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Abstract: The rise of three-dimensional bioprinting technology provides a new way to fabricate
in tissue engineering in vitro, but how to provide sufficient nutrition for the internal region of the
engineered printed tissue has become the main obstacle. In vitro perfusion culture can not only provide
nutrients for the growth of internal cells but also take away the metabolic wastes in time, which is an
effective method to solve the problem of tissue engineering culture in vitro. Aiming at user-defined
tissue engineering with internal vascularized channels obtained by three-dimensional printing
experiment in the early stage, a simulation model was established and the in vitro fluid–structure
interaction finite element analysis of tissue engineering perfusion process was carried out. Through
fluid–structure interaction simulation, the hydrodynamic behavior and mechanical properties of
vascularized channels in the perfusion process was discussed when the perfusion pressure, hydrogel
concentration, and crosslinking density changed. The effects of perfusion pressure, hydrogel
concentration, and crosslinking density on the flow velocity, pressure on the vascularized channels,
and deformation of vascularized channels were analyzed. The simulation results provide a method
to optimize the perfusion parameters of tissue engineering, avoiding the perfusion failure caused by
unreasonable perfusion pressure and hydrogel concentration and promoting the development of
tissue engineering culture in vitro.

Keywords: three-dimensionalbioprinting; vascularizedchannels; perfusionpressure; hydrogelconcentration;
fluid–structure interaction; crosslinking density

1. Introduction

Since Wilson and Boland first proposed three-dimensional (3D) bioprinting technology in 2003,
this field has received increasing attention from the scientific community [1]. 3D bioprinting can
produce complex multimaterial structures with controllable shape structures and controllable material
components [2]. Therefore, 3D bioprinting technology has enabled us to push the development of
complex tissue constructs for in vitro applications even further by setting up microfluidic channels
within the printed organ equivalents for perfusion and the possibility of vascularization [3–6].
The in vitro culture of tissue engineering requires simultaneous growth of the internal vascular system
to facilitate the exchange of oxygen, nutrients, growth factors, and metabolic wastes between cells
and the internal environment [7,8]. In order to create vascularized channels in a hydrogel matrix,
there are three main strategies in the field of bioprinting: extrusion-based, drop-based, and laser-based
bioprinting. Each has been used in a variety of biological applications, providing different performance
in terms of cell viability, deposition rate, print resolution, scalability, cost, or material compatibility [9].

Polymers 2020, 12, 1898; doi:10.3390/polym12091898 www.mdpi.com/journal/polymers

http://www.mdpi.com/journal/polymers
http://www.mdpi.com
https://orcid.org/0000-0003-2161-3853
http://www.mdpi.com/2073-4360/12/9/1898?type=check_update&version=1
http://dx.doi.org/10.3390/polym12091898
http://www.mdpi.com/journal/polymers


Polymers 2020, 12, 1898 2 of 10

Impressive progress has been accomplished in fabricating complex tissue constructs in the past
few years. For example, Griffith et al. fabricated a vascularized liver on a small scale by using
the inkjet printing technique. They were pioneers in investigating the role of scaffold architecture
from biodegradable polyesters and culture conditions for achieving hepatic function in long-term
perfusion cultures [10]. In 2013, Zein et al. printed the first human liver along with its complex
network of vascular and biliary structures. Specifically, successful 3D synthetic livers were printed
which replicated the native livers of six patients, three living donors, and three respective recipients.
These results demonstrate the potential efficacy of 3D-printed tissue engineering and organs with a
vascular network in the human body as a substitute for treating partially or irreversibly damaged
tissue [11]. A complex liver organoid was precisely printed using a stereolithographic bioprinting
approach by Tobias Grix et al. The liver equivalents were designed with hollow channels to allow
for perfusion of the organoid. The printed liver tissue equivalents were found to have higher
albumin and cytochrome P450 3A4expression over a two-week cultivation period, when compared to
monolayer controls. Tight junction protein zonula occludens-1and multidrug resistance-associated
protein 2expression remained stable in the printed tissue [12]. 3D bioprinting has been considered as a
promising method to address the increased demand for tissues or organs with long-term mechanical
and biological stability, suitable for transplantation.

Hydrogel is superior to other materials in construction for tissue engineering and can simulate
the body environment well because of its high moisture content and high elastic modulus [13]. In our
previous work, we printed sacrificial ink into the hydrogel matrix to fabricate perfusable vascularized
channels within the hydrogel matrix [14]. Our approach is summarized in Figure 1. Hydrogel was first
printed layer-by-layer and then exposed to ultraviolet light with a wavelength of 405 nm, which formed
a self-supporting matrix with the grooves of the internal channels. When the desired height of hydrogel
was achieved, the piezoelectric nozzle was switched to eject sacrificial ink within the printed hydrogel
layer to fill the internal grooves. Once the printing of the internal structure was finished, hydrogel was
extruded to wrap the whole structure. Then, it was immersed in a CaCl2 solution to fully crosslink the
structure, and the sacrificial ink was then removed to form 3D hollow vascularized channels.
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Figure 2. Fluid–structure interaction (FSI) model: (a) overall model; (b) vascular model. 

