
polymers

Article

A Refined Theory for Characterizing Adhesion of
Elastic Coatings on Rigid Substrates Based on
Pressurized Blister Test Methods: Closed-Form
Solution and Energy Release Rate

Yong-Sheng Lian 1, Jun-Yi Sun 1,2,* , Zhi-Hang Zhao 1, Shou-Zhen Li 1 and
Zhou-Lian Zheng 1,2

1 School of Civil Engineering, Chongqing University, Chongqing 400045, China;
lianyongsheng@cqu.edu.cn (Y.-S.L.); 20135542@cqu.edu.cn (Z.-H.Z.); 201816021070@cqu.edu.cn (S.-Z.L.);
zhengzl@cqu.edu.cn (Z.-L.Z.)

2 Key Laboratory of New Technology for Construction of Cities in Mountain Area (Chongqing University),
Ministry of Education, Chongqing 400045, China

* Correspondence: sunjunyi@cqu.edu.cn; Tel.: +86-23-65120720

Received: 14 July 2020; Accepted: 7 August 2020; Published: 10 August 2020
����������
�������

Abstract: Adhesion between coatings and substrates is an important parameter determining the
integrity and reliability of film/substrate systems. In this paper, a new and more refined theory
for characterizing adhesion between elastic coatings and rigid substrates is developed based on a
previously proposed pressurized blister method. A compressed air driven by liquid potential energy
is applied to the suspended circular coating film through a circular hole in the substrate, forcing the
suspended film to bulge, and then to debond slowly from the edge of the hole as the air pressure
intensifies, and finally to form a blister with a certain circular delamination area. The problem from
the initially flat coating to the stable blistering film under a prescribed pressure is simplified as a
problem of axisymmetric deformation of peripherally fixed and transversely uniformly loaded circular
membranes. The adhesion strength depends on the delamination area and is quantified in terms of
the energy released on per unit delamination area, the so-called energy release rate. In the present
work, the problem of axisymmetric deformation is reformulated with out-of-plane and in-plane
equilibrium equations and geometric equations, simultaneously improved, and a new closed-form
solution is presented, resulting in the new and more refined adhesion characterization theory.

Keywords: film/substrate delamination; pressurized blister test; circular membrane; closed-form
solution; energy release rate

1. Introduction

Coating technology is indispensable in many applications fields [1–5]. A film/substrate system
usually consists of a substrate and its thin coating film, where the substrate could be a rigid substrate
or a soft substrate, while the coating film is usually formed by chemical synthesis methods or physical
deposition techniques and is usually polymer thin films, also including some polymer-based composite
coatings with specific properties such as high adherence, crystallinity, temperature and corrosion
resistance, or high conductivity [6,7]. The integrity and reliability of film/substrate systems obviously
depend on the adhesion strength of coatings on substrates, which is often quantified or defined in terms
of the energy released on per unit film/substrate delamination area, i.e., the so-called energy release
rate. Various methods, such as blister tests [8–10], peeling tests [11,12], and the centrifugal adhesion
test [13,14], have been developed to realize the delamination of coating films from substrates. Blister
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tests and peeling tests are two methods often used for the delamination between thin elastic coating
films and rigid substrates. However, compared with the peeling method, the blister test technique has
the advantages of axisymmetric blister geometry and small angle at the crack front [15].

Dannenberg initially proposed using the blister test technique to characterize the interface adhesion
strength [15]. In a blister test, a hole is bored or chemically etched in the rigid substrate until it reaches
the thin film, and then a crack driving force is applied gradually through the hole until an axisymmetric
blister crack extends into the interface of the thin film/substrate system. Then, the energy release rate
can be determined by measuring the crack driving force, the radius and height of the blister. The
blister test was developed into many different forms by subsequent researchers [16–20], in which two
kinds of crack driving force are usually adopted, that is the shaft-loading as shown in Figure 1a and
the gas or fluid pressure loading as shown in Figure 1b. In the shaft-loaded blister test, the radius of
the loading-shaft is usually very small, which may lead to plastic yielding and piercing of the thin film.
In the pressurized blister test, the catastrophic debonding will occur once the applied load exceeds the
critical pressure [15], so a precise experimental setup is needed to simultaneously monitor the size of
the blister and the applied pressure.
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In previous work, we developed a novel loading method for pressurized blister test and presented
the formula of the energy release rate [9], the experimental setup used is shown in Figure 2, where
h, a and wm are the thickness, radius and maximum deflection of the blistering film, R0 is the radius
of the hole in the rigid substrate, R1 and R2 are the inner radii of the smaller and lager circular
containers, h1 and h2 are the height of liquid in the two circular containers. In Sun et al. [9], the problem
of axisymmetric deformation of the pressurized blistering film was simplified into the problem of
axisymmetric deformation of a peripherally fixed and transversely uniformly loaded circular membrane,
i.e., the well-known Hencky problem. The well-known Hencky solution was used to derive the formula
of the strain energy stored in the blistering film [21]. Some assumptions or approximations were
adopted in the derivation of the well-known Hencky solution: (i) the so-called small-rotation-angle
assumption of membrane was used to derive the so-called out-of-plane equilibrium equation; (ii) the
effect of the deflection on the so-called in-plane equilibrium was ignored during the derivation of the
in-plane equilibrium equation; (iii) the geometric equation is established by assuming that before and
after the deformation of the membrane the length of the micro line element is approximately equal and
omitting the term (du/dr)2. These assumptions or approximations could make it convenient to obtain
the analytical solution of the well-known Hencky problem, but they will also make the well-known
Hencky solution not work when the deflection is relatively large. In a pressurized blister test, however,
the deflection of the blistering thin film could reach half the radius of the circular blistering thin film,
or even larger, so it is necessary to give up these assumptions or approximations when accurately
analyzing the elastic response of the pressurized blistering thin film. Moreover, there are some errors in
the derivation of the energy release rate in Sun et al. [9]. For example, the integral mean value theorem
for calculating mean value of a curve should not be used to calculate the volume under the blistering
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thin film when determining the strain energy stored in the blistering thin film, and the method to
determine the work caused by the change of liquid potential energy also needs to be improved.
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In this paper, an overall improvement in experiment and theory for characterizing the adhesion
between rigid substrates and elastic coatings in Sun et al. [9] is made. In the following section, some
improvements in the experimental setup shown in Figure 2 are made, and the measurement process is
described in detail. In Section 3, some errors in the derivation of the formula of the energy release
rate in Sun et al. [9] are rectified, and in order to obtain a more accurate formula of the energy release
rate, the external work caused by the change of the potential energy of the colored liquid in the two
containers and the energy absorbed by the enclosed air due to being compressed are accurately derived,
and based on the obtained new and more refined closed-form solution for the problem of axisymmetric
deformation of a peripherally fixed and transversely uniformly loaded circular membrane the elastic
strain energy stored in the blistering thin film is also derived, and finally a more accurate formula of
the energy release rate is presented; In Section 4, the validity of the obtained new refined closed-form
solution is demonstrated by a comparison with the results obtained by the conducted experiment,
and the influence of the above-mentioned assumptions or approximations (i)–(iii) on the closed-form
solution of the well-known Hencky problem is investigated, also the difference between the calculation
results of the strain energy stored in the blistering film obtained by the well-known Hencky solution
and by the new refined closed-form solution presented here was discussed. Concluding remarks are
presented in Section 5.

