Analysis of the Storage Stability Property of Carbon Nanotube/Recycled Polyethylene-Modified Asphalt Using Molecular Dynamics Simulations
Abstract
:1. Introduction
2. Methodology
2.1. Preparation of CNT/RPE-Modified Asphalt
2.2. Perperty Tests
2.3. Model Building
2.3.1. Asphalt Molecular Models
2.3.2. Modified Asphalt Models and Molecular Dynamic Simulation
2.4. Model Verification
2.5. Simulation Index
3. Results and Discussion
3.1. Effect of CNT on the Road Properties of Modified Asphalt
3.2. Interaction Stability and Morphology of RPE-Modified Asphalt
3.3. Effect of CNT on Molecular Diffusion of RPE-Modified Asphalt
3.4. Molecular Structure Analysis of Different Asphalt Systems
4. Conclusions
- CNTs effectively enhance the high-temperature rheological properties, low-temperature cracking resistance and storage stability of RPE-modified asphalt.
- The glass transition temperature, elemental content and four-component content justify the molecular models of virgin asphalt, RPE-modified asphalt and CNT/RPE-modified asphalt.
- The enhancement mechanism of CNTs on RPE is that CNTs not only weakened the interaction between asphaltene and light components and reduced the repulsion effect between RPE and asphaltene (resins), but also enhanced the adsorption of RPE and light components, which meant that RPE adsorbed more light components and facilitated the compatibility between RPE and base asphalt.
- CNTs make the asphaltene distribution more uniform and increase the distance be-tween RPE and asphaltene, which further improves the storage stability of the modified asphalt.
Author Contributions
Funding
Conflicts of Interest
References
- Jenna, R.J.; Geyer, C.; Wilcox, W.; Siegler, T.R.; Perryman, M.; Andrady, A. Plastic waste inputs from land into the ocean. Science 2015, 347, 768–771. [Google Scholar]
- Keijzer, E.E.; Leegwater, G.A.; Vos-Effting, S.E.; Wit, M.S. Carbon footprint comparison of innovative techniques in the construction and maintenance of road infrastructure in The Netherlands. Environ. Sci. Policy 2015, 54, 218–225. [Google Scholar] [CrossRef]
- Geyer, R.; Jambeck, J.R.; Law, K.L. Production, use, and fate of all plastics ever made. Sci. Adv. 2017, 3, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Du, Z.Y.; Jiang, C.S.; Yuan, J.; Xiao, F.P.; Wang, J.G. Low temperature property characteristics of polyethylene modified asphalts—A review. Constr Build. Mater. 2020, 264, 120704. [Google Scholar] [CrossRef]
- Liang, M.; Xin, X.; Fan, W.Y.; Wang, H.; Jiang, H.G.; Zhang, J.Z.; Yao, Z.Y. Phase behavior and hot storage characteristics of asphalt modified with various polyethylene: Experimental and numerical characterizations. Constr. Build. Mater. 2019, 203, 608–620. [Google Scholar] [CrossRef]
- Liang, M.; Xin, X.; Fan, W.Y.; Zhang, J.Z.; Jiang, H.G.; Yao, Z.Y. Comparison of rheological properties and compatibility of asphalt modified with various polyethylene. Int. J. Pavement Eng. 2019, 22, 11–20. [Google Scholar] [CrossRef]
