in vitro wear of human tooth enamel. Tribol. Lett. 2007, 26, 181–189. [Google Scholar] [CrossRef]
- Andrysewicz, E.; Mystkowska, J.; Kolmas, J.; Jałbrzykowski, M.; Olchowik, R.; Dąbrowski, J.R. Influence of artificial saliva compositions on tribological characteristics of Ti-6Al-4V implant alloy. Acta Bioeng. Biomech. 2012, 14, 71–79. [Google Scholar]
- Li, H.; Zhou, Z. Wear behaviour of human teeth in dry and artificial saliva conditions. Wear 2001, 249, 980–984. [Google Scholar] [CrossRef]
- Crosara, K.T.B.; Zuanazzi, D.; Moffa, E.B.; Xiao, Y.; Machado, M.A.D.A.M.; Siqueira, W.L. Revealing the Amylase Interactome in Whole Saliva Using Proteomic Approaches. BioMed Res. Int. 2018, 2018, 6346954. [Google Scholar] [CrossRef] [Green Version]
- Bernfeld, P. Enzymes of Starch Degradation and Synthesis. In Advances in Enzymology and Related Areas of Molecular Biology; Wiley: Hoboken, NJ, USA, 2006; Volume 12, pp. 379–428. [Google Scholar] [CrossRef]
- Valjakova, E.B.; Korunoska-Stevkovska, V.; Kapusevska, B.; Gigovski, N.; Bajraktarova-Misevska, C.; Grozdanov, A. Contemporary Dental Ceramic Materials, A Review: Chemical Composition, Physical and Mechanical Properties, Indications for Use. Open Access Maced. J. Med Sci. 2018, 6, 1742–1755. [Google Scholar] [CrossRef] [Green Version]
- Guo, F.; Yang, S.Y.; Ma, C.; Wong, P. Experimental Study on Lubrication Film Thickness Under Different Interface Wettabilities. Tribol. Lett. 2014, 54, 81–88. [Google Scholar] [CrossRef]
- Smith, D.; McCartney, M. MICROSCOPY APPLICATIONS | Semiconductors. In Encyclopedia of Analytical Science; Elsevier BV: Amsterdam, The Netherlands, 2005; pp. 84–91. [Google Scholar]
- Walker, J.M. The Bicinchoninic Acid (BCA) Assay for Protein Quantitation; Springer Science and Business Media LLC: Berlin, Germany, 2009; pp. 11–15. [Google Scholar]
- Whitmore, L.; Wallace, B. DICHROWEB, an online server for protein secondary structure analyses from circular dichroism spectroscopic data. Nucleic Acids Res. 2004, 32, W668–W673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whitmore, L.; Wallace, B. Protein secondary structure analyses from circular dichroism spectroscopy: Methods and reference databases. Biopolymers 2008, 89, 392–400. [Google Scholar] [CrossRef]
- Kapoor, K.; Tyagi, A.K.; Diwan, R.K. Effect of gamma irradiation on recovery of total reducing sugars from delignified sugarcane bagasse. Radiat. Phys. Chem. 2020, 170, 108643. [Google Scholar] [CrossRef]
- Miller, G.L. Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Anal. Chem. 1959, 31, 426–428. [Google Scholar] [CrossRef]
- Mesbah, N.M.; Wiegel, J. Improvement of Activity and Thermostability of Agar-Entrapped, Thermophilic, Haloalkaliphilic Amylase AmyD8. Catal. Lett. 2018, 148, 2665–2674. [Google Scholar] [CrossRef]
- Radev, D.D.; Uzunov, I. Nanosized Silicon Carbide Obtained from Rice Husks. Solid State Phenom. 2010, 159, 153–156. [Google Scholar] [CrossRef]
- Berger, G.; Schott, J.; Guy, C. Behavior of Li, Rb and Cs during basalt glass and olivine dissolution and chlorite, smectite and zeolite precipitation from seawater: Experimental investigations and modelization between 50° and 300 °C. Chem. Geol. 1988, 71, 297–312. [Google Scholar] [CrossRef]
- Iezid, M.; Legouera, M.; Goumeidane, F.; Poulain, M.; Nazabal, V.; Lebullenger, R. Glass formation in the Sb2O3–CdCl2–SrCl2 ternary system. J. Non-Crystalline Solids 2011, 357, 2984–2988. [Google Scholar] [CrossRef]
- Abdelsalam, R. Fluid Contact Angle Assessment to Evaluate Wetting of Dental Materials. Master’s Thesis, East Carolina University, Greenville, NC, USA, May 2017. [Google Scholar]
- Hlady, V.; Buijs, J. Protein adsorption on solid surfaces. Curr. Opin. Biotechnol. 1996, 7, 72–77. [Google Scholar] [CrossRef] [Green Version]
- Latour, R.A. Thermodynamic perspectives on the molecular mechanisms providing protein adsorption resistance that include protein-surface interactions. J. Biomed. Mater. Res. Part A 2006, 78, 843–854. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, J.E.; Borchert, T.V. Protein engineering of bacterial α-amylases. Biochim. Biophys. Acta (BBA)—Protein Struct. Mol. Enzym. 2000, 1543, 253–274. [Google Scholar] [CrossRef]
- MacGregor, E.; Janeček, Š.; Svensson, B. Relationship of sequence and structure to specificity in the α-amylase family of enzymes. Biochim. Biophys. Acta (BBA)—Protein Struct. Mol. Enzym. 2001, 1546, 1–20. [Google Scholar] [CrossRef]