2. Methods

The experimental setup shown in Figure 2 still needs to make some improvement. In this
experimental setup, the circular containers are designed with different inner radii, so that more pressure
can be applied to the thin film. However, as it is known, in one and the same liquid, the same pressure
is present at the same height. It is also valid for the pressure at the air and liquid interface. So, the
relative pressure (relative to ambient pressure) of the compressed air q is only dependent on the density
of the liquid ρ, the acceleration of gravity g, and the height difference of liquid in the two containers
h1 − h2, and independent of the inner radius of the circular container [22]. So, it’s not necessary to
design the two circular containers with different inner radii, and different inner radii will make the
following derivation process of the energy release rate complicated. In addition, it is necessary that a
valve is added to the connecting pipe, such that the influence of the fluctuation of liquid caused by
pouring liquid into the right container during the experiment can be avoided by closing the valve. The
experimental setup after being improved is shown in Figure 3, where R is the inner radius of the two
circular containers.
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For the improved experimental setup shown in Figure 3, the experimental operating steps and
measurement method of a pressurized blister test is detailed as follows:

1. Open valve 1 and close valve 2, and fill the connecting and drainpipes with colored liquid. Then,
a specimen of a thin film/substrate system is tightly adhered to the left container, as shown in
Figure 4a. At this time, the pressure q0 of the enclosed air in the left container is assumed to be
equal to zero.

2. Close valve 1 and pour colored liquid with volume πR2H into the right container, as shown in
Figure 4b. Since valve 1 is closed, the pressure of the enclosed air in the left container remains q0.

3. Open valve 1, and the colored liquid in the right container will slowly flow into the left one. After
the height of colored liquid is stabilized, the height of colored liquid in the left container becomes
h1,1, and the height of colored liquid in the right container becomes h2,1 = H − h1,1, as shown in
Figure 4c. The relative pressure of the enclosed compressed air in the left container relative to
ambient pressure becomes q1

q1 = ρg(h2,1 − h1,1) = ρg(H − 2h1,1). (1)

In addition, under the action of pressure q1, a blistering thin film with radius of a1 appears. This
is the first loading, i.e., the step 1 of loading operation.

4. Repeat the operations in 2 and 3, i.e., close valve 1 again and pour colored liquid with volume
πR2H into the right container and then open valve 1. After step i of loading operation, the colored
liquid with total volume iπR2H (i = 2, 3, 4, . . . , n) is poured into the right container, the height of
liquid in the left container becomes h1,i, and the height of liquid in the right container becomes
h2,i, and

h2,i = iH − h1,i. (2)

The relative pressure of the compressed air in the left container becomes qi

qi = ρg(h2,i − h1,i) = ρg(iH − 2h1,i). (3)

Under the action of pressure qi, the radius of the blistering thin film becomes ai, as shown in
Figure 4d.

5. After step n of loading operation, the radius of the blistering thin film is assumed to become a.
Record the height of the liquid in the two containers and the radius of the blistering thin film after
each step of loading operation, and open valve 2 to drain all the liquid in the right container to see
if the blistering thin film fully becomes flat. If the blistering thin film is quick and fully becomes
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flat, then this indicates that the blistering thin film works within the elastic range, otherwise the
results of this test are invalid.
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3. Energy Release Rate

In the pressurized blister test shown in Figures 3 and 4, based on the law of conversation of
energy the external work caused by the change of the potential energy of the colored liquid in the
two containers (which is denoted by UF) may be assumed to be completely converted into the energy
absorbed by the enclosed air due to being compressed (which is denoted by Ua), the elastic strain energy
stored in the blistering thin film (which is denoted by Uef), and the energy released on the delamination
region (which is denoted by Ud), that is UF =Ua +Uef +Ud. Suppose that the area of the delamination
region is denoted as S. Obviously, S is a function of the radius r of the circular delamination region,
that is S = π(r2

− R2
0) (in which R0 ≤ r ≤ a), hence 0 ≤ S(r) ≤ π(a2

− R2
0). The energy released on

the delamination region, Ud, depends on the size of the delamination region, in other words, Ud is a
function of the area of the delamination region S and may be denoted as Ud(S). It is not difficult to
understand that for the case of delamination of the coating thin film adhered uniformly to a rigid
substrate, Ud(S) can be expressed as a linear function of the area of the delamination region area S, that
is, Ud(S) = KS, in which K is a proportional coefficient. The adhesion strength can be quantified in
terms of the energy released on per unit delamination area [9], that is, the so-called energy release rate
(denoted by G). Therefore, the energy release rate for the case of delamination of the coating thin film
adhered uniformly to a rigid substrate can be written as

G =
dUd(S)

dS
= K. (4)
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Note that Ud = UF − Ua − Uef, and when r = a, S(a) = π(a2
− R2

0) and Ud(S(a)) = UF(a) − Ua(a) −
Uef(a), in which UF(a), Ua(a) and Uef(a) denote their values corresponding to r = a. Hence, from Ud(S) =

KS it is found that

K =
Ud(S(a))

S(a)
=

UF(a) −Ua(a) −Ue f (a)

π(a2 −R2
0)

. (5)

Therefore, the energy release rate here can finally be written as

G =
UF(a) −Ua(a) −Ue f (a)

π(a2 −R2
0)

. (6)

In this way, based on the experimental setup shown in Figures 3 and 4, the energy release rate here
can be determined with the measured values of the maximum radius a of the circular delamination
region and the height h1,i of the liquid in the left container after each step of loading operation.

However, the formula of the energy release rate presented in Sun et al. [9] is not accurate enough
and also not applicable when the deflection of the blistering thin film is relatively large, because the
well-known Hencky solution used in the derivation of the formula of the energy release rate is obtained
based on the above-mentioned assumptions or approximations (i)–(iii). In addition, there are some
errors in the derivation of the formula of the energy release rate in Sun et al. [9]. These errors will be
rectified in the following, and in order to obtain a more accurate formula of the energy release rate,
the external work UF(a), the energy Ua(a), and the elastic strain energy Uef(a) are respectively derived
as follow.

3.1. The External Work UF(a)

Since the liquid is poured into the right container by many times and the height of liquid in the
right container changes after the valve 1 is opened, the external work caused by the change of liquid
potential energy in each step of loading operation should be calculated separately, rather than the
calculation method in Sun et al. [9]. In the stable state after step i−1 of loading operation, the height of
liquid in the two containers are h1,i−1 and h2,i−1 respectively. While in step i of the loading operation,
the colored liquid with volume πR2H is poured into the right container, and the height of liquid in
the two containers are h1,i and h2,i after opening the valve 1. So, if the plane at the bottom of the
container is taken as the zero potential energy plane, the external work UF,i caused by the change of
liquid potential energy in the step i of loading operation can be written as

UF,i =
1
2
πρgR2h2

1,i−1 +
1
2
πρgR2(h2,i−1 + H)2

−
1
2
πρgR2h2

1,i −
1
2
πρgR2h2

2,i, (7)

where ρ denotes the density of the liquid in the container, g denotes the acceleration of gravity, R
denotes the inner radius of the two circular containers, and H denotes the height of the liquid added to
the right container in each step of loading operation. By means of Equation (2), Equation (7) gives

UF,i = 1
2πρgR2h2

1,i−1 +
1
2πρgR2[(i− 1)H − h1,i−1 + H]2 − 1

2πρgR2h2
1,i −

1
2πρgR2(iH − h1,i)