- Teltayev, B.B.; Rossi, C.O.; Izmailova, G.G.; Amirbayev, E.D.; Elshibayev, A.O. Evaluating the effect of asphalt binder modification on the low-temperature cracking resistance of hot mix asphalt. Case Stud. Constr. Mater. 2019, 11, e00238. [Google Scholar] [CrossRef]
- Nizamuddin, S.; Jamal, M.; Gravina, R.; Giustozzi, F. Recycled plastic as bitumen modifier: The role of recycled linear low-density polyethylene in the modification of physical, chemical and rheological properties of bitumen. J. Clean Prod. 2020, 266, 121988. [Google Scholar] [CrossRef]
- Yu, R.; Fang, C.Q.; Liu, P.; Liu, X.L.; Li, Y. Storage stability and rheological properties of asphalt modified with waste packaging polyethylene and organic montmorillonite. Appl. Clay Sci. 2015, 104, 1–7. [Google Scholar] [CrossRef]
- Abed, A.H.; Bahia, H.U. Enhancement of permanent deformation resistance of modified asphalt concrete mixtures with nano-high density polyethylene. Constr. Build. Mater. 2020, 236, 117604. [Google Scholar] [CrossRef]
- Goshtasp, C.; Michael, P.W. Ultraviolet aging study on bitumen modifed by a composite of clay and fumed silica nanoparticles. Sci. Rep. 2020, 10, 1–17. [Google Scholar]
- Goshtasp, C.; Michael, P.W. Effect of Fumed Silica Nanoparticles on Ultraviolet Aging Resistance of Bitumen. Nanomaterials 2021, 11, 454. [Google Scholar]
- Liang, M.; Su, L.P.; Li, P.Z.; Shi, J.T.; Yao, Z.Y.; Zhang, J.Z.; Jiang, H.G.; Luo, W.X. Investigating the Rheological Properties of Carbon Nanotubes/Polymer Composites Modified Asphalt. Materials 2020, 13, 4077. [Google Scholar] [CrossRef] [PubMed]
- Xin, X.; Yao, Z.Y.; Shi, J.T.; Liang, M.; Jiang, H.G.; Zhang, J.Z.; Zhang, X.M.; Yao, K. Rheological properties, microstructure and aging resistance of asphalt modified with CNTs/PE composites. Constr. Build. Mater. 2020, 262, 120100. [Google Scholar] [CrossRef]
- Yang, Q.L.; Li, X.L.; Zhang, L.; Qian, Y.; Qi, Y.Z.; Kouhestani, H.S.; Shi, X.M. Property evaluation of bitumen with a homogeneous dispersion of carbon nanotubes. Carbon 2020, 158, 465–471. [Google Scholar] [CrossRef]
- Yang, Q.L.; Qian, Y.; Fan, Z.P.; Lin, J.; Wang, D.W.; Zhong, J.; Oeser, M. Exploiting the synergetic effects of graphene and carbon nanotubes on the mechanical properties of bitumen composites. Carbon 2021, 172, 402–413. [Google Scholar] [CrossRef]
- Yang, Q.L.; Liu, Q.; Zhong, J.; Hong, B.; Wang, D.W.; Oeser, M. Rheological and micro-structural characterization of bitumen modified with carbon nanomaterials. Constr. Build. Mater. 2019, 201, 580–589. [Google Scholar] [CrossRef]
- Liu, F.; Hu, N.; Ning, H.M.; Atobe, S.; Yan, C.; Liu, Y.L. Investigation on the interfacial mechanical properties of hybrid graphene-carbon nanotube/polymer nanocomposites. Carbon 2017, 115, 694–700. [Google Scholar] [CrossRef] [Green Version]
- Long, Z.W.; You, L.Y.; Tang, X.Q.; Ma, W.B.; Ding, Y.H.; Xu, F. Analysis of interfacial adhesion properties of nano-silica modified asphalt mixtures using molecular dynamics simulation. Constr. Build. Mater. 2020, 255, 1–17. [Google Scholar] [CrossRef]
