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Abstract: Mechanoluminescence (ML), which emits light upon external mechanical stress, was applied
to fibrous composites. Herein, ML particles were incorporated into poly(vinylidene fluoride) (PVDF)
and polyacrylonitrile (PAN) electrospun webs to prepare ML/PVDF and ML/PAN composite fabrics.
The produced fabrics were treated with O2 and C4F8 plasma to modify the wetting properties,
then the effects of composite wettability on the light-emitting response in dry and wet conditions were
investigated. The light intensity was greatly decreased when the composite fabrics absorbed water.
When the composites were hydrophobized by the C4F8 plasma-enhanced chemical vapor deposition
process, the original light intensity was protected in wet conditions, while maintaining the water
vapor transmission rate. As the clothing material would be exposed to moisture in varied situations,
the reduced ML sensitivity in wet conditions may limit the application of ML composite fabrics.
The findings suggest a facile strategy to fabricate moisture-resistant, breathable mechanoluminescence
composite fabrics.

Keywords: mechanoluminescence; electrospinning; water-resistant; plasma-enhanced chemical
vapor deposition; sensor; smart textile

1. Introduction

The vigorous development of smart textiles has led to a new era of lifestyle. Countless smart
textiles or devices are capable of monitoring and sensing natural phenomena around everyday
life [1]. Most current smart textiles are powered by traditional rechargeable batteries which are
large, heavy, and bulky; therefore, they are unsuitable to properly integrate with textiles, making the
consolidation of a single system infeasible [2]. For this reason, there is a special interest to develop
pliable and lightweight alternatives for electrical power generation and storage, such as flexible
and elastic batteries [3–5], supercapacitors [6], photovoltaic [7], thermoelectric [8], and piezoelectric
generators [9,10]. One way to fulfill the demands of mechanical sensors that work without batteries
is by using mechanoluminescence. The development of mechanoluminescent (ML) materials has
contributed to a broad source of multi-functional components with a wide range of applications in
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diverse fields [11,12]. It is well known that ML materials emit light when subjected to mechanical
stress such as elastic–plastic deformation or even friction [13,14].

ML emits light according to a band theory, in which an electron gains energy from the external
mechanical stress, where it goes to an excited state and then it releases the light when coming back
to the ground state [15]. A distinct characteristic of ML appealed to researchers in materials science,
leading to a wide scope of ML research [16]. Various types of ML with different components such
as SrAl2O4:(Eu2+, Dy3+), ZnS:Mn, Ca2MgSi2O7:Eu, and CaZnOs:Mn have been observed and the
investigation is still ongoing [17]. Among the earlier findings of ML, the material used in the experiment
was green-emitting phosphor of SrAl2O4:Eu2+ co-doped with Dy3+ (SAOED) which has been known as
intense and long-lasting phosphorescence [18,19]. Recently, ML materials have caught the attention of
researchers for application in a wide range of nondestructive evaluations [20–22] and for diverse types
of mechano-optical devices [23,24]. The investigation has been conducted for the measurement and
visualization of stress distribution of the SAOED-incorporated solids in the form of ML paint [25,26];
ML sensing film and adhesive [11,27–29]; and ML/epoxy composites [13,30–32].

When ML materials containing alkaline earth aluminates interact with water, the properties of
both phosphorescence and mechanoluminescence can be deteriorated as the hydrolysis reaction of
ML occurs. As clothing textiles can be exposed to the moist and sweaty environment, hydrolysis
of ML in wet conditions puts a significant constraint on ML application to textiles. To prevent the
hydrolysis of ML materials, several studies suggested introducing a water-resistant protection barrier
for ML particles [33–35]. Such barrier materials often involve a complicated chemical procedure [35,36],
and loss of flexibility and permeability, limiting the application to textile materials.

Herein, water-resistant yet breathable nonwoven fabrics with mechanoluminescence performance
were proposed to detect mechanical stimulation, in consideration of the practical application in
wet conditions. For this purpose, ML composite fabrics were fabricated by electrospinning of
ML-incorporated PVDF and PAN fibers. The electrospinning technology used in this paper has
a wide range of applications, which allows us to fabricate nanomaterials with little restriction on
materials. With versatile process options, electrospinning is extending its capability of creating
novel functional nonwovens [37,38] and composite mats by combining functional materials with
polymers [39,40]. This study employed a simple electrospinning process by dispersing the ML particles
in the pre-spinning polymer solution to produce particle-incorporated composite webs.