2

= πρgR2[h2
1,i−1 − h2

1,i − iH(h1,i−1 − h1,i)]
(8)

Suppose that the radius of the blister reaches a after n times loading operations, then the UF(a) can
be written as

UF(a) =
n∑

i=1
UF,i = πρgR2

n∑
i=1

[h2
1,i−1 − h2

1,i − iH(h1,i−1 − h1,i)]

= πρgR2(H
n−1∑
i=1

h1,i − nHh1,n − h2
1,n)

(9)
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3.2. The Energy Ua(a)

Since the loading operation is very slow in each step, the compression of the enclosed air in the
left container can be regarded as isothermal compression, where the internal energy of the enclosed air
remains unchanged. So, the energy Ua(a) absorbed when the air is compressed will be released into
the atmosphere in the form of heat energy. In the process of isothermal compression of the air in left
container, the temperature T of the air remains constant. So,

PV = NkT = constant, (10)

where P is the pressure of gas, V is the volume of gas, N is the number of gas molecules per unit
volume, and k is Boltzmann constant. Then, Ua(a) can be written as

Ua(a) = −
∫ Vn

V0
PdV = −NkT

∫ Vn

V0

1
V dV = NkT ln V0

Vn

= NkT ln H1
H1−h1,n

(11)

where V0 (V0 = πR2H1) and H1 are the initial volume and height of the air in left container, Vn

(Vn = πR2H1 −πR2h1,n) and h1,n are the volume of the air and the height of the colored liquid in left
container after the loading operation of step n.

3.3. The Elastic Strain Energy Uef(a)

When determining the elastic strain energy Uef(a) stored in the blistering thin film, the exact
analytical solution for the problem of axisymmetric deformation of the pressurized blistering thin film
should be obtained first. This problem can be regarded as the well-known Hencky problem, as shown
in Figure 5, whereby a transverse uniformly distributed loads q is applied onto the surface of a linearly
elastic, initially flat, peripherally fixed circular membrane with radius a. The analytical solution used
in Sun et al. [9] is exactly the well-known Hencky solution, where the above-mentioned assumptions
(i)–(iii) are adopted. By giving up the so-called small-rotation-angle assumption (i.e., the assumption
(i)), Sun et al. re-solved the well-known Hencky problem and obtained its power series solution [23],
and solved the problem of axisymmetric deformation of prestressed Föppl-Hencky membrane under
constrained deflecting [24]. Yang et al. [15] obtained the closed-form solution of the axisymmetric
deformation problem of prestressed membrane also by giving up the so-called small-rotation-angle
assumption. Recently, Sun et al. [25] presented a new closed-form solution of the well-known Hencky
problem by simultaneously giving up the assumptions (i) and (ii), but the assumption (iii) is still
where it is. So, it is necessary to take in account the effect of the deflection on the in-plane equilibrium
equation, and give up the approximations used in the geometric equation.Polymers 2020, 12, x FOR PEER REVIEW 8 of 24 
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Figure 5. Sketch of the circular membrane under transverse loads q.

Now, let us take a rotationally symmetric isolated-body with radius r (0 < r ≤ a) from the central
portion of the deformed membrane, with a view of studying its static equilibrium problem under the
joint action of loads q and the membrane force σrh acted on its boundary, as shown in Figure 6, where h
is thickness, σr is radial stress, θ is the slope angle of the deflected membrane.
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In the vertical direction perpendicular to the initially flat circular membrane, there are two vertical
forces, i.e., the total force πr2q (0 < r ≤ a) of the uniformly distributed loads q within radius r, and the
total vertical force 2πrσrh sinθ produced by the vertical component of the radial membrane force σrh.
So, the out-of-plane equilibrium equation can be written as,

2πrσrh sinθ = πr2q, (12)

where,

sinθ = 1/
√

1 + 1/ tan2 θ = 1/

√
1 + 1/(−

dw
dr

)
2
. (13)

Substituting Equation (13) into Equation (12), it is found that

1
2

rq

√
1 + 1/(−

dw
dr

)
2
= σrh. (14)

By taking in account the effect of the deflection on the in-plane equilibrium equation, a new
in-plane equilibrium equation is obtained, that is

d
dr

(rσr) − σt[1 + (
dw
dr

)
2
] = 0, (15)

where the term [1 + (dw/dr)2] represents the effect of deflection on the in-plane equilibrium equation
and σt is the circumferential stress. The detailed derivation of Equation (15) is shown in Appendix A.
Moreover, if the approximations adopted in the geometric equations are further given up, the geometric
equations may be written as [25]

er = [(1 +
du
dr

)
2
+ (

dw
dr

)
2
]

1/2

− 1 (16)

and
et =

u
r

, (17)

where er is the radial strain, et is the circumferential strain, and u is the radial displacement. Further, if
the change in membrane thickness is ignored, then the relations of the stress and strain may be written
as,

σr =
E

1− ν2 (er + νet) (18)

and
σt =

E
1− ν2 (et + νer), (19)
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where E is the Young’s modulus of elasticity and ν is the Poisson’s ratio. If substituting Equations (16)
and (17) into Equations (18) and (19), then it is found that

σr =
E

1− ν2 [

√
(1 +

du
dr

)
2
+ (

dw
dr

)
2
− 1 + ν

u
r
] (20)

and

σt =
E

1− ν2 [
u
r
+ ν

√
(1 +

du
dr

)
2
+ (

dw
dr

)
2
− ν]. (21)

By means of Equations (20) and (21), it is found that

u
r
=

1
Eh

(σth− νσrh). (22)

Substituting the u of Equation (22) into Equation (20) yields

(
1
E
σr −

ν
E
σt + 1)

2
− [

1
E

d
dr

(rσt) −
ν
E

d
dr

(rσr) + 1]
2
− (

dw
dr

)
2
= 0. (23)

The boundary conditions are

u
r
=

1
Eh

(σth− νσrh) = 0 at r = a (24)

and
w = 0 at r = a. (25)

Let us introduce the following dimensionless variables

Q =
aq
Eh

, W =
w
a

, U =
u
a

, Sr =
σr

E
, St =

σt

E
, x =

r
a

. (26)

By using Equation (26), Equations (14), (15) and (23) can be transformed into

(4S2
r − x2Q2)(

dW
dx

)
2
− x2Q2 = 0, (27)

d
dx

(xSr) − St[1 + (
dW
dx

)
2
] = 0 (28)

and

(Sr − νSt + 1)2
− [

d
dx

(xSt) − ν
d

dx
(xSr) + 1]

2
− (

dW
dx

)
2
= 0, (29)

and the boundary conditions, i.e., Equations (24) and (25), can be transformed into

U
x

= St − νSr = 0 at x = 1 (30)

and

W = 0 at x = 1. (31)

Expand W, Sr, and St into the power series of the x, i.e., let

Sr =
∞∑

i=0

bixi, (32)
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St =
∞∑

i=0

cixi (33)

and

W =
∞∑

i=0

dixi. (34)

After substituting Equations (32)–(34) into Equations (27)–(29), it can be found that, bi ≡ 0
(i = 1, 3, 5, · · · ), ci ≡ 0 (i = 1, 3, 5, · · · ) and di ≡ 0 (i = 1, 3, 5, · · · ), and the coefficients bi (i = 2, 4, 6, · · · ), ci
(i = 0, 2, 4, · · · ) and di (i = 2, 4, 6, · · · ) can be expressed into the polynomial with regard to the coefficient
b0, which can be found in Appendix B.