Figure 1. Schematic showing the process of fabricating the hydrogel matrix with embedded perfusable
channels: (a) sequential printing of ejecting a sacrificial ink into photocurable hydrogel matrix by
dual-head printer; (b) post-printing process including immersion in a CaCl2 solution to crosslink and
remove sacrificial ink to fabricate channels.

The difficulty in further culturing the printed tissue engineering in vitro is how to provide
sufficient oxygen and nutrients to ensure the growth of the internal cells [15]. Diffusion of nutrients
is the most commonly used method for in vitro culture tissue engineering. However, due to the
diffusion limitation, cells at a depth of more than 100 µm cannot obtain sufficient nutrition, which is
not conducive to culturing tissue engineering in vitro [16]. Perfusion culture can provide a flowing
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and fresh culture medium for tissue engineering, which can not only provide nutrients for cells but
also take away the metabolites. It is an effective means of enhancing cell vitality and promote cell
growth [17]. Therefore, perfusion of culture medium into the vascularized channels within tissue
engineering is the most effective method for tissue engineering culture in vitro [18,19].

Thus, it is extremely important to set the perfusion pressure reasonably in the perfusion process
of tissue engineering with a pressure perfusion device. If pressure is too low, the fluid flow rate will
be insufficient, and the corresponding material transport rate will not be provided; if pressure is too
high, the fluid flow rate will be too fast, which will cause the greater pressure on the vascularized
channels and larger deformation of the vascularized channels, even the fracture of tissue engineering.
In addition to the external perfusion pressure, it is also necessary to consider the mechanical properties
of hydrogel with different concentrations and crosslinking density, which will also affect the perfusion
effect. For the perfusion culture of tissue engineering, in this work, we proposed a fluid–structure
interaction (FSI) simulation method for user-defined hydrogel tissue engineering with embedded
vascularized channels to optimize the perfusion parameters. The results show the effects of perfusion
pressure, hydrogel concentration, and crosslinking density on the flow velocity, pressure on the
vascularized channels, and deformation of vascularized channels. The proposed FSI simulation
method can optimize the parameters of tissue engineering perfusion culture so as to promote the
development of tissue engineering culture in vitro.

2. Materials and Methods

The FSI simulation analysis includes two parts: hydrodynamic analysis of blood flow velocity and
the pressure on the vessel; structural mechanics analysis of the vessel under the pressure. The pressure
on the vessel calculated in the fluid simulation was loaded into the inner wall of the vessel to calculate
the deformation of the vessel. Because the deformation was relatively small, the influence of the
deformation of the vessel negligibly affected the fluid. Therefore, the impact of the fluid characteristics
on the pressure and deformation of the blood vessel was analyzed using a one-way multiphysical field
coupling method. For the convenience of accurate calculation and analysis, the viscosity temperature
characteristic of blood was not considered, that is, blood adopted a constant dynamic viscosity to make
the model have a better convergence. The fluid dynamics model was solved by the transient laminar
flow method, while the mechanical model was solved by quasi-steady state solid mechanics.

2.1. Model

COMSOL Multiphysics 5.4 (COMSOL, Shanghai, China) was used to establish the FSI finite
element model and carry out the simulation. The model is presented in Figure 2. Figure 2a shows the
overall model. The size of the hydrogel matrix: 24 mm × 24 mm × 20 mm. The size of the internal
vascularized channel: large radius of 8 mm, small radius of 1 mm, vertical pitch of 8 mm, and 2 turns.
Figure 2b shows the size of the vessel wall.
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2.2. Fluid Model

At different Reynolds number, the fluid flow state is different, and the resistance of the object is
also different. At first, the Reynolds number was calculated to determine the state of blood flow in
the vascularized channel. The Reynolds number in the vascularized channel can be described by the
following equation.

Re =
vb·D·ρ
µ

(1)

where vb is the velocity of the fluid; ρis the density of the fluid; µis the dynamic viscosity of the fluid and D
is the channel diameter. vb, ρ, µ, and D can be selected as 2 mm, 0.10 m/s, 1060 kg/m3, and 0.005 Ns/m2,
respectively, with the reference to blood physiological parameters. According to Equation (1), the Reynolds
number obtained by calculation is less than 2300, so the fluid flow characteristic can be considered
as laminar flow. The governing equations for incompressible, laminar, Newtonian fluid flows are
Navier–Stokes equations as below [20].

