
polymers

Article

An Additive Manufacturing Method Using Large-Scale Wood
Inspired by Laminated Object Manufacturing and
Plywood Technology

Yubo Tao 1 , Qing Yin 1 and Peng Li 1,2,*

����������
�������

Citation: Tao, Y.; Yin, Q.; Li, P. An

Additive Manufacturing Method

Using Large-Scale Wood Inspired by

Laminated Object Manufacturing and

Plywood Technology. Polymers 2021,

13, 144. https://doi.org/10.3390/

polym13010144

Received: 19 December 2020

Accepted: 28 December 2020

Published: 31 December 2020

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2020 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology,
Shadong Academy of Sciences, Jinan 250353, China; taoyubo@qlu.edu.cn (Y.T.); qluyinqing@163.com (Q.Y.)

2 College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China
* Correspondence: lipeng@qlu.edu.cn

Abstract: Wood-based materials in current additive manufacturing (AM) feedstocks are primarily
restricted to the micron scale. Utilizing large-scale wood in existing AM techniques remains a
challenge. This paper proposes an AM method—laser-cut veneer lamination (LcVL)—for wood-based
product fabrication. Inspired by laminated object manufacturing (LOM) and plywood technology,
LcVL bonds wood veneers in a layer-upon-layer manner. As demonstrated by printed samples, LcVL
was able to retain the advantageous qualities of AM, specifically, the ability to manufacture products
with complex geometries which would otherwise be impossible using subtractive manufacturing
techniques. Furthermore, LcVL-product structures designed through adjusting internal voids and
wood-texture directionality could serve as material templates or matrices for functional wood-based
materials. Numerical analyses established relations between the processing resolution of LcVL and
proportional veneer thickness (layer height). LcVL could serve as a basis for the further development
of large-scale wood usage in AM.

Keywords: veneer; laser-cut; additive manufacturing; wood composite

1. Introduction

The controlled process of material removal is a definitive trait of subtractive man-
ufacturing technologies (SM). Traditional wood-processing techniques such as sawing,
milling, turning, carving, and grinding, as well as relatively modern techniques such as
CNC (Computer Numerical Control), are all categorized as SM [1]. As shown in Figure 1,
portions of the raw material are methodically removed until the intended shape is achieved.
By contrast, additive manufacturing (AM), as shown in Figure 1, often referred to as 3D
printing, is a process of joining materials, typically in a layer-upon-layer manner, in accor-
dance with three-dimensional (3D) model data [2]. Fabrication using AM begins with a 3D
model of the desired product, such as the model shown in Figure 2a,b. Subsequently, 3D
printing software will slice the model into horizontal cross-sectional layers, as shown in
Figure 2c. Ultimately, the model is fabricated by stacking layers, an example of which is
shown in Figure 2d.

Variations of AM are differentiated by their respective layer-fabrication techniques,
including stereolithography apparatus (SLA), fused deposition modeling (FDM), laminated
object manufacturing (LOM), selective laser sintering (SLS), and direct energy deposition
(DED) [3]. Notably, AM is especially advantageous compared to SM when manufactur-
ing products with exceptional geometric complexity. Currently, AM technologies have
extended to areas in the aerospace, automotive, medical, architecture, and fashion indus-
tries [4]. The continuously increasing demand for renewable and sustainable products
sourced from petroleum-free and carbon-neutral origins has driven the development of
novel materials for AM methods in recent years.
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Figure 1. Subtractive manufacturing (SM) and additive manufacturing (AM).

Figure 2. An illustration of the typical AM process. (a) 3D model of the desired product; (b)
“wireframe” display of the desired product; (c) model after slicing into layers by the CURA software;
(d) desired product constructed using fused deposition modeling (FDM) 3D printing.

Wood derivatives, such as wood flour and sawdust, as well as the components of
wood, i.e., cellulose and lignin, are naturally abundant, biodegradable, biocompatible,
and chemically modifiable materials that have shown promising potential for AM [5,6].
Existing research has shown that the practicability of incorporating wood-based materials
in AM is largely dependent on the respective AM technique [7–13]. At present, layer
fabrication techniques using wood-based materials may be divided into two general
categories: extrusion-deposition and granular bonding. Extrusion-deposition fabrication
primarily employs wood-plastic composite filaments that could be used in FDM [7,8]. In
addition, studies have also shown that it is possible to extrude and deposit a slurry mixture
of sawdust and adhesive directly to achieve similar AM results [9–11]. Likewise, granular
bonding comprises two distinct variants. One type involves melting powdered mixtures
of thermoplastic polymers and wood-based materials with high-intensity lasers [12], a
technique utilized by SLS, whereas the other relies on the solidification reaction of a
wood-based bulk material, as inorganic binders blend upon contact with water [13].