The coefficients b0 and d0, as the undetermined constants, can be determined by using the
boundary conditions Equations (30) and (31). From Equations (32) and (33), Equation (30) gives

∞∑
i=0

ci − ν
∞∑

i=0

bi = 0. (35)

From Equation (34), Equation (31) gives

d0 = −
∞∑

i=1

di. (36)

After substituting the expressions of bi and ci into Equation (35), we can obtain an equation
containing only b0, then the undetermined constant b0 can be determined. With this known b0, the other
undetermined constant d0 can be determined by substituting the expressions of di into Equation (36).
Further, with the known b0 and d0, all the coefficients bi, ci, and di can easily be determined, and the
expression of Sr, St, and W can thus be presented.

From Equations (26) and (36), Equation (34) can be written as

w(r) = a
∞∑

i=1

di[(
r
a
)

i
− 1]. (37)

Then, the volume under the blistering thin film can be written as

V =

∫ a

0
2πrw(r)dr = 2πa2

∫ a

0

∞∑
i=1

di[(
r
a
)

i+1
−

r
a
]dr = 2πa3

∞∑
i=1

di(
1

i + 2
−

1
2
). (38)

After n times loading operations were performed, the pressure q applied on the blistering thin
film is

q = ρg(h2,n − h1,n) = ρg(nH − 2h1,n). (39)

Based on the research findings [26,27], the elastic strain energy stored in the blistering thin film
with the volume V under the loads q should be equal to Vq/4. Hence, Equations (38) and (39) give

Ue f (a) =
1
4

Vq =
1
2
πρga3(nH − 2h1,n)

∞∑
i=1

di(
1

i + 2
−

1
2
). (40)
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3.4. The Accurate Formula of Energy Release Rate

Substituting Equations (9), (11) and (40) into Equation (6), it can be obtained that

G =
ρgR2

a2−R2
0
(H

n−1∑
i=1

h1,i − nHh1,n − h2
1,n) −

NkT
π(a2−R2

0)
ln H1

H1−h1,n

−
ρga3

2(a2−R2
0)
(nH − 2h1,n)

∞∑
i=1

di(
1

i+2 −
1
2 )

(41)

It can be seen from the Equation (41) that, in this pressurized blister test, the energy release rate G
can be determined by measuring the radius a of the final blistering thin film and the height h1,i (i = 1, 2,
3, . . . , n) of colored liquid in the left circular container after each step of loading operation.

4. Results and Discussions

4.1. Improvements on Experimental Setup and Theoretical Derivation of Energy Release Rate

Compared with the experimental setup before improved, the two circular containers in the
improved experimental setup have the same inner radius, and a valve is added to the connecting pipe
to eliminate the influence of liquid fluctuation caused by pouring liquid into the right container. As it
is known, the pressure q in the compressed air is independent of the inner radii of the two circular
containers, but the inner radii of the two circular containers have a direct effect on the relationship
between the heights of colored liquid in these two containers [22]. Therefore, if these two containers are
designed with the same inner radius, it will not only have no effect on the pressure q in the compressed
air, but also be helpful for simplifying following derivation process of the energy release rate, because
the rising height of the colored liquid in the left container is exactly equal to the descending height of
the colored liquid in the right container, as shown in Equation (2).

In the theoretical derivation of the energy release rate, some improvements are made and some
errors in previous work are also revised, the main improvements and revisions are as follows:

1. The experimental setup was improved to make it more reasonable.
2. The work UF(a) is obtained by summing up the work UF,i caused by the change of liquid potential

energy in each step of loading operation.
3. The compression of the enclosed air in the left circular container can be regarded as isothermal

compression. So, the energy Ua(a) absorbed when the enclosed air is compressed will be released
into the atmosphere in the form of heat energy, instead of being stored in the enclosed air. From
this point of view, the energy Ua(a) can be obtained by calculating the energy released when the
enclosed air is isothermal compressed.

4. The formula used to calculate the volume V under the blistering thin film is revised.
5. More importantly, a more accurate formula for determining the strain energy Uef(a) stored in the

blistering film is derived out based on the obtained refined closed-form solution of the problem
of axisymmetric deformation of the pressurized blistering thin film. Compared with the existing
solutions of the well-known Hencky solution, the assumptions or approximations used in the
out-of-plane equilibrium equation, in-plane equilibrium equation and geometric equation were
simultaneously given up during the derivation of the presented refined closed-form solution.

6. Based on the above-mentioned improvements and revisions, a new and more refined theory for
characterizing the adhesion between elastic coatings and rigid substrates is finally developed.

4.2. Experimental Verification and Discussion on the Refined Closed-Form Solution

The validity of the refined closed-form solution presented in this paper is of great important to
determine the elastic strain energy Uef(a) stored in the blistering thin film. Next, an experiment was
conducted to demonstrate the validity of the presented refined closed-form solution. In addition, the
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influence of the above-mentioned assumptions (i)–(iii) on the analytic solution of the well-known
Hencky problem was also discussed.

A polymer thin film with thickness h =0.7 mm, Young’s modulus of elasticity E =1.4 MPa,
Poisson’s ratio ν =0.4 was clamped by two plexiglass pipes with inner radius 70 mm and wall thickness
5 mm, as shown in Figure 7a, where the non-contact laser displacement sensor was used to measure
the deflection of the deflected thin film. After adding colored liquid (tap water mixed with a little red
ink, the weight mix ratio is about 1000:1) into the upper plexiglass pipe, the polymer thin film was
deformed and laterally deflected. The deflected polymer thin film, under different amounts of the
colored liquid, is shown in Figure 7b, where q = 0.001 MPa and q = 0.0035 MPa denote the average
loads applied onto the surface of the thin film (calculated by 1.570 kg and 5.495 kg, which are the
weights of the added colored liquid), and the measured maximum deflections of the thin film are
18.66 mm (corresponding to 1.570 kg) and 29.17 mm (corresponding to 5.495 kg). The colored liquid of
1.570 kg is a cylinder with height 102 mm and radius 70 mm, and the colored liquid of and 5.495 kg is a
cylinder with height 357 mm and radius 70 mm.
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Figure 7. Photographs of an experiment on the large deflection deformation of a polymer thin film:
(a) Experimental setup; (b) The deflected polymer thin film under different loads.