- Carlen, A.; Börjesson, A.-C.; Nikdel, K.; Olsson, J. Composition of pellicles formed in vivo on tooth surfaces in different parts of the dentition, and in vitro on hydroxyapatite. Caries Res. 1998, 32, 447–455. [Google Scholar] [CrossRef]
- Edgerton, M.; E Lo, S.; A Scannapieco, F. Experimental salivary pellicles formed on titanium surfaces mediate adhesion of streptococci. Int. J. Oral Maxillofac. Implant. 1996, 11, 443–449. [Google Scholar]
- Laattala, K.; Huhtinen, R.; A Puska, M.; Arstila, H.; Hupa, L.; Kellomäki, M.; Vallittu, P. Bioactive composite for keratoprosthesis skirt. J. Mech. Behav. Biomed. Mater. 2011, 4, 1700–1708. [Google Scholar] [CrossRef]
- Baino, F. How can bioactive glasses be useful in ocular surgery? J. Biomed. Mater. Res. Part A 2014, 103, 1259–1275. [Google Scholar] [CrossRef] [Green Version]
- Quinn, A.; Mantz, H.; Jacobs, K.; Bellion, M.; Santen, L. Protein adsorption kinetics in different surface potentials. Europhysics Lett. 2008, 81, 56003. [Google Scholar] [CrossRef]
- Thyparambil, A.; Wei, Y.; Latour, R.A. Experimental characterization of adsorbed protein orientation, conformation, and bioactivity. Biointerphases 2015, 10, 019002. [Google Scholar] [CrossRef] [Green Version]
- Bridel, J.-S.; Azais, T.; Morcrette, M.; Tarascon, J.-M.; Larcher, D. Key Parameters Governing the Reversibility of Si/Carbon/CMC Electrodes for Li-Ion Batteries. Chem. Mater. 2010, 22, 1229–1241. [Google Scholar] [CrossRef]
- Choi, N.-S.; Chen, Z.; Freunberger, S.A.; Ji, X.; Sun, Y.-K.; Amine, K.; Yushin, G.; Nazar, L.F.; Cho, J.; Bruce, P.G. Challenges Facing Lithium Batteries and Electrical Double-Layer Capacitors. Angew. Chem. Int. Ed. 2012, 51, 9994–10024. [Google Scholar] [CrossRef] [PubMed]
- Stanley, E.D.; Stanley, K.D. Looking into Glycosidases: A Bioinformatics Resource for Biology Students; Academic Press: San Diego, CA, USA, 2001. [Google Scholar]
- MacGregor, E.A. α-Amylase structure and activity. J. Protein Chem. 1988, 7, 399–415. [Google Scholar] [CrossRef] [PubMed]
- Dresselhuis, D.M.; DeHoog, E.; Cohenstuart, M.; Vanaken, G. Application of oral tissue in tribological measurements in an emulsion perception context. Food Hydrocoll. 2008, 22, 323–335. [Google Scholar] [CrossRef]
- Roba, M.; Naka, M.; Gautier, E.; Spencer, N.D.; Crockett, R. The adsorption and lubrication behavior of synovial fluid proteins and glycoproteins on the bearing-surface materials of hip replacements. Biomaterials 2009, 30, 2072–2078. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Q.; Zheng, L.; Zhou, J.; Xiao, H.; Zheng, J.; Zhou, Z. Effect of alcohol stimulation on salivary pellicle formation on human tooth enamel surface and its lubricating performance. J. Mech. Behav. Biomed. Mater. 2017, 75, 567–573. [Google Scholar] [CrossRef] [PubMed]
- Lei, L.; Zheng, L.; Xiao, H.; Zheng, J.; Zhou, Z. Wear mechanism of human tooth enamel: The role of interfacial protein bonding between HA crystals. J. Mech. Behav. Biomed. Mater. 2020, 110, 103845. [Google Scholar] [CrossRef]
Surface Moiety | Si (%) | O (%) | Contact Angle (°) |
---|---|---|---|
GLASS | 37.7 (2.0) | 62.3 (2.0) | 13 (2) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baskaran, N.; Chang, Y.-C.; Chang, C.-H.; Hung, S.-K.; Kao, C.-T.; Wei, Y. Quantify the Protein–Protein Interaction Effects on Adsorption Related Lubricating Behaviors of α-Amylase on a Glass Surface. Polymers 2020, 12, 1658. https://doi.org/10.3390/polym12081658
Baskaran N, Chang Y-C, Chang C-H, Hung S-K, Kao C-T, Wei Y. Quantify the Protein–Protein Interaction Effects on Adsorption Related Lubricating Behaviors of α-Amylase on a Glass Surface. Polymers. 2020; 12(8):1658. https://doi.org/10.3390/polym12081658
Chicago/Turabian StyleBaskaran, Nareshkumar, You-Cheng Chang, Chia-Hua Chang, Shun-Kai Hung, Chuan-Tse Kao, and Yang Wei. 2020. "Quantify the Protein–Protein Interaction Effects on Adsorption Related Lubricating Behaviors of α-Amylase on a Glass Surface" Polymers 12, no. 8: 1658. https://doi.org/10.3390/polym12081658
APA StyleBaskaran, N., Chang, Y. -C., Chang, C. -H., Hung, S. -K., Kao, C. -T., & Wei, Y. (2020). Quantify the Protein–Protein Interaction Effects on Adsorption Related Lubricating Behaviors of α-Amylase on a Glass Surface. Polymers, 12(8), 1658. https://doi.org/10.3390/polym12081658