LOM is one of the first commercially available AM techniques, in which sheets of
material, including metal, plastic, and paper, etc., are cut, often with lasers or mechanical
cutters, to precisely resemble the shape of the cross-sections of the desired product. Succes-
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sive layers are bonded layer upon layer until the object is completed [14,15]. Nevertheless,
wood-based product fabrication with the aforementioned AM techniques is primarily dom-
inated by micron scale powder and fiber materials. Current preparation methodologies
not only increase the overall processing difficulty of wood-based materials, but also create
drastic discrepancies, in both appearance and mechanical properties, compared with the
original wood.

The utilization of large-scale wood materials in AM has rarely been explored. Existing
studies have investigated the application of one-dimensional wood-based materials, such
as sticks and strips, in AM. For example, one study involved dispensing chopsticks coated
in wood adhesive from a projection mapping-guided handheld stick dispenser to construct
architectural structures [16]. Another study fabricated high-resolution timber structures
with continuous willow withe-based solid wood filaments, a robotic fiber placement
process, and topology optimization [17].

This paper proposes ideas for an alternative AM method for wood-based product
fabrication that would be able to utilize large scale wood-based materials, such as wood
veneer (a two-dimensional surface), by combining plywood technology with the basis
behind LOM [18,19]. In addition to granular and strip-like, wood-based AM materials, the
proposed method could enable the use of plate-like wood materials in AM. Furthermore,
this study is characterized by the use of simple processing techniques, such as cutting
and gluing, and AM characteristics to manufacture wood products with complex shapes
and internal structures without advanced subtractive techniques, such as robotic CNC
engraving. Moreover, its AM capabilities could be used for creating designable templates
and material matrices for functional wood-based materials, such as sound absorbers and
composites. Inspired by LOM, this process can be named laser-cut veneer lamination
(LcVL), in which sheets of laser-cut veneer form cross-sectional layers that are bonded layer
upon layer to form wood products with complex geometries and internal voids.

2. Materials and Methods

An LcVL-printed product was fabricated based on the design shown in Figure 2 to
demonstrate the capabilities of the proposed AM method.

2.1. Modeling

The procedures used in the construction of a 3D model of the sample were as follows:
as depicted in Figure 3a, a 50 mm× 50 mm square was created on the XOY plane (AutoCAD,
student version 2019, San Rafael, CA, USA). The interior of this square was then partitioned
into 16 Voronoi cells. An extrusion of 1.5 mm was applied to the surface along the Z-axis
to create a layer model for the sample, as shown in Figure 3d. A total of 20 duplicates of
the layer model were stacked along the Z-axis, as illustrated in Figure 3e. Lastly, all layers
underwent rotation with the angle of rotation increment by 2.25◦ with each passing layer,
as shown in Figure 3f.
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Figure 3. Model design methodology. (a) Outline of a Voronoi cellular-patterned cross-sectional layer; (b) Setting laser-
processing parameters in the LaserCAD software, such as laser power, moving speed, etc.; (c) Laser-cut wood; (d) A layer
slice after 1.5 mm of extrusion; (e) Stacking of layers along the Z-axis to create a layered model; (f) Layers are rotated to
produce the model of the desired product.

2.2. Processing

Poplar (Aspen) veneer with a nominal thickness of 1.5 mm and 8% moisture content
was adopted in this work. The design shown in Figure 3a was fed to the LaserCAD software
(Shenzhen Qiancheng Co., Ltd., Shenzhen, China) for setting laser processing parameters
such as path, power, and speed. As shown in Figure 3c, a laser-carving machine (Model
4060, Huitian Laser Instrument Co., Ltd., Jinan, China) was used to cut veneers following
the path and parameters set in Figure 3b to create each layer of the desired product.

The top of each layer was coated with polyvinyl acetate (PVA) adhesive (Pattex 710,
Pattex Co., Ltd., Shanghai, China) before being stacked to form a mat in accordance with
the model design. A mold of the model contour could be used to guarantee layer placement
precision. After 2 min of deposition, the mat was pressed for 5 min under 10 N using a
small cold presser (lab-made) to complete the bonding process. ifferent adhesives could be
used with adjusted pressing parameters.