Figure 8 shows the variations of the deflection w of the thin film with r when q takes 0.001 MPa and
0.0035 MPa respectively, where the solid lines represent the experimental results, the dash-dotted lines
represent the results calculated by the refined closed-form solution presented here, and the dashed
lines by the well-known Hencky solution (i.e., the solution used in Sun et al. [9]). From Figure 8 it
can be seen that, the difference between the experimental results and the results calculated by the
well-known Hencky solution is greater than that between the experimental results and the results
calculated by the refined closed-form solution presented here, especially when q = 0.0035 MPa. This
indicates that the calculation accuracy of the solution presented here is effectively improved due to the
abandonment of the above-mentioned assumptions (i)–(iii) which are adopted during the derivation of
the well-known Hencky solution. However, such a conclusion, it should also be noted, is obtained
based on the experimental results of the experimental setup shown in Figure 7. The loading mode of
the thin film in Figure 7 differs obviously from that in Figures 3 and 4. The compressed air is applied
onto the surface of thin film in Figures 3 and 4, resulting in the always uniformly distributed loads
acting on the surface of the thin film. Meanwhile, in Figure 7, the colored liquid acts directly on the
surface of the thin film, resulting in no uniformly distributed loads acting on the surface of the thin
film (see Figure 7b). For example, for q = 0.0035 MPa the actual height of the added colored liquid is
measured to be 369.17 mm (the edge height 340 mm, the maximum deflection 29.17 mm) at the center
of the circular thin film. While the loads used for the solutions, q = 0.0035 MPa, corresponds to the
colored liquid of 5.495 kg, and corresponds to a cylinder with height 357 mm and radius 70 mm. The
resulting loads error at the center of the circular thin film is about (369.17–357)/357 = 3.41%. Since
this error is small, it does not cause qualitative change. Therefore, based on the results of the simple
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experiment conducted, it may be concluded that the refined closed-form solution presented in this
paper is basically reliable.
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In order to investigate the influence of the above-mentioned assumptions (i)–(iii) on the analytic
solution of the well-known Hencky problem, the calculation results of the deflection of the polymer
thin film obtained by using four existing analytical solutions of the well-known Hencky problem
are presented, as shown in Figure 9, where the dashed lines represent the results obtained by the
well-known Hencky solution (i.e., the solution used in Sun et al. [9], in which assumptions (i)–(iii) were
all adopted), the dotted lines by the solution presented in Sun et al. [23] (only assumption (i) was
given up), the dash-dotted lines by the solution presented in Sun et al. [25] (assumptions (i) and (ii)
were simultaneously given up), and the solid lines by the refined closed-form solution presented
here (assumptions (i)–(iii) were all given up). From Figure 9, it can be seen that the dashed line,
dotted line, and the dash-dotted line are very close to the solid line when q takes 0.0001 MPa, which
also demonstrates the validity of the refined closed-form solution presented here. Moreover, when
q takes 0.001 MPa, the dotted line and dash-dotted line are still very close to the solid line, but the
difference between the dashed line and solid line emerges; and this difference becomes more and
more obvious when q takes 0.01 MPa. It can also be seen from Figure 9 that, compared with the
dashed line, the dotted line and dash-dotted line is closer to the solid line when q takes 0.01 MPa,
which means that the accuracy of the analytical solution of the well-known Hencky problem can be
improve by giving up assumptions (i) and (ii); but compared with the dotted line, the accuracy of
the dash-dotted line is reduced. Therefore, in order to obtain a more refined analytical solution, the
assumptions (i)–(iii) all need to be given up, such that the elastic strain energy Uef(a) stored in the film
can be calculated accurately.
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In addition, from Equations (32) and (34) it is found that, the coefficients b0 and d0 have important
influence on the deflection and radial stress of the membrane at x = 0, respectively. So, b0 and d0 are
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two very important parameters which are determined by the boundary conditions. When determining
the undetermined constants b0 and d0, it is found that the values of b0 and d0 are only related to ν and
Q. So, for the convenience of application, we presented the variations of b0 and d0 with Q when ν takes
different values, as shown in Figures 10 and 11. It can be seen from Figures 10 and 11 that, b0 and d0

increase with the increase of Q, and under the same Q, d0 decreases with the increase of v while b0

increases with the increase of ν. In addition, it can also be seen that, compared with b0, d0 is more
sensitive to ν, i.e., the influence of Poisson’s ratio ν on the deflection of membrane is greater than that
on the radial stress of membrane.
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4.3. The error of Uef(a) Brought by the Assumptions Used in the Well-Known Hencky Solution

In Sun et al. [9], the well-known Hencky solution is used to determine the elastic strain energy
Uef(a) stored in the blistering film. However, the assumptions (i)–(iii) adopted in the well-known
Hencky solution will inevitably bring errors to the calculation results of the elastic strain energy Uef(a).
During the derivation of the refined closed-form solution presented here, the assumptions (i)–(iii)
were all given up. So, the refined closed-form solution presented here should be more accurate than
the well-known Hencky solution, and the result of the elastic strain energy Uef(a)calculated by the
refined closed-form solution presented here should also be more accurate than that calculated by the
well-known Hencky solution.

Suppose that a thin rubber film with thickness 0.06 mm, Young’s modulus of elasticity 7.84 MPa,
Poisson’s ratio 0.47 is adhered to a rigid substrate, and a blistering thin film with radius of 20 mm
appears when a loads q is applied on the thin film. When q takes different values, the coefficients of
the expression of W (i.e., di (i = 2,4,6, . . . )) in the well-known Hencky solution and in the refined
closed-form solution presented here are listed Table 1. Then the elastic strain energy Uef(a) can be
obtained by using Equation (40). From Table 1 it can be seen that, the elastic strain energy Uef(a)
calculated by the well-known Hencky solution is smaller than that by the refined closed-form solution
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presented here, which will make the energy release rate G of delamination interfaces larger. It can
also be found from Table 1 that, the difference between the calculated results of the elastic strain
energy Uef(a) increase with the increase of the applied loads q. The errors of the Uef(a) brought by the
assumptions adopted in the well-known Hencky solution are −1.5%, −6.4%, and −18.2% when q takes
0.001, 0.01, and 0.03 MPa, respectively. So, when the applied loads q is relatively large, the error of the
Uef(a) brought by the assumptions or approximations adopted in the well-known Hencky solution
cannot be ignored, and the formula of the Uef(a) obtained based on the well-known Hencky solution
will gradually lose its effectiveness with the increase of the applied loads.

Table 1. The coefficients di and the elastic strain energy Uef(a) stored in blistering film.

Analytic Solution q(MPa) di (i = 2, 4, 6, . . . ) Uef(a) (×10−3 J)
d2 d4 d6 d8 d10 d12

Hencky solution
0.001 −0.1915 −0.0158 −0.0029 −0.0007 −0.0002 −0.00004 0.6862
0.01 −0.4126 −0.0341 −0.0063 −0.0014 −0.0004 −0.0001 14.7842
0.03 −0.5951 −0.0492 −0.0090 −0.0020 −0.0005 −0.0001 63.9382

Refined closed-form solution
0.001 −0.1913 −0.0162 −0.0039 −0.0012 −0.0005 −0.0002 0.6970
0.01 −0.4237 −0.0435 −0.0074 −0.0031 −0.0019 −0.0011 15.7963
0.03 −0.6927 −0.1166 0.0565 0.0550 −0.0302 −0.0605 78.1752

5. Concluding Remarks

The work reported here concerns the improvement in adhesion characterization theory based on
the proposed pressurized blister test technique. The following are some conclusions made through
this study.

The experimental setup for pressurized blister test has appropriately been improved, which results
in the advantage of rationality and convenience in measurement and loading operation, in comparison
with that in the previous work.

The static problem of mechanical behaviour of the blistering thin film is still simplified as the
well-Known Hencky problem, as the previous work did, but the well-Known Hencky problem has
here been reformulated, giving up some assumptions or approximations adopted in the derivation
of the existing solutions (especially the well-Known Hencky solution), resulting in a new and more
refined closed-form solution in comparison with the all existing solutions.