The ML-incorporated PVDF electrospun web (ML/PVDF) and ML-incorporated PAN electrospun
web (ML/PAN) were further modified to vary in wetting properties, either being hydrophilic or
hydrophobic via a simple plasma process. The as-spun hydrophilized and hydrophobized composite
fabrics of ML/PVDF and ML/PAN were compared for water add-on (%) and wettability. The composites
with different wettability were investigated for the ML performance both in dry and wet states.
The breathability of ML composite fabrics was examined by measuring the water vapor transmission
rate. In consideration of the textile application, the effects of composite thickness and layering on ML
performance were investigated, and simulation was also conducted to interpret the results.

Ultimately, the study intends to suggest a facile strategy to fabricate the breathable composite
fabrics of which performance is well maintained in wet conditions. The approach of this study is novel
in that a simple technique of the plasma-enhanced chemical vapor deposition (PECVD) process was
applied to composite fabrics to optimize ML performance in wet conditions. As PECVD produced
a very thin layer of coating, the breathability of the composite fabric was maintained. The resulting
material can be applied as a battery-free mechanoluminescent sensor in smart textiles.

2. Materials and Methods

2.1. Materials

Mechanoluminescence (strontium aluminate co-doped with europium ions and dysprosium ions,
SrAl2O4:(Eu2+, Dy3+)) particles were purchased from Nemoto & Co (Tokyo, Japan). Poly(vinylidene
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fluoride) (PVDF) resin (Mw 275,000) and polyacrylonitrile (PAN) resin (Mw 150,000) were purchased
from Sigma-Aldrich (St. Louis, MO, USA). N, N-dimethylformamide (DMF) and acetone were bought
from Daejung Chemicals (Siheung-si, Gyeonggi-do, South Korea). Calcium chloride, anhydrous, 96.0%
was purchased from Samchun Chemicals (Seoul, South Korea). Octafluorocyclobutane (C4F8) gas and
oxygen gas (O2) were purchased from Union Gas (Yongin-si, Gyeonggi-do, South Korea).

2.2. Fabrication of ML/PVDF and ML/PAN

PVDF pellets were dissolved in a blend of (1:1 volume ratio) DMF and acetone, and the PVDF
pre-spinning solution was prepared in 26% (w/v). ML powder was added to the respective pre-spinning
solutions with 7.8% (w/v) of the solution. The ML in the pre-spinning solution was mixed in a vial
using a magnetic stir bar at 60 ◦C for 24 h. The ML-containing pre-spinning solution was electrospun
at the bias voltage of 10~12 kV and the feeding rate of 4 mL/h. The electrospun fibers were collected
to a rotating drum collector wrapped with paper foil (180 rpm) at a distance of 15 cm. The fiber was
directly collected on the paper foil. The collected electrospun composite web was dried in an oven at
40 ◦C for 24 h. The thickness of the PVDF electrospun web was varied to 0.1, 0.2, and 0.4 mm.

Polyacrylonitrile resin was mixed with DMF with 10% (w/v) to make a PAN pre-spinning solution.
The ML was added to the pre-spinning solution in 7.8% (w/v) of the solution. The w/v% of ML in the
composite web was adjusted to be the same for the ML/PVDF and ML/PAN webs. The ML-containing
PAN solution was electrospun at 15~18 kV with a 1 mL/h feeding rate. The fibers were collected onto a
rotating drum collector (at 200 rpm) from a distance of 15 cm. The electrospinning process parameters
were adjusted to produce beadless fibers in the consistent size range for the respective fibers, without
clogging of the nozzle. Electrospinning was conducted under a temperature of 20 ± 2 ◦C and relative
humidity of 20 ± 3% RH.

The surface chemistry of ML-incorporated electrospun fabric was modified by the plasma
process. To attach the oxygen group to the composite surface, the composite fabric was subject to
an O2 plasma treatment for 5 min at 200 W with 160 cm3/min in the plasma system (COVANCE,
FemtoScience, Hwaseong, South Korea) [41]. To coat the surface with the fluorinated compound by the
plasma-enhanced chemical vapor deposition (PECVD), the composite fabric was treated under C4F8

gas for 25 min at 200 W with 100 cm3/min [42,43]. The generated frequency of plasma was 50 kHz in
both O2 and C4F8 plasma processes.