3. Results and Discussion
3.1. The LcVL Product

As shown in Figure 4, the LcVL product was fabricated by stacking and bonding wood
veneers in a layer-upon-layer manner. The product demonstrated that the LcVL procedure
was able to take advantage of the qualities of additive manufacturing, specifically, the
ability to manufacture complex geometries, such as internal voids, that are nigh impossible
to accomplish using SM techniques, such as CNC. However, since LcVL is based on LOM
characteristics, although the overall product formation is additive in nature, the production
of each layer via cutting is a subtractive process. These subtractive drawbacks should be
marginal in comparison to the technical simplicity of the LcVL process. Residual materials
could be repurposed as raw materials for 3D printing. For example, leftover veneers could
be used to produce wood powder for wood/polylactic acid filaments.
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Figure 4. Comparison between the laser-cut veneer lamination (LcVL) product and its 3D model.
(a) Orthographic view of the LcVL product; (b) Orthographic view of the 3D model of the product;
(c) Top view of the LcVL product; (d) Top view of the 3D model of the product; (e) Tubular voids
present in the 3D model of the product postrotation; (f) Tubular voids present in the 3D model of the
product prerotation.

Furthermore, the surface area of tubular voids present in Figure 4e is 1.27 times the
surface area of SM possible tubular voids in Figure 4f. The increased surface area in
products with intricate geometrical structures, such as the product presented in Figure 4,
could prove beneficial for the development of special-purpose, wood-based products. For
example, the spacious tubular voids of complex LcVL-printed structures contain larger void
surfaces and enable greater convenience for architecting desired tortuosity, which could
improve sound absorption compared to standard SM possible structures [20]. Overall, as
demonstrated by the printed product in Figure 4, LcVL was able to properly realize the
3D model of the desired product to a satisfactory degree. However, the LcVL method is
not ideal for fabricating products with high angle overhangs without additional external
support to ensure uniform pressure on each layer.

Notably, comparing the printed models present in Figure 4a (LcVL) and Figure 2a,d
(FDM) revealed visible distinctions in processing resolution. As will be discussed in detail
in the following section, the fabricating resolution of LcVL-printed products is primarily
dependent on the layer parameters.

3.2. Effects of Layer Parameters on Processing Resolution

As depicted in Figure 5a, LcVL is unable to replicate the modeling curve line (MCL)
with perfect precision. The resulting step-like contour along the Z-axis comprises a theoret-
ical manufacturing error (TME) between the 3D model and the fabricated product. Using
the region circled in green in Figure 5a as an example, the relation between layer (veneer)
height and TME could be described as follows:
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Figure 5. (a) Theoretical manufacturing error between contours of the modeling curve line and
LcVL layer stacking; (b) Calculation parameters for the theoretical manufacturing error from LcVL
layer stacking; (c) Theoretical manufacturing error between contours of the modeling curve line and
postrotation LcVL layer stacking; (d) Calculation parameters for the theoretical manufacturing error
from postrotation layer stacking.

As shown in Figure 5b, when s is the arc length of a MCL, r the radius of the MCL, θ
the central angle of the MCL, α the angle of the MCL to horizontal, h the layer height, and
es the TME from layer height, then

s = 2r sin
θ

2
(1)

l =
√

s2 − h2 (2)

1
2

s·e = 1
2

h·l (3)

es =
h·
√

s2 − h2

s
(4)

The relation between layer height and TME from each step/layer of a quarter circle
MCL with radius 1 was calculated and plotted in Figure 6a. The quarter circle was divided
into five and ten layers to obtain proportional layer heights of 0.2 and 0.1, respectively. As
can be seen in Figure 6a, the proportional layer height of 0.2 consistently exhibited greater
TME compared to the smaller layer height of 0.1. Therefore, TME is positively associated
with layer height.

In addition to the TME caused by layer height, the fabrication accuracy of the LcVL
product in Figure 4 suffered further TME from layer rotation. As shown in Figure 5c, the
apparent discrepancy between the MCL (highlighted in blue) and the printed product
contributed to additional TME (highlighted in red). The TME from layer rotation could be
described as follows:
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Figure 6. (a) Relation between layer height and theoretical manufacturing error (TME) from layer
height, where total angle is the sum of α and θ; (b) Relation between layer number and TME from
layer rotation.