- Yong, F.; Yu, C.H.; Hu, K.; Chen, Y.J.; Liu, Y.; Zhang, T.L. A study of the microscopic interaction mechanism of styrene–butadiene-styrene modified asphalt based on density functional theory. Mol. Simulat. 2021, 64, 1–12. [Google Scholar] [CrossRef]
- Guo, M.; Tan, Y.Q.; Wei, J.M. Using Molecular Dynamics Simulation to Study Concentration Distribution of Asphalt Binder on Aggregate Surface. J. Mater. Civil. Eng. 2018, 30, 04018075. [Google Scholar] [CrossRef]
- Li, D.D.; Greenfield, M.L. Chemical compositions of improved model asphalt systems for molecular simulations. Fuel 2014, 115, 347–356. [Google Scholar] [CrossRef]
- Hansen, J.S.; Lemarchand, C.A.; Nielsen, E.; Dyre, J.C.; Schroder, T. Four-component united-atom model of bitumen. J. Chem. Phys. 2013, 138, 094508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khabaz, F.; Khare, R. Glass Transition and Molecular Mobility in Styrene-Butadiene Rubber Modified Asphalt. J. Phys. Chem. B 2015, 119, 14261–14269. [Google Scholar] [CrossRef] [PubMed]
- Sun, D.Q.; Lin, T.B.; Zhu, X.Y.; Tian, Y.; Liu, F.L. Indices for self-healing property assessments based on molecular dynamics simulation of asphalt binders. Comp. Mater. Sci. 2016, 114, 86–93. [Google Scholar] [CrossRef]
- Fallah, F.; Khabaz, F.; Kim, Y.P.; Kommidi, S.R.; Haghshenas, H.F. Molecular dynamics modeling and simulation of bituminous binder chemical aging due to variation of oxidation level and saturate-aromatic-resin-asphaltene fraction. Fuel 2019, 237, 71–80. [Google Scholar] [CrossRef]
- Xu, G.J.; Wang, H.; Sun, W. Molecular dynamics study of rejuvenator effect on RAP binder: Diffusion behavior and molecular structure. Constr. Build. Mater. 2018, 158, 1046–1054. [Google Scholar] [CrossRef]
- Qu, X.; Liu, Q.; Guo, M.; Waang, D.W.; Oeser, M. Study on the effect of aging on physical properties of asphalt binder from a microscale perspective. Constr. Build. Mater. 2018, 187, 718–729. [Google Scholar] [CrossRef]
- Wang, P.; Zhai, F.; Dong, Z.J.; Wang, L.Z.; Liao, J.P.; Li, G.R. Micromorphology of Asphalt Modified by Polymer and Carbon Nanotubes through Molecular Dynamics Simulation and Experiments: Role of Strengthened Interfacial Interactions. Energy Fuel 2018, 32, 1179–1187. [Google Scholar] [CrossRef]
- Yao, H.; Dai, Q.L.; You, Z.P.; Zhang, J.X.; Lv, S.T.; Xiao, X.H. Evaluation of contact angle between asphalt binders and aggregates using Molecular Dynamics (MD) method. Constr. Build. Mater. 2019, 212, 727–736. [Google Scholar] [CrossRef]
- Chitsaz, S.; Tarighat, A. Molecular dynamics simulation of N-A-S-H geopolymer macro molecule model for prediction of its modulus of elasticity. Constr. Build. Mater. 2020, 243, 118176. [Google Scholar] [CrossRef]
- Zadshir, M.; Hosseinnezhad, S.; Fini, E.H. Deagglomeration of oxidized asphaltenes as a measure of true rejuvenation for severely aged asphalt binder. Constr. Build. Mater. 2019, 209, 416–424. [Google Scholar] [CrossRef]