The wettability of the composite surface was examined via measurement of the static contact
angles (CA) of water, using an optical tensiometer (Theta Lite, KSV Instruments Ltd., Espoo, Finland).
For the CA measurement, a 3.4 µl of water drop was placed on a surface, and the CA was measured
within 5 secs after the deposition of a liquid drop. The measurement was done on at least five different
locations of the sample surface.

2.3. Measurement of Mechanoluminescence by the Ball Drop Test

To measure the intensity of ML of the composites, a ball drop test was designed, where a
23 g spherical glass ball with a 2.5 cm radius was vertically dropped from a 20 cm distance from
the composite surface (Figure 1a). The light intensity was measured when the fabric experienced
instantaneous stress. For charging the photo energy to the samples, the composite samples were rested
in the daylight condition for 1 min using standard lighting equipment (CO−204, Hanwon Soway Co.,
Seoul, South Korea). After 1 min, the samples were rested in the darkroom for 5 min to discharge
photo energy to control the maximum pixel intensity value (PIV) which reflects the light intensity
of the sample. The maximum measurable PIV (unitless value) was 255, and the minimum was 0.
Both charging time (1 min) and discharging time (5 min) were maintained the same to control the light
intensity of ML composites.
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Figure 1. Light emission investigation of the mechanoluminescence (ML)/poly(vinylidene fluoride)
(PVDF) composite. (a) Test setup for measurement of mechanoluminescence of ML composite fabrics;
(b) image processing after drop ball test using ImageJ.

A Grasshopper 3 4.1MP® (FLIR Systems, Inc., Wilsonville, OR, USA) camera was used in
conjunction with the PTGrey Fly Capture 2® (FLIR Systems, Inc.) software for video recording the
moment of the impact. Shutter speed, aperture, and focus were adjusted to collect the best possible
image definition; these settings remained unaltered for all tests. The images were evaluated using
the image processing software FIJI ImageJ2® [44,45], applying a greyscale range for measuring the
PIV. The same detection procedure was applied in previous studies [46–49]. In this method, the PIV
was calculated on the grayscale and the sum of the gray value in the selected area was divided by the
number of pixels. As the light gets brighter, the PIV presents a higher value. The maximum PIV of the
responding area is obtained for the analysis (Figure 1b) because the light intensity of the ML/polymer
composite is focused on a micro point of view. The ball drop test setup and the image process are
shown in Figure 1.

2.4. Microscopic Analysis

The fluorescence image of the composite fabrics was observed by the fluorescence microscope
(U-HGLGPS, Olympus, Tokyo, Japan). The surface morphology and ML size were observed using a
field-emission scanning electron microscope (FE-SEM, MERLIN Compact, Carl Zeiss, Jena, Germany),
with a prior Pt coating (~10 nm) at 10 mA for 180 s using a sputter coater (EM ACE200, Leica, Wetzlar,
Germany). Energy-dispersive spectroscopy (EDS) analysis and elemental mapping were achieved by a
NORAN system 7 attached to the SEM equipment.
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2.5. Measurement of Water Vapor Transmission Rate (WVTR)

The water vapor transmission rate (WVTR) of the composite fabric was measured following KS K
0594:2015 testing methods for the water vapor transmission rate of textile fabrics [50]. A combined
temperature and humidity chamber (PL—3KPH, Espec Corp., Osaka, Japan) was used. The thickness
of the ML/PVDF specimen used for the experiment was 0.1 ± 0.02 mm and ML/PAN was 0.13 ± 0.02 mm.
A composite sample with a 7 cm diameter was fixed on a water-permeable cup containing 33 g of
calcium chloride (CaCl2) at 40 ± 2 ◦C, 90 ± 5% RH condition. The cup with a composite sample must
maintain a 3 mm distance between the sample and the CaCl2. After 1 h, the weight (a1) of the specimen
is measured immediately. Then, put the test specimen back into the chamber and take out the specimen
again to measure the weight (a2) after the following 1 h. The mass change (g) was measured after a
predetermined time to calculate the WVTR by the following equation.

P =
a2 − a1

S
(1)

P: water vapor transmission rate (g/m2
·h);

a1–a2: mass change of water-permeable cup with CaCl2 after 1 h (g/h);
S: area (m2) of the sample exposed to the moisture absorbent.