The new and more refined closed-form solution is, by way of the conducted experiment, proven to
be reliable, and thus the developed, new, and more refined theory for characterizing adhesion between
elastic coatings and rigid substrates, which is derived out by this new and more refined closed-form
solution, should also be reliable to some extent.
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Nomenclature

UF external work caused by the change of the potential energy of the liquid
UF(a) the UF when r = a
Ua energy absorbed by the enclosed air
Ua(a) the Ua when r = a
Uef elastic strain energy stored in the blistering thin film
Uef(a) the Uef when r = a
Ud energy released on the delamination region
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G energy release rate
K proportional coefficient
S area of the circular delamination region
a radius of the circular delamination region
R0 radius of the hole in the rigid substrate
R inner radius of the container
H1 initial height of the air in left container
H height of the liquid added to the right container each time
h1,i height of liquid in the left container after step i of loading operation
h2,i height of liquid in the right container after step i of loading operation
ρ density of the liquid in the container
g acceleration of gravity
P pressure of gas
V volume of gas
N number of gas molecules per unit volume
K Boltzmann constant
T temperature of gas
V0 initial volume of the air in left container
Vn volume of the air in left container after the step n of loading operation
r radial coordinate
w transversal displacement
u radial displacement
h thickness of the membrane
θ slope angle of the deflected membrane
σr radial stress
σt circumferential stress
er radial strain
et circumferential strain
E Young’s modulus of elasticity
ν Poisson’s ratio
x dimensionless form of r
Q dimensionless form of q
W dimensionless form of w
U dimensionless form of u
Sr dimensionless form of σr

St dimensionless form of σt

bi, ci, di coefficients of Sr, St and W

Appendix A. Derivation of the In-Plane Equilibrium Equation

Taking the geometric middle plane of the undeformed circular membrane as the reference and taking the
center point of the geometric middle plane as the coordinate origin, then the cylindrical coordinate system O− rϕw
is established. A micro element ABCD is taken from the deformed membrane to study the static equilibrium
problem parallel to the radial coordinate direction, as shown in Figure A1, where A′B′C′D′ is the projection of
ABCD on the polar coordinates plane, σr is the radial stress, σt is the circumferential stress, θ is the angle between
the radial stress and the polar coordinate plane (i.e., the slope angle of the deflected membrane).
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In the radial coordinate direction, there are four radial forces on the micro element ABCD, i.e., the total forces

F1 and F2 in the radial direction produced by the radial component of σr acting on the edge
_

AC and
_

BD of micro
element, and the total forces F3 and F4 in the radial direction produced by the radial component of σt acting on the

edge
_

AB and
_

CD of micro element, respectively. Moreover, the equilibrium equation of the micro element ABCD
in the radial direction can be written as

F1 − F2 + F3 + F4 = 0. (A1)

F1 and F2 can be determined from the A′B′C′D′, as shown in Figure A2,
_

A′C′ is divided into n small arcs by

points l1, l2, l3, . . . , ln−1, where om is the angular bisector of ∠A′oC′. Supposing
_

lili−1 is one of those small arcs, βi

is the angle between om and the radial stress on the small arc
_

lili−1, ∆si is the length of the small arc
_

lili−1, then F1
can be written as
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F1 ≈

n∑
i=1

σr(r)h∆si cosθ(r) cos βi =
n∑

i=1

σr(r)h∆βir cosθ(r) cos βi. (A2)

Supposing µ is the maximum value of ∆βi, that is

µ = max
{
∆β1, ∆β2, ∆β3, . . . , ∆βn−1

}
. (A3)
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When µ tends to zero, taking the limit of Equation (A2) yields

F1 = lim
µ→0

n∑
i=1

σr(r)h∆βir cosθ(r) cos βi. (A4)

It is obvious that Equation (A4) is the definite integral of function σr(r)hr cosθ(r) cos β of variable β on
interval [−∆ϕ/2, ∆ϕ/2], so Equation (A4) can be written as

F1 = σr(r)hr cosθ(r)
∫ ∆ϕ/2

−∆ϕ/2
cos βdβ = 2σr(r)hr cosθ(r) sin

∆ϕ
2

. (A5)

With the same approach, F2 can be written as

F2 = 2σr(r + ∆r)h(r + ∆r) cosθ(r + ∆r) sin
∆ϕ
2

. (A6)

Since the micro element is infinitesimal, we can assume that the length of curve
_

AB is approximately equal to

the length of straight line AB, and σt(r) changes linearly from σt(r) to σt(r + ∆r) on edge
_

AB and
_

CD. Therefore,
F3 and F4 can be written as

F3 = F4 =
σt(r) + σt(r + ∆r)

2
h
√
[w(r) −w(r + ∆r)]2 + (∆r)2 sin

∆ϕ
2

. (A7)

Substituting Equations (A5)–(A7) into Equation (A1), it is found that

σr(r + ∆r)h(r + ∆r) cosθ(r + ∆r) − σr(r)hr cosθ(r)

−
σt(r)+σt(r+∆r)

2 h
√
[w(r) −w(r + ∆r)]2 + (∆r)2 = 0

(A8)

It is assumed that θ(r) � θ(r + ∆r), then Equation (A8) can be written as

σr(r + ∆r)h(r + ∆r) cosθ(r) − σr(r)hr cosθ(r)

−
σt(r)+σt(r+∆r)

2 h
√
[w(r) −w(r + ∆r)]2 + (∆r)2 = 0

(A9)

Substituting cosθ = 1/
√

1 + tanθ2 = 1/
√

1 + (−w′)2 into Equation (A9), it yields

σr(r + ∆r)h(r + ∆r) 1√
1+[−w′(r)]2

− σr(r)hr 1√
1+[−w′(r)]2

−
σt(r)+σt(r+∆r)

2 h
√
[w(r) −w(r + ∆r)]2 + (∆r)2 = 0

(A10)

Expand σr(r + ∆r), σt(r + ∆r) and w(r + ∆r) to the power series of the r, and neglect the terms that contain
the second and higher orders of ∆r  σr(r + ∆r) = σr(r) + σ′r(r)∆r

σt(r + ∆r) = σt(r) + σ′t(r)∆r
w(r + ∆r) = w(r) + w′(r)∆r

. (A11)

Substituting Equation (A11) into Equation (A10) and neglecting the terms that contain the second orders of
∆r yields

[σ′r(r) · r + σr(r)]√
1 + [−w′(r)]2

−
[2σt(r) + σ′t(r)∆r]

2

√
[−w′(r) −

1
2!

w′′ (r)∆r]
2
+ 1 = 0. (A12)

When ∆r→ 0 , it is found that

[σ′r(r) · r + σr(r)] − σt(r)
{
1 + [−w′(r)]2

}
= 0. (A13)
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Equation (A13) can also be written as

d
dr

(rσr) − σt[1 + (
dw
dr

)
2
] = 0. (A14)

Equation (A14) is the modified in-plane equilibrium equation established by taking in account the effect of
the deflection of membrane, i.e., the Equation (15) used in this paper.

Appendix B.