- Wang, P.; Dong, Z.; Tan, Y.Q.; Liu, Z.Y. Investigating the Interactions of SARA FourFraction in Asphalt Binders by Molecular Simulations. Energy Fuel 2015, 29, 112–121. [Google Scholar] [CrossRef]
- Sun, H.; Ren, P.; Fried, J.R. The COMPASS force field: Parameterization and validation for phosphazenes. Comput. Theor. Polym. Sci. 1998, 8, 229–246. [Google Scholar] [CrossRef]
- Sun, H.; Jin, Z.; Yang, C.W.; Akkermans, R.L.C.; Robertson, S.H.; Spenley, N.A. COMPASS II: Extended coverage for polymer and drug-like molecule databases. J. Mol. Model. 2016, 22, 47. [Google Scholar] [CrossRef] [PubMed]
- Polacco, G.; Filippi, S.; Merusi, F.; Stastna, G. A review of the fundamentals of polymer-modified asphalts: Asphalt/polymer interactions and principles of compatibility. Adv. Colloid Interface Sci. 2015, 224, 72–112. [Google Scholar] [CrossRef] [PubMed]
- Lan, Y.H.; Li, D.H.; Yang, R.J.; Liang, W.S.; Zhou, L.X.; Chen, Z.W. Computer simulation study on the compatibility of cyclotriphosphazene containing aminopropylsilicone functional group in flame retarded polypropylene/ammonium polyphosphate composites. Compos. Sci. Technol. 2013, 88, 9–15. [Google Scholar] [CrossRef]
- Luo, Z.L.; Jiang, J.W. Molecular dynamics and dissipative particle dynamics simulations for the miscibility of poly(ethylene oxide)/poly(vinyl chloride) blends. Polymer 2010, 51, 291–299. [Google Scholar] [CrossRef]
- Arenaza, I.M.D.; Meaurio, E.; Coto, B.; Sarasua, J.R. Molecular dynamics modelling for the analysis and prediction of miscibility in polylactide/polyvinilphenol blends. Polymer 2010, 51, 4431–4438. [Google Scholar] [CrossRef]
- Zeng, Q.; Liu, Y.; Liu, Q.C.; Liu, P.; He, Y.H.; Zeng, Y.Q. Preparation and modification mechanism analysis of graphene oxide modified asphalts. Constr. Build. Mater. 2020, 238, 117706. [Google Scholar] [CrossRef]
- Xu, G.J.; Wang, H. Molecular dynamics study of oxidative aging effect on asphalt binder properties. Fuel 2017, 188, 1–10. [Google Scholar] [CrossRef]
- Xu, G.J.; Wang, H. Diffusion and interaction mechanism of rejuvenating agent with virgin and recycled asphalt binder: A molecular dynamics study. Mol. Simulat. 2018, 44, 1433–1443. [Google Scholar] [CrossRef]
- Yang, Q.L.; Hong, B.; Lin, J.; Wang, D.W.; Zhong, J.; Oeser, M. Study on the reinforcement effect and the underlying mechanisms of a bitumen reinforced with recycled glass fiber chips. J. Clean Prod. 2020, 251, 119768. [Google Scholar] [CrossRef]
- Xia, T.; Qin, Y.P.; Xu, J.H.; Zhou, L.M.; Chen, W.Q.; Dai, J.F. Viscoelastic phase separation and crystalline-to-amorphous phase transition in bitumen/SBS/PE blends. Polymer 2018, 155, 129–135. [Google Scholar] [CrossRef]
- Luo, D.S.; Guo, M.; Tan, Y.Q. Molecular Simulation of Minerals-Asphalt Interfacial Interaction. Minerals 2018, 8, 176. [Google Scholar] [CrossRef] [Green Version]
Projects | Units | Test Results | Technical Requirements | Test Method | |
---|---|---|---|---|---|
Ductility (10 °C) | cm | 31.2 | >15 | ASTM D 113 | |
Ductility (15 °C) | cm | 152.8 | >100 | ASTM D 113 | |
Softening point | °C | 49.4 | >46 | ASTM D36 | |