∇U = 0 (2)

ρ·(U·∇)U = ∇
(
−p + µ·(∇U + (∇U)T)

)
(3)

where U is the velocity of the fluid and p is the pressure. In the fluid domain, the inner wall of the
vessel was assumed to be a nonslip boundary. The inferior cerebral vein with a diameter of 2 mm can
offer the reference of blood physiological parameters for the simulation model. The average blood
pressure of the cerebral vein in the supine position 11 mmHg (1500 Pa) was applied at the outlet as
constant pressure [21]. Perfusion pressure at the inlet was set as 12, 13, 14, and 15 mmHg, respectively,
for FSI simulation. The results can be analyzed to optimize the perfusion pressure.

2.3. Solid Model

When blood flows through the vessel, it exerts pressure on the inner wall, causing the vessel
to deform. Because the external hydrogel matrix has a supporting effect on the vessel, it restricts
the deformation of the vessel to a certain extent. Thus, the restraint of the external hydrogel matrix
on the vessel needs to be considered in the mechanical model. The mechanical model of the vessel
is based on solid mechanics and superelastic material model, and coupled with the results of fluid
mechanics analysis to analyze solid mechanics. The physical equations of solid materials can be
expressed as follows. 

σ =
(

W
ε ·I +∇U

)
ε = 1

2 [(∇U)T + ∇U + (∇U)T
∇U]

W = 1
2µ(I1 − 3− 2In(Je1)) + 1

2λ[In(Je1)]
2

(4)

where σ is stress, ε is strain, W is strain energy, and Je1 is the proportion of the elastic deformation
to the total deformation. For the vessel, the density, Lamé parameter µ, and Lamé parameter λ were
respectively considered to be 960 kg/m3, 6.20 × 106 N/m2, and 1.24 × 108 N/m2. For the hydrogel
matrix, the density, Lamé parameter µ, and Lamé parameter λ were respectively considered to be
1050 kg/m3, 2.758 × 103 N/m2, and 2.4827 × 105 N/m2 [22].

3. Results and Discussion

3.1. The Effect of Perfusion Pressure in the Perfusion Process

3.1.1. The Simulation Results of Fluid Flow Velocity

In Figure 3, the simulation results of the flow velocity under different perfusion pressure are
presented. The results demonstrate that the flow velocity is uniformly distributed and varies along the
radial direction under different pressure. The flow velocity reaches its maximum at the center of the
radial section and decreases along the radial direction to 0 near the vessel wall. In the radial direction
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of a circular pipe, the relationship between the axial velocity of the fluid and the distance to the center
of the pipe cavity is as follows.

v = vmax[1− (drlr)
2] (5)

where r is the radius and vmax is the maximum speed. The results are in accordance with Equation (5)
and the characteristics of human blood velocity. The results demonstrate that the flow velocity is
proportional to the perfusion pressure. When the perfusion pressure increases from 12 mmHg to
13, 14, and 15 mmHg, the fluid flow velocity at the center increases from 45 × 10−3 m/s to 0.09, 0.14,
and 0.18 m/s, respectively. Because the reference value of blood flow velocity of the cerebral vein is
9.9 ± 1.4 cm/s, the simulation result meets the requirements when the perfusion pressure at the inlet is
12 mmHg. The results show that when the perfusion pressure is not appropriate, the flow velocity will
be too slow or too fast, and the flow velocity generated will not be conducive to the tissue engineering
culture in vitro.
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3.1.2. The Simulation Results of the Pressure on the Vessel

The simulation results of the pressure on the vessel wall under different perfusion pressure are
shown in Figure 4. In the perfusion process, the boundary load of fluid mechanics exerts pressure on
the inner wall of the vessel. The results reveal that the average pressure on the vessel significantly
increases with increasing perfusion pressure. Moreover, the maximum pressure on the vessel wall
is at the inlet, and gradually decreases along the outlet direction, thus forming a pressure gradient
and generating the fluid flow force. The venous pressure in the human body is very low, ranging
0~2660 Pa (0~19.9 mmHg) [23]. When the perfusion pressure is 13 mmHg, satisfying the venous flow
rate, the maximum pressure at the inlet is 14.83 mmHg, about 1960 Pa, which not only meets the
physiological parameters of the human body but is also far less than the compressive strength of the
hydrogel matrix.
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3.1.3. The Simulation Results of the Deformation of the Vessel

The deformation of the vessel under different perfusion pressure is shown in Figure 5. The pressure
applied to the vessel wall can cause the vessel to deform. It can be observed in Figure 5 that the overall
deformation is mainly the expanded deformation along the radial direction, and the deformation degree
under each perfusion pressure is not significant. The deformation of the vessel has a similar change
trend with the pressure. The maximum pressure at the entrance leads to the maximum deformation,
and the minimum pressure at the exit leads to the minimum deformation.
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3.2. The Effect of Hydrogel Concentration in the Perfusion Process