2.6. Finite Element Analysis for Normal Stress

Abaqus/Explicit [51] was utilized for a drop ball test simulation. The ML composite material is
assumed to be linearly elastic and its properties used in the simulation are listed in Table 1.

Table 1. Materials properties.

Part Density (kg/m3) Elastic Modulus (GPa) Poisson’s Ratio

Composites 1780 2.27 0.225

Support 2700 70.0 0.330

The finite element analysis (FEA) model for the drop simulation contained three parts in total,
as shown in Figure 2. Assuming the ML composites to be homogeneous, a quarter model was
investigated in this simulation due to the symmetry. The composite samples were modeled by a
4-noded shell element type on the middle surface. The 8-noded 3D solid element type was chosen to
model the supporter, and the ball was modeled by a 4-noded discrete rigid element type. As boundary
conditions, the bottom of the support was fixed and symmetry displacement conditions on the side
surface (Ux = 0 or Uz = 0) were prescribed. Contact surfaces between possible contacting parts were
defined, and the kinematic algorithm was applied as it is known as more accurate than the penalty
method [52]. The kind of normal contact behavior was modeled by the “hard” contact option. Impact
velocity was assigned as 2 m/s derived by the law of energy conservation. The impact simulation time
was 0.2 ms.

To demonstrate the effect of thickness and layering, the maximum von Mises stress value on the
impact area was compared. In the case of multiple layers, von Mises stress was obtained in the lowest
layer because the stress value is highest in the lower layer.
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Figure 2. The geometry of the full model for drop test simulation. (a) Geometry of the full model,
the diameter of the ball (D) = 25 mm; (b) composite and support geometry of the quarter model,
the length of square composites (S) = 10 mm.

3. Results and Discussion

3.1. Microscopic Observation of ML-Incorporated Composite Fabrics

Fluorescence and SEM images of ML and ML composites were observed in Figure 3. Figure 3a,b
show the morphology and size of ML particles. The average size of ML particles was measured to be
2.39 µm, with a wide range of particle size distribution. About 44% of ML particles were in the range of
1–2 µm. Figure 3c,d show the fluorescence images of electrospun ML/PVDF and ML/PAN, respectively.
ML particles were randomly dispersed through the micro- and nanofibers without large aggregations.
From Figure 3e–h, PVDF produced micro-sized fibers (~3.29 µm) with a mix of nano-sized fibers
(0.20 µm), and the small ML particles were embedded in relatively large fibers, while large ML particles
were randomly dispersed throughout the electrospun web. The average diameter of ML/PVDF was
1.40 µm. PAN fibers were smaller than PVDF fibers, of which ranged 0.449~0.899 µm. Compared to
PVDF, PAN fibers had a much narrower size distribution, with an average diameter of 0.63 µm. As ML
particles were mostly larger than PAN fibers, many large ML particles were attached to the nanofibers
rather than embedded in the fibers, while the submicron particles were still observed inside the fibers.
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To examine the particle distribution in the fibrous composite, the energy-dispersive X-ray
spectroscopy (EDS) mapping was observed in Figure 4. To verify the presence of materials in EDS,
the atoms F, N, and Sr were selected to map the PVDF fibers, PAN fibers, and ML particles, respectively.
Figure 4 corroborates that the ML particles were randomly and rather uniformly distributed throughout
the fibrous composites.
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Figure 4. EDS mapping for PVDF/ML and PAN/ML. (a) Mapping for fluorine (F) in PVDF fibers;
(b) mapping for strontium (Sr) in ML particles; (c) integrated image of F and Sr of ML/PVDF; (d) mapping
for nitrogen (N) in PAN fibers; (e) mapping for strontium (Sr) in ML particles; (f) integrated image of N
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3.2. Light Emission of ML-Incorporated Electrospun Composites

The PIV of ML/PVDF composite fabrics was measured from the ball drop test. To investigate the
effects of composite thickness and layering on the ML intensity, composites with varying thickness
(0.1 ± 0.02, 0.2 ± 0.02, and 0.4 ± 0.03 mm) and varying numbers of layers (two layers of 0.1 mm fabric,
four layers of 0.1 mm fabric, and two layers of 0.2 mm fabric) were measured for ML intensity (Figure 5).
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Figure 5. Pixel intensity value (PIV) of ML/PVDF composites with different thickness and layers.
(a) The maximum PIV of ML/PVDF composites; (b1–b6) instant capture of ML/PVDF composites of
a single layer of 0.1 mm fabric (b1), 0.2 mm (b2), 2 layers of 0.1 mm thickness (b3), a single layer of
0.4 mm (b4), 4 layers of 0.1 mm fabric (b5), and 2 layers of 0.2 mm fabric (b6).