Viscosity, 135 °C | Pa · s | 0.572 | - | ASTM D4402 | |
Penetration (25 °C) | 0.1 mm | 65.2 | 60–80 | ASTM D 05 | |
After RTFOT | Ductility (10 °C) | cm | 12 | >6 | ASTM D 113 |
Ductility (15 °C) | cm | 115.3 | >15 | ASTM D 113 |
Element (wt%) | C | H | N | S | O | The Rest |
---|---|---|---|---|---|---|
Sample | 86.563 | 9.875 | 0.327 | 1.426 | 1.784 | 0.025 |
Model | 87.228 | 10.667 | 0.359 | 1.506 | 0.240 | 0 |
Projects | Binding Energy | Bond Energy | Non-Bond Energy | ||
---|---|---|---|---|---|
van der Waals | Long-Range Correction | Electrostatic | |||
Asphaltenes-Resins | 232.26 | 0 | 238.54 | 5.3 | 0.99 |
Asphaltenes-Aromatics | 2700.93 | 0 | 2685.69 | 10.52 | 4.72 |
Asphaltenes-Saturates | 701.76 | 0 | 692.52 | 3.90 | 5.34 |
Projects | Binding Energy | Bond Energy | Non-Bond Energy | ||
---|---|---|---|---|---|
van der Waals | Long-Range Correction | Electrostatic | |||
Asphaltenes-Resins | 132.67 | 0 | 125.73 | 3.82 | 3.12 |
Asphaltenes-Aromatics | 1167.14 | 0 | 1137.05 | 15.92 | 14.17 |
Asphaltenes-Saturates | 343.99 | 0 | 337.17 | 2.04 | 4.78 |
PE-Asphaltenes | −423.82 | 0 | −414.74 | −2.94 | −6.14 |
PE-Resins | −35.28 | 0 | −31.04 | −2.18 | −2.06 |
PE-Aromatics | 225.23 | 0 | 219.63 | 5.58 | 0.02 |
PE-Saturates | 118.01 | 0 | 114.91 | 2.81 | 0.29 |
Projects | Binding Energy | Bond Energy | Non-Bond Energy | ||
---|---|---|---|---|---|
van der Waals | Long-Range Correction | Electrostatic | |||
Asphaltenes-Resins | 168.24 | 0 | 149.28 | 4.29 | 14.67 |
Asphaltenes-Aromatics | 1392.02 | 0 | 1376.93 | 6.06 | 9.03 |
Asphaltenes-Saturates | 528.31 | 0 | 521.03 | 8.35 | −1.07 |
PE-Asphaltenes | −253.17 | 0 | −241.23 | −6.27 | −5.67 |
PE-Resins | 10.32 | 0 | 8.14 | 1.21 | 0.97 |
PE-Aromatics | 562.84 | 0 | 553.98 | 5.94 | 2.92 |
PE-Saturates | 326.16 | 0 | 306.28 | 3.92 | 15.96 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, C.; Hu, K.; Yang, Q.; Wang, D.; Zhang, W.; Chen, G.; Kapyelata, C. Analysis of the Storage Stability Property of Carbon Nanotube/Recycled Polyethylene-Modified Asphalt Using Molecular Dynamics Simulations. Polymers 2021, 13, 1658. https://doi.org/10.3390/polym13101658
Yu C, Hu K, Yang Q, Wang D, Zhang W, Chen G, Kapyelata C. Analysis of the Storage Stability Property of Carbon Nanotube/Recycled Polyethylene-Modified Asphalt Using Molecular Dynamics Simulations. Polymers. 2021; 13(10):1658. https://doi.org/10.3390/polym13101658
Chicago/Turabian StyleYu, Caihua, Kui Hu, Qilin Yang, Dandan Wang, Wengang Zhang, Guixiang Chen, and Chileshe Kapyelata. 2021. "Analysis of the Storage Stability Property of Carbon Nanotube/Recycled Polyethylene-Modified Asphalt Using Molecular Dynamics Simulations" Polymers 13, no. 10: 1658. https://doi.org/10.3390/polym13101658
APA StyleYu, C., Hu, K., Yang, Q., Wang, D., Zhang, W., Chen, G., & Kapyelata, C. (2021). Analysis of the Storage Stability Property of Carbon Nanotube/Recycled Polyethylene-Modified Asphalt Using Molecular Dynamics Simulations. Polymers, 13(10), 1658. https://doi.org/10.3390/polym13101658