Expressions of bi:
b1 = b3 = b5 = b7 = b9 = . . . = 0

b2 =
1
64

Q2[(2ν2 + 4ν− 6)b2
0 + (−2ν− 6)b0 + 1]

(νb0 − b0 − 1)b2
0

b4 = Q4

12288(νb0−b0−1)3b5
0

[(4ν5 + 20ν4
− 24ν3

− 88ν2 + 148ν− 60)b5
0 + (−12ν4

− 72ν3 + 264ν

−180)b4
0 + (4ν3 + 108ν2 + 60ν− 172)b3

0 + (6ν2
− 64ν− 38)b2

0 + (−7ν+ 21)b0 + 2]

b6 = − Q6

4718592b8
0(νb0−b0−1)5 [(48ν8 + 336ν7

− 432ν6
− 2544ν5 + 4080ν4 + 3312ν3

− 10896ν2

+8812ν− 2016)b8
0 + (−240ν7

− 1920ν6 + 240ν5 + 12960ν4
− 7440ν3

− 24000ν2 + 30480ν
−10080)b7

0 + (412ν6 + 5696ν5 + 396ν4
− 20704ν3

− 3404ν2 + 36384ν− 18780)b6
0 + (−440ν5

−9400ν4
− 432ν3 + 16016ν2 + 9064ν− 14808)b5

0 + (196ν4 + 10044ν3
− 396ν2

− 7084ν− 2760)b4
0

+(64ν3
− 6508ν2 + 328ν+ 1508)b3

0 + (−139ν2 + 2492ν− 365)b2
0 + (70ν− 414)b0 − 13]

b8 = − Q8

3019898880b11
0 (νb0−b0−1)7 [(3360ν10 + 24960ν9

− 80160ν8
− 199680ν7 + 840000ν6

−349440ν5
− 2103360ν4 + 4085760ν3

− 3354720ν2 + 1353600ν− 220320)b11
0 + (−23520ν9

−198240ν8 + 362880ν7 + 1760640ν6
− 4119360ν5

− 1673280ν4 + 13050240ν3
− 15550080ν2

+7932960ν− 1542240)b10
0 + (1144ν9 + 10392ν8 + 972096ν7

− 998912ν6
− 5469840ν5

+7437936ν4 + 10223488ν3
− 26362176ν2 + 18746712ν− 4560840)b9

0 + (3536ν8 + 159280ν7

−2551472ν6 + 1399344ν5 + 9325040ν4
− 6036976ν3

− 17004560ν2 + 21988752ν− 7282944)b8
0

+(−11700ν7
− 575948ν6 + 4167164ν5

− 1060860ν4
− 9371740ν3 + 1693660ν2 + 11673108ν

−6513684)b7
0 + (15080ν6 + 979400ν5

− 4425584ν4 + 382096ν3 + 5710216ν2 + 148136ν
−2809344)b6

0 + (−7734ν5
− 1038294ν4 + 3202252ν3

− 52244ν2
− 2084822ν− 19158)b5

0
+(−2064ν4 + 715572ν3

− 1522436ν2
− 9076ν+ 357204)b4

0 + (5851ν3
− 319097ν2 + 451169ν

−24635)b3
0 + (−3872ν2 + 83624ν− 61360)b2

0 + (1249ν− 9867)b0 − 170]

b10 = Q10

2899102924800b14
0 (νb0−b0−1)9 [(22400ν14 + 409920ν13 + 1014720ν12

− 9726080ν11

−3521280ν10+86385600ν9
− 111330240ν8

− 171037440ν7 + 582744960ν6
− 550034240ν5

+35112000ν4 + 348136320ν3
− 304353280ν2 + 112365120ν− 16188480)b14

0 + (−201600ν13

−3890880ν12
− 13023360ν11 + 74511360ν10 + 106202880ν9

− 671267520ν8 + 330704640ν7

+1870041600ν6
− 3374663040ν5 + 1575645120ν4 + 1259637120ν3

− 1873589760ν2

+865589760ν− 145696320)b13
0 + (877424ν12 + 13856448ν11 + 97175520ν10

− 341615296ν9

−489544432ν8 + 2072814464ν7 + 273949760ν6
− 6299616640ν5 + 6738156176ν4

− 14196288ν3

−4216050208ν2 + 2722935872ν− 558742800)b12
0 + (−1833472ν11

− 28624640ν10
− 377462272ν9

+970592000ν8 + 1233044480ν7
− 3745627648ν6

− 2152600576ν5 + 10025887232ν4

−5730388480ν3
− 3346656000ν2 + 4325224960ν− 1171555584)b11

0 + (2530256ν10 + 27659168ν9

+948859856ν8
− 1906270080ν7

− 2010922592ν6 + 4592590016ν5 + 3483742752ν4

−8686119296ν3 + 1747844240ν2 + 3209060512ν− 1408974832)b10
0 + (−2272896ν9 + 10991840ν8

−1652145088ν7 + 2664400960ν6 + 2358232384ν5
− 4169356544ν4

− 2792458560ν3

+4314276288ν2 + 146218560ν− 877886944)b9
0 + (1293024ν8

− 83384976ν7 + 2090074736ν6

−2716072144ν5
− 2029579664ν4 + 2826419792ν3 + 1222698832ν2

− 1193075440ν
−118374160)b8

0 + (−412456ν7 + 144241880ν6
− 1941687272ν5 + 2014558744ν4 + 1251889736ν3

−1368033976ν2
− 231963960ν+ 131407304)b7

0 + (223816ν6
− 151574252ν5 + 1326402684ν4

−1088660824ν3
− 512170784ν2 + 437971268ν− 12191908)b6

0 + (−430984ν5 + 108223300ν4

−651169928ν3 + 410820848ν2 + 124004176ν− 68861812)b5
0 + (514053ν4

− 53453864ν3

+219557418ν2
− 101677512ν− 8835455)b4

0 + (−350854ν3 + 17631250ν2
− 45524858ν

+12106846)b3
0 + (145077ν2

− 3525540ν+ 4378799)b2
0 + (−34588ν+ 326224) + 3700]
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Expressions of ci:
c1 = c3 = c5 = c7 = c9 = . . . = 0

c0 = b0

c2 =
1
64

Q2[(6ν2
− 4ν− 2)b2

0 + (−6ν− 2)b0 + 3]

b2
0(νb0 − b0 − 1)

c4 = Q4

12288b5
0(νb0−b0−1)3 [(20ν5 + 4ν4

− 120ν3 + 136ν2
− 28ν− 12)b5

0 + (−60ν4
− 72ν3 + 288ν2

−120ν− 36)b4
0 + (20ν3 + 204ν2

− 180ν− 44)b3
0 + (30ν2

− 128ν+ 2)b2
0 + (−35ν+ 57)b0 + 10]

c6 = − Q6

4718592b8
0(νb0−b0−1)5 [(336ν8 + 48ν7

− 3024ν6 + 2928ν5 + 5520ν4
− 11376ν3 + 6672ν2

−816ν− 288)b8
0 + (−1680ν7

− 1920ν6 + 13200ν5
− 1440ν4

− 29040ν3 + 27840ν2
− 5520ν

−1440)b7
0 + (2884ν6 + 11072ν5

− 28332ν4
− 8992ν3 + 42988ν2

− 18336ν− 1284)b6
0

+(−3080ν5
− 21448ν4 + 32688ν3 + 15344ν2

− 27560ν+ 4056)b5
0 + (1372ν4 + 27108ν3

−25812ν2
− 12148ν+ 9480)b4

0 + (448ν3
− 19348ν2 + 9784ν+ 4508)b3

0 + (−973ν2 + 8228ν
−3131)b2

0 + (490ν− 1458)b0 − 91]