PIVs of 0.1 and 0.2 mm were about the same; however, the PIV of 0.4 mm was about twice that of
0.2 mm. The effect of layering on the ML intensity was notable between the single layer of 0.2 mm
fabric and the two layers of 0.1 mm fabric, as the two-layer construction with the same overall thickness
displayed the higher PIV. For the fabric constructions with an overall thickness of 0.4 mm, two-layer
and four-layer constructions showed a higher PIV than a single layer of 0.4 mm fabric. The effect of
layering on ML intensity was further examined by modeling.

3.3. Simulation on Layering Effect

To interpret the layering effect on the ML intensity, a drop simulation was executed by
Abaqus/Explicit: in this analysis, the maximum stress values on the drop area of the composite
fabric were compared for different thicknesses and layers. Figure 6 presents the von Mises stress
contour and the stress–time curve. From Figure 6a, the von Mises stress value is concentrated at
the impact point. The von Mises stress values of the multi-layer composite were higher than that
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of the single-layer composite. The stress development over time for the multi-layer construction
and the single-layer construction was different, as the textiles in the multi-layer composites were not
restrained; thus, the layers were in contact rather than fixed. Due to the existence of gaps between
layers, the serial transmission of the impact energy from the top layer to the support occurs with short
time intervals with mechanical interactions (i.e., secondary impact, slip, and friction) between layers.
This could be a main cause for the higher PIV and stress as evidenced in the experimental tests and
simulations, respectively. As multi-layer composites happen to separate, the stress wave propagation
can change [53].
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Figure 6. Von Mises stress value of ML/PVDF composites with different thicknesses and layers.
(a) The von Mises stress contour. For the two-layer composites, the deformation scale factor of 10 was
used; (b) von Mises stress curve as a function of time. (c) Comparison of simulated normalized stress
value of ML/PVDF composites and actual PIV after experiments with different thicknesses and layers.

Figure 6b represents the simulated values for the change of the stress on the composite overtime
after the collision of the ball and the composite. The total simulation time was 0.2 ms. The graph
depicts that von Mises stress gets higher with multiple layers and the thickness. Figure 6c shows the
calculated value for the normalized maximum von Mises stress values (gray bar) and the measured
PIV of the ML/PVDF composites (red line) with different thicknesses and layers. The normalized stress
value is the stress value of the composite divided into the biggest stress value (calculated) in every
condition. In that way, the biggest stress value becomes 1 in every experiment condition. To see the
valid result, we collected only the largest stress value during 0.2 ms for each condition and normalized
it. As shown on the graph, the normalized stress value from the simulation results displayed a similar
tendency with the actual light intensity (measured) from the experiment. The multi-layer composites
showed higher von Mises stress than single-layer composites with the same thickness. Certainly,
the simulation results were not exactly equal to the experimental results; however, the simulation
result was an approximate match with the experimental results for the effects of thickness and layering
on the stress.
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3.4. Effect of Composite Wettability on ML Intensity

When ML materials containing alkaline earth aluminates interact with water, the properties
of mechanoluminescence can be deteriorated due to the hydrolysis of ML. When ML is applied
as a clothing textile, potential hydrolysis of ML in wet conditions puts a significant constraint on
applications. The hydrolysis mechanism of SAOED is known as follows:

7SrAl2O4 + 8H2O→ Sr3Al2(OH)12 + 4SrAl3O5(OH)
SrAl2O4 + 4H2O→ Sr2

+ + 2OH- + Al(OH)3

Sr2+ + 2OH- + CO2→ SrCO3 + H2O
When SAOED is exposed to a high-humidity condition, it can be readily decomposed into a

mixture of Sr3Al2(OH)12 and 4SrAl3O5(OH) and those are further decomposed into strontium ion
(Sr2+) and hydroxide ions (2OH-). Then, the Sr2+ reacts with CO2 in the air to create the final product,
SrCO3, which is a carbonate salt of strontium. The mechanism is the direct indication of the instability
of SAOED at a humidity condition [54].