Sodium alginate hydrogel is widely used in the fabrication of tissue engineering because of
its excellent biocompatibility, water solubility, and safety. The concentration of sodium alginate in
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the hydrogel matrix can affect its mechanical properties. Therefore, in the simulation analysis of
the perfusion process, the impact of external perfusion pressure on the perfusion effect should be
considered as well as the impact of the concentration of hydrogel on the perfusion effect [24]. When
the inlet pressure is set as 13 mmHg and the outlet pressure as 11 mmHg, the Lamé µ and Lamé λ were
selected as 1.207 × 104 and 1.0862 × 105 N/m2, 1.5511 × 104 and 1.3966 × 105 N/m2, 1.965 × 104 and
1.769 × 105 N/m2, 2.758 × 104 and 2.4827 × 105 N/m2, and the corresponding sodium alginate hydrogel
concentrations were 20%, 30%, 40%, 50% [25].

The relationship between the concentration and the flow velocity, pressure, and deformation
was studied by simulation. The results indicate that the hydrogel concentration has little effect on
the flow velocity and vessel wall pressure. At different concentrations, the maximum flow velocity
at the center of the vessel and the maximum pressure at the inlet are consistent, and are respectively
0.09 m/s and 12.88 mmHg. However, the concentration has a significant influence on the deformation.
The simulation results are shown in Figure 6. It can be observed that when the perfusion pressure is
the same, the deformation decreases with the increase in concentration, and the relationship between
the two is inversely proportional. The reason is that the increase in the hydrogel concentration will
lead to the increase in its elastic modulus, making it not easy to deform. The simulation results are
in agreement with the theoretical basis [26]. Combining the printing parameters requirements of
tissue engineering and human physiological parameters for the model, when the perfusion pressure
is selected as 13 mmHg, the deformation with the concentration of 20–30% is more consistent with
the requirements.
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3.3. The Effect of Crosslinking Density in the Perfusion Process

In the case of hydrogel used in tissue engineering, in addition to the concentration of hydrogel,
the crosslinking density is also widely used to modulate the elasticity or to improve the mechanical
properties of hydrogel. At the same time, hydrogel degradation can also affect the perfusion effect.
However, the degradation rate can be adjusted by controlling crosslinking density. The greater the
crosslinking density of hydrogel, the longer the degradation time and the smaller the degradation
degree [27–30]. Therefore, it is necessary to discuss the effect of crosslinking density on perfusion.
Sodium alginate hydrogel are crosslinked by immersing in a CaCl2 solution. Different calcium ion
concentrations will lead to different crosslinking densities, which will further affect the elastic modulus of
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the material. The Lamé µ and Lamé λ were selected as 1.1379× 104 and 1.0241 × 105 N/m2, 1.3793 × 104

and 1.2414 × 105 N/m2, 1.5517 × 104 and 1.3655 × 105 N/m2, 1.7241 × 104 and 1.5517 × 105 N/m2,
and the corresponding calcium ion concentrations were 0.025, 0.05, 0.075, and 0.1 mol/L [25].

The results indicate that crosslinking density has little effect on the flow velocity and vessel wall
pressure, which is the same as the concentration. Similarly, crosslinking density has a significant
influence on deformation. The simulation results are shown in Figure 7. The results reveal that the
deformation decreases with increasing calcium concentration. For instance, the deformation is 7.8 µm
for 0.025 mol/L and 6.4 µm for 0.05 mol/L. The simulation results are in accordance with the theoretical
basis. The reason is that the increase in calcium concentration will lead to the increase in crosslinking
density of hydrogel, which will further increase the elastic modulus and make the hydrogel matrix
difficult to degrade and deform [31].
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4. Conclusions

In the previous work, tissue engineering with the internal vascularized channel was fabricated.
In order to successfully culture tissue engineering by perfusion in vitro, a hydrogel tissue engineering
model was established, and the FSI finite element analysis of the perfusion process was carried out.
The simulation mainly studied the effect of perfusion pressure, hydrogel concentration, and hydrogel
crosslinking density on the perfusion process. Results show that when the concentration and
crosslinking density of hydrogel are constant, as the perfusion pressure increases, the average
fluid flow velocity increases and the pressure on the vessel increases, leading to an increase in the
deformation of the vessel. When the perfusion pressure is constant, the flow velocity and pressure
are basically unchanged with the increase in the concentration and crosslinking density of hydrogel,
but the deformation of the vessel decreases. The reason is that the increase in the concentration and
crosslinking density of hydrogel leads to an increase of the elastic modulus, which makes the material
difficult to deform. In this work, we propose a simulation method, which can optimize the perfusion
parameters for user-defined tissue engineering to avoid the failure of tissue engineering perfusion
culture due to unreasonable perfusion pressure setting so as to promote the development of tissue
engineering culture in vitro.
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