c8 = − Q8

3019898880b11
0 (νb0−b0−1)7 [(30240ν10

− 44160ν9
− 299040ν8 + 814080ν7 + 33600ν6

−2607360ν5 + 4186560ν4
− 3010560ν3 + 988320ν2

− 67200ν− 24480)b11
0 + (−211680ν9

+97440ν8 + 2190720ν7
− 3507840ν6

− 3743040ν5 + 14508480ν4
− 14797440ν3 + 6276480ν2

−641760ν− 171360)b10
0 + (10296ν9 + 435928ν8 + 1203264ν7

− 7780608ν6 + 5382640ν5

+15869424ν4
− 29083008ν3 + 17070016ν2

− 2601192ν− 506760)b9
0 + (31824ν8

− 320080ν7

−5196848ν6 + 14270896ν5
− 554640ν4

− 27132784ν3 + 25800560ν2
− 6171632ν− 727296)b8

0
+(−105300ν7

− 1026732ν6 + 10986076ν5
− 15582940ν4

− 7180860ν3 + 22791740ν2
− 9742028ν

−139956)b7
0 + (135720ν6 + 2833800ν5

− 13212656ν4 + 10242064ν3 + 8499144ν2
− 9857176ν

+1359104)b6
0 + (−69606ν5

− 3657446ν4 + 10626668ν3
− 4514996ν2

− 4646598ν+ 2261978)b5
0

+(−18576ν4 + 2798548ν3
− 5445924ν2 + 1057516ν+ 1147636)b4

0 + (52659ν3
− 1342273ν2

+1770921ν− 284115)b3
0 + (−34848ν2 + 368616ν− 257840)b2

0 + (11241ν− 44803)b0 − 1530]

c10 = − Q10

2899102924800b14
0 (νb0−b0−1)9 [(246400ν14 + 1821120ν13

− 8460480ν12
− 12906880ν11

+93515520ν10
− 81950400ν9

− 236792640ν8 + 611976960ν7
− 492589440ν6

− 49147840ν5

+376824000ν4
− 280452480ν3 + 85227520ν2

− 5839680ν− 1471680)b14
0 + (−2217600ν13

−18607680ν12 + 57536640ν11 + 173698560ν10
− 667941120ν9 + 69612480ν8 + 2200746240ν7

−3307046400ν6 + 1126258560ν5 + 1568589120ν4
− 1822826880ν3 + 701245440ν2

− 65802240ν
−13245120)b13

0 + (9651664ν12 + 72896448ν11
− 71144160ν10

− 1119267776ν9 + 2334557488ν8

+1241451904ν7
− 7695302720ν6 + 6999898240ν5 + 694820656ν4

− 4653734208ν3

+2633550112ν2
− 412307648ν− 35070000)b12

0 + (−20168192ν11
− 188320000ν10

− 269349632ν9

+3675105280ν8
− 4655667200ν7

− 5325813248ν6 + 14630393344ν5
− 7433028608ν4

−4361576960ν3 + 5412468480ν2
− 1487153920ν+ 23110656)b11

0 + (27832816ν10 + 263480608ν9

+1578408496ν8
− 7878679680ν7 + 5949022688ν6 + 10909049536ν5

− 17558841888ν4

+4055022464ν3 + 5381205040ν2
− 3057657568ν+ 331157488)b10

0 + (−25001856ν9

−160093280ν8
− 3755607488ν7+11562032960ν6

− 4672981696ν5
− 14016774784ν4

+14067898560ν3
− 553288512ν2

− 3242293440ν+ 796109536)b9
0 + (14223264ν8

− 177285456ν7

+5772680176ν6
− 12292371344ν5 + 1847905136ν4 + 11989787152ν3

− 7398538288ν2

−610917680ν+ 854517040)b8
0 + (−4537016ν7 + 541371400ν6

− 6112123192ν5 + 9363854984ν4

+258573976ν3
− 6649831976ν2 + 2412668760ν+ 190023064)b7

0 + (2461976ν6
− 676309972ν5

+4625467524ν4
− 5212862504ν3

− 553817344ν2 + 2307859708ν− 492799388)b6
0 + (−4740824ν5

+527632460ν4
− 2460623128ν3 + 2014471888ν2 + 250199216ν− 404354012)b5

0 + (5654583ν4

−275673784ν3 + 889432878ν2
− 523295832ν− 3650965)b4

0 + (−3859394ν3 + 94353350ν2

−194684158ν+ 65094986)b3
0 + (1595847ν2

− 19345020ν+ 19427029)b2
0

+(−380468ν+ 1824464)b0 + 40700]

Expressions of di:
d1 = d3 = d5 = d7 = d9 = . . . = 0

d2 = −
1
4

Q
b0
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d4 =
1

512

Q3[(2ν2
− 4ν+ 2)b2

0 + (−2ν+ 2)b0 + 1]

b4
0(νb0 − b0 − 1)

d6 = − Q5

147456b0
7(νb0−b0−1)3 [(8ν5

− 128ν4 + 240ν3
− 32ν2

− 184ν+ 96)b5
0 + (−24ν4 + 360ν3

− 360ν2

−264ν+ 288)b4
0 + (44ν3

− 420ν2 + 132ν+ 244)b3
0 + (−42ν2 + 232ν+ 2)b2

0 + (22ν− 60)b0 − 5]

d8 = − Q7

75497472b10
0 (νb0−b0−1)5 [(3216ν7

− 15408ν6 + 24912ν5
− 6000ν4

− 29520ν3 + 39024ν2

−20112ν+ 3888)b8
0 + (−16080ν6 + 60960ν5

− 63600ν4
− 33600ν3 + 114000ν2

− 81120ν
+19440)b7

0 + (−428ν6 + 38288ν5
− 108684ν4 + 60416ν3 + 94396ν2

− 124176ν+ 40188)b6
0

+(1336ν5
− 53608ν4 + 109296ν3

− 19600ν2
− 80936ν+ 43512)b5

0 + (−2096ν4 + 47964ν3

−65748ν2
− 4012ν+ 23892)b4

0 + (1948ν3
− 27136ν2 + 22492ν+ 2696)b3

0
+(−1117ν2 + 9128ν− 3815)b2

0 + (370ν− 1410)b0 − 55]

d10 = Q9

60397977600b13
0 (νb0−b0−1)7 [(1600ν11 + 72480ν10

− 960960ν9 + 3537120ν8
− 4771200ν7

−880320ν6 + 9475200ν5
− 9445440ν4+1308480ν3 + 3600800ν2

− 2431680ν+ 493920)b11
0

+(−11200ν10
− 518560ν9+6208160ν8

− 18551680ν7 + 14846720ν6 + 21008960ν5
− 45317440ν4

+20800640ν3 + 11641280ν2
− 13564320ν2+3457440)b10

0 + (23336ν9 + 1969928ν8
− 19393216ν7

+44830592ν6
− 13689520ν5

− 66084016ν4 + 71105792ν3
− 1117504ν2

− 27499192ν
+9853800)b9

0 + (−17456ν8
− 4713840ν7 + 37036272ν6

− 63503984ν5
− 7305840ν4 + 89499696ν3

−45688880ν2
− 19459152ν+ 14153184)b8

0 + (−33980ν7+7727068ν6
− 47283244ν5 + 57453900ν4

+25152780ν3
− 62541740ν2 + 10101212ν+ 9424004)b7

0 + (116760ν6
− 8919720ν5+41681104ν4

−34006096ν3
− 21915336ν2 + 23022584ν+ 20704)b6

0 + (−172946ν5 + 7335694ν4
− 25480732ν3

+12969284ν2 + 9123182ν− 3774482)b5
0 + (159544ν4

− 4242372ν3 + 10451396ν2
− 2963324ν

−1562044)b4
0 + (−97581ν3 + 1657497ν2

− 2644289ν+ 355355)b3
0 + (39292ν2

− 396104ν
+31600)b2

0 + (−9469ν+ 44047)b0 + 1050]
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