From the assumption that the wetting of SAOED leads to hydrolysis and deterioration of ML
performance, the wettability of composite fabrics was examined. The wettability was represented by
the water contact angles (CA) for the untreated ML composites, O2 plasma-treated ML composites,
and C4F8 PECVD-treated ML composites, respectively (Figure 7). The ML/PVDF was more hydrophobic
(CA~ 139.8◦ ± 2.6◦) than ML/PAN (CA~ 63.5◦ ± 1.7◦). When both composites were treated with oxygen
plasma, the surface turned into very hydrophilic with a CA of 0◦. The fluorination of ML composites
by the C4F8 PECVD process made the fabrics more hydrophobic; the CAs of fluorinated ML/PVDF and
fluorinated ML/PAN were 150.6 ± 2.8◦ and 143.2 ± 1.4◦, respectively. The wettability of ML composites
with different surface treatments, measured by water contact angle, is shown in Figure 7.
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Figure 7. The water contact angle of the ML/PVDF and ML/PAN composites for different surface
treatments including hydrophilic O2 plasma and hydrophobic C4F8 plasma processes.

The ML intensity of composites with the varied wetting properties was investigated, before and
after exposure to water. The tested ML/PVDF composite samples were two-layered with 0.1 ± 0.01 mm
thickness. The tested ML/PAN composite had a thickness of ~ 0.15 ± 0.02 mm, and a single layer of
ML/PAN composite was used. The composite fabrics, either PVDF or PAN, displayed the consistent
level of PIVs in the dry state regardless of wetting properties that were varied by the plasma treatments.
To examine the effect of water exposure on the ML intensity, the composite fabrics were immersed in
water for 30 min, subsequently removing the dripping water by placing on absorbent paper for about
1 min, then the wet composite fabrics were subjected to the ball drop test. Thirty repetitions of the ball
drop test were conducted for every six samples. The percentage of water add-on was calculated by the
following formula:
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The weight of wet composite (g) – The weight of dry composite (g)
The weight of dry composite (g)

× 100 (%) (2)

As shown in Table 2, hydrophilized O2-treated composites showed a large amount of water
add-on, while the hydrophobized C4F8-treated composites showed a smaller amount of water add-on.
PVDF is intrinsically hydrophobic, and the water add-on of ML/PVDF was much less than that of
ML/PAN. The PIVs of the ML/PVDF and ML/PAN composite fabrics in dry and wet states are shown in
Table 2 and Figure 8. For all samples, the maximum PIV appeared at ~45 msec, then the light intensity
gradually decreased (Figure 8a,b). While the PIVs in the dry state were relatively consistent, the PIVs
decreased as the water add-on by the composite fabrics increased. The hydrophilic ML/PAN decreased
PIV from 141 in a dry state to 100 in a wet state.

Table 2. Wettability, water add-on, and ML intensity of ML/polymer composite fabrics.

Measurement
ML/PVDF ML/PAN

Untreated O2 Treated Fluorinated Untreated O2 Treated Fluorinated

Contact angle (◦) 140 0 151 63.5 0 143
Water add-on (%) 6.27 239 2.38 569 708 11.2
PIV in dry state 162 163 167 141 150 145
PIV in wet state 150 97 150 100 110 157

As PVDF is intrinsically hydrophobic, the ML/PVDF composite did not absorb water much, and the
PIV was not changed significantly. The water add-on of ML/PVDF was mostly the surface-adsorbed
water, not the one absorbed into the composite fibers. When the PVDF composite was hydrophilized
by the O2 treatment, the water add-on increased, resulting in a considerable decrease in PIV. When the
PVDF composite was further hydrophobized by fluorination (C4F8 PECVD), the PIV was not much
changed after water immersion as the water add-on was insignificant.