As shown in Figure 5d, when R is the radius of rotation, n is the number of layers
(layer number), β is the angle of rotation between the top and bottom layers, δ is the angle
of rotation between successive layers, and er is the TME from layer rotation, then

δ =
β

n− 1
(5)

er = 2R sin
δ

2
(6)

er = 2R sin
β

2(n− 1)
(7)

The relation between layer numbers (5–25) and TME from layer rotation for a height-1
hypothetical model with 45◦ of rotation between the top and bottom layers was calculated
and plotted in Figure 6b. As can be seen in Figure 6b, the corresponding TME from layer
rotation underwent reduction with larger layer numbers. Therefore, for the same product



Polymers 2021, 13, 144 8 of 10

height, larger layer (veneer) numbers could result in decreased TME not only from layer
rotation, but also from layer height as a result of the smaller layer height. Notably, for the
product presented in this study (Figure 4), calculations showed that a 100% increase in
layer number could increase the bonding area by 225%, which could increase production
costs. The lower the layer height, the smaller the veneer thickness, which also increases the
difficulty of veneer manufacturing. Notably, although the sample created for this study was
a small object in the centimeter scale, the core characteristics of the LcVL method could be
scaled up to manufacture structures in the meter scale, in theory. Naturally, corresponding
parameters, such as the product height, layer height, and layer number should be adjusted
accordingly to optimize the TME.

3.3. Wood Texture Direction and LcVL-Product Structure

The structural directionality of LcVL products could be designed through wood
texture directions. The sample presented in Figure 4 was created by stacking identical
layers with each layer rotated by 2.25◦. As shown in Figure 7a, a pair of identically-cut
layers share the same wood texture direction. Thus, since all layers are 2.25◦ offset from
their adjacent layers, the wood texture directions of all layers are 2.25◦ apart in this sample.
However, as shown in Figure 7b, if layer 2 was cut with a counterclockwise 2.25◦ rotation
from layer 1, then the wood texture direction of layer 2 would be 2.25◦ clockwise from layer
1. Thus, if such layer pairs were laminated together with a 2.25◦ counterclockwise layer-
to-layer increment, the resulting product would have consistent wood texture direction.
Alternatively, if layer 2 was cut with a 90◦ counterclockwise plus 2.25◦ counterclockwise
rotation, as shown in Figure 7c, then the wood texture directions of layers 1 and 2 would
be orthogonal in a product with 2.25◦ counterclockwise-rotated layers. The directionality
of such a product could be analyzed with the orthogonal principle of plywood technology.
The designability of LcVL-product structures is essential for creating material templates
and matrices for composites of varying properties with LcVL.

Figure 7. Wood-texture direction (indicated by red arrows) and distinct layer-cutting solutions (a)
Cutting solution with identically cut layer 1 and layer 2. The resulting wood texture directions of the
structure are 2.25◦ between each layer. (b) Cutting solution that produces a product with a consistent
wood texture direction. (c) Cutting solution that produces a product with orthogonal wood texture
directions between layers.
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4. Conclusions

LcVL is a relatively simple procedure for constructing customized and geometrically
complex wood products which would otherwise be impossible, difficult, and/or costly
using SM. Aside from raw material costs, costs of material waste and time consumption
are optimizable factors of efficiency. In addition, the LcVL produce should be fairly
adoptable, as its core technologies, laser-cutting and plywood, are already widely used in
the wood industry.

From the above findings, the following conclusions could be made:

(1) As a combination of plywood technology and LOM, the LcVL method is a viable AM
method which is capable of producing wood-based products with complex geometries
and internal voids using large scale wood-based materials, specifically wood veneer.

(2) LcVL products have designable structures (complex internal voids and wood texture
directions). Their designability could be used for creating material matrices and tem-
plates for functional wood-based materials, such as sound absorbers and composites.

(3) The LcVL method encountered more theoretical manufacturing errors compared to
other AM techniques due to its use of larger scale raw materials with larger layer
heights. Nonetheless, the LcVL method may be used for large scale wood materials
with sufficient layer thickness and number.

(4) LcVL products could benefit greatly from postprocessing, such as surface finishing, for
theoretical manufacturing-error reduction. In comparison with other AM techniques,
larger amounts of wood and less adhesives are involved during the fabrication. The
LcVL method could serve as a basis for the further development of veneer usage
in AM.
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