The ML/PAN composite fabric appeared moderately hydrophilic, and the mass of wet composites
was ~569% of the dry composite; accordingly, the PIV decreased significantly when wet. The further
hydrophilized ML/PAN fabric by O2 plasma showed a similar level of PIV when wet. The result
corresponds to the previous studies that reported a decreased ML performance with a water add-on [55].
The fluorinated ML/PAN composite by the C4F8 treatment made the composite hydrophobic, decreasing
the water add-on (11.2%) when immersed in water. The PIV of fluorinated ML/PAN in the wet state
did not decrease, resulting in moisture-insensitive luminescence performance. As PAN is hydrophilic,
when ML is applied to acrylic textiles (PAN), the ML performance may deteriorate when the textile
gets wet by rain or sweat. In this case, hydrophobic treatment may be beneficial for improving the ML
performance when the textiles are wet. This study provided a practical and facile way of overcoming
the moisture-dependent ML performance of ML-incorporated composites.
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As a representative measurement of breathability, the water vapor transmission rate (WVTR) of 
the composite fabric was measured (Figure 9). WVTR is generally affected by surface wettability and 
porosity of the material, as those factors influence the adsorption and transport of water vapor [56,57]. 
The hydrophobic ML/PVDF composite showed a higher WVTR than the hydrophilic ML/PAN. In the 
ML/PAN composite, hydrophobized (C4F8) samples showed similar or slightly higher WVTR than 
the untreated or O2-treated composite. This result depicts that the hydrophobic coating with C4F8 
PECVD did not adversely influence the water vapor permeability; on the contrary, the hydrophobic 
coating treatment slightly improved the vapor permeability. This is because the hydrophobic surface 
absorbs or traps the water molecule and releases a vaporous water molecule rather quickly. When 
the fiber surface becomes very hydrophilic, its sorption capacity increases and the surface tends to 
hold water molecules more strongly, delaying the transmission time [57,58]. 

Figure 8. Mechanoluminescence intensity for ML composites with different treatments. (a) PIV of
ML/PVDF with time in the wet state; (b) PIV of ML/PAN with time in the wet state; (c) maximum
PIV of ML/PVDF in dry and wet states; (d1–d3) PIV image of ML/PVDF untreated, O2-treated,
and C4F8-treated, respectively, in a dry state; (d4–d6) PIV image of ML/PVDF untreated, O2-treated,
and C4F8-treated, respectively, in the wet state; (e) maximum PIV of ML/PAN in dry and wet states;
(f1–f3) PIV image of ML/PAN untreated, O2-treated, and C4F8-treated, respectively, in a dry state;
(f4–f6) PIV image of ML/PAN untreated, O2-treated, and C4F8-treated, respectively, in the wet state.

3.5. Water Vapor Transmission Rate (WVTR) of Composite Fabrics

As a representative measurement of breathability, the water vapor transmission rate (WVTR)
of the composite fabric was measured (Figure 9). WVTR is generally affected by surface wettability and
porosity of the material, as those factors influence the adsorption and transport of water vapor [56,57].
The hydrophobic ML/PVDF composite showed a higher WVTR than the hydrophilic ML/PAN. In the
ML/PAN composite, hydrophobized (C4F8) samples showed similar or slightly higher WVTR than the
untreated or O2-treated composite. This result depicts that the hydrophobic coating with C4F8 PECVD
did not adversely influence the water vapor permeability; on the contrary, the hydrophobic coating
treatment slightly improved the vapor permeability. This is because the hydrophobic surface absorbs
or traps the water molecule and releases a vaporous water molecule rather quickly. When the fiber
surface becomes very hydrophilic, its sorption capacity increases and the surface tends to hold water
molecules more strongly, delaying the transmission time [57,58].
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4. Conclusions

Mechanoluminescent (ML) composite fabrics, which emit light when exposed to sudden
mechanical stress, were fabricated by electrospinning of ML-incorporated PVDF and PAN fibers.
Notably, multi-layer constructions displayed distinctly higher ML intensities than the single-layer
construction of the same overall thickness. The ML performance was deteriorated when the
ML-incorporated composite fabric absorbed a significant amount of water. Comparing ML/PVDF and
ML/PAN, the hydrophilic ML/PAN composite showed a reduced ML intensity in wet conditions, while
the ML performance of hydrophobic ML/PVDF was almost intact after water exposure. When the
wetting properties of ML/PVDF were modified to be hydrophilic by the O2 plasma process, the ML
intensity decreased for the originally hydrophobic ML/PVDF. The reduced ML performance in wet
conditions is a potential problem for application in clothing, as the composite fabric may experience
wetting by rain or sweat. When the composite fabric was modified for being hydrophobic by the
C4F8 PECVD process, the ML/PAN did not absorb water much, and the ML performance was not
deteriorated after being immersed in water. To conclude, the study intended to suggest a facile
strategy to fabricate the breathable composite fabrics of which the performance is moisture-insensitive.
The approach of this study is novel in that the simple technique of the plasma-enhanced chemical
vapor deposition (PECVD) process was applied to composite fabrics to optimize the ML performance
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