Non-Covalent Interactions on Polymer-Graphene Nanocomposites and Their Effects on the Electrical Conductivity
Abstract
:1. Introduction
2. Method
2.1. Ab-Initio Calculations
2.2. Stochastic Simulation
- Deposition Process. The random deposition of the graphene nanoparticles over the polymer matrix within a specific percentage is achieved using a Metropolis Monte-Carlo model. The implementation of this model consists of three subparts: a first-neighbors function, the introduction of a training period, and a condition to generate the random deposition of graphene. The details are in the Supporting Information S1;
- The graphene-clustering Process. It is well known that the deposition process may produce clustered particles over the substrate. In particular, the graphene nanoparticles in a polymer tend to make clusters or fragments that fit together, forming a two-dimensional coverage. In the previous procedure, we could obtain a small concentration of graphene particles or isolate them. Thus, we establish a minimum number of connected graphene particles to be considered a cluster. The detailed algorithm is presented in the Supporting Information S1;
- Transmission probabilities. The transmission probability is measured using stochastic theory. The transition rate is defined as the probability to pass from the i-th to the j-th cluster. Then we defined the transition rate matrix or the intensity matrix (M) as a function of the Euclidean distance between clusters and each nanocomposite potential. The interaction potential (uij) between the i-th and the j-th clusters was expressed as an expansion of the van der Walls interaction potential proposed by Hamaker [48]. The interaction potential was tested with several terms of different nature (other terms of the power series as ≈ R−6, R−8, and R−12) [49]. In particular, a term of long-range and another of short-range nature [50] form the potential.
2.3. Experimental Data
3. Results and Discussion
3.1. Ab-Initio Results
3.2. Stochastic Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Duchene, P.; Chaki, S.; Ayadi, A.; Krawczak, P. A review of non-destructive techniques used for mechanical damage assessment in polymer composites. J. Mater. Sci. 2018, 53, 7915–7938. [Google Scholar] [CrossRef]
- Guo, X.; Choi, B.; Feng, A.; Thang, S. Polymer synthesis with more than one form of living polymerization method. Macromol. Rapid Commun. 2018, 39, 7915–7938. [Google Scholar] [CrossRef]
- Parlayici, S.; Avci, A.; Pehlivan, E. Electrospinning of polymeric nanofiber (nylon 6,6/graphene oxide) for removal of cr (vi): Synthesis and adsorption studies. J. Anal. Sci. Technol. 2019, 10, 13. [Google Scholar] [CrossRef] [Green Version]
- Lutz, J.; Lehn, J.M.; Meijer, E.W.; Matyjaszewski, K. From precision polymer to complex materials and systems. Nat. Rev. Mater. 2016, 1, 14. [Google Scholar] [CrossRef]
- Mora-Morales, J.; Sánchez-Leija, R.; Carranza, A.; Pojman, J.; del Monte, J.; Luna-Bárcenas, G. Free-radical polymerizations of and in deep eutectic solvents; green synthesis of functional materials. Prog. Polym. Sci. 2018, 78, 139–153. [Google Scholar] [CrossRef]
- Arakaki, A.; Shimizu, K.; Oda, M.; Sakamoto, T.; Nishimura, T.; Kato, T. Biomineralization-inspired synthesis of functional organic/inorganic hybrid materials; organic molecular control of self-organization of hybrids. Org. Biomol. Chem. 2015, 13, 974–989. [Google Scholar] [CrossRef] [Green Version]
- Kumar Thakur, V.; Kessler, M. Self-healing polymer nanocomposite materials: A review. Polymer 2015, 69, 369–383. [Google Scholar] [CrossRef] [Green Version]
- Mittal, G.; Dhand, V.; Yop Rhee, K.; Park, S.; Ro Lee, W. A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites. J. Ind. Eng. Chem. 2015, 21, 11–25. [Google Scholar] [CrossRef]
- Wang, X.; Jiang, M.; Zhou, Z.; Gou, J.; Hui, D. 3d printing of polymer matrix composites: A review and prospective. Compos. Part B Eng. 2017, 110, 442–458. [Google Scholar] [CrossRef]
- Zhan, C.; Yu, G.; Lu, Y.; Wang, L.; Wujcjk, E.; Wei, S. Conductive polymer nanocomposites: A critical review of modern advances devices. J. Mater. Chem. C 2017, 5, 1569–1585. [Google Scholar] [CrossRef]
- Fu, S.; Sun, Z.; Huang, P.; Li, Y.; Hu, N. Some basic aspects of polymer nanocomposites: A critical review. Nano Mater. Sci. 2019, 1, 2–30. [Google Scholar] [CrossRef]
- Klonos, P.; Tegopoulos, S.; Koutsiara, C.; Kontou, E.; Pissis, P.; Kyritsis, A. Effects of CNTs on thermal transitions, thermal diffusivity and electrical conductivity in nanocomposites: Comparison between an amorphous and a semicrystalline polymer matrix. Soft Matter 2019, 15, 1813–1824. [Google Scholar] [CrossRef] [PubMed]
- Othman, R.; Wilkinson, A. Chapter 2. Synthesis, Technology and Applications of Carbon Nanomaterials. In Micro and Nano Technologies, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar] [CrossRef]
- Shajari, S.; Arjmand, M.; Pawar, S.; Sundararaj, U.; Sudak, L. Synergistic effect of hybrid stainless steel fiber and carbon nanotubes on mechanical properties and electromagnetic interference shielding of polypropylene nanocomposites. Compos. Part B Eng. 2019, 165, 662–670. [Google Scholar] [CrossRef]
- Deshmuck, M.A.; Celiesiute, R.; Ramanaviciene, A.; Shirsat, M.D.; Ramanavicius, A. EDTA_PANI/SWCNTs nanocomposite modified electrode for electrochemical determination of copper (II), lead (II) and mercury (II) ions. Electrochim. Acta 2018, 259, 930–938. [Google Scholar] [CrossRef]
- Guan, L.; Zhao, L.; Wan, Y.; Tang, L. Three-dimensional graphene based polymer nanocomposites: Preparation, properties and applications. Nanoscales 2018, 31, 14788–14811. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhi, C. Thermally Conductive Electrically Insulating Polymer Nanocomposites, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar] [CrossRef]
- Shukla, V.; Raval, B.; Mishra, S.; Singh, M. Role of nanocomposites in future nanoelectronic information storage devices, Nanoelectronics, Devices, Circuits and Systems. Adv. Nanomater. 2019, 1, 399–431. [Google Scholar] [CrossRef]
- Joshi, M.; Chatterjee, U. Polymer nanocomposite: An advanced material for aerospace applications. In Advances Composite Materials for Aerospace Engineering; Woodhead Publishing: Sawston, UK, 2016; Volume 1, pp. 241–264. [Google Scholar] [CrossRef]
- Miculescu, M.; Kumar Thakur, V.; Miculescu, F.; Voicu, S.I. Graphene-based polymer nanocomposite membranes: A review. Polym. Adv. Technol. 2016, 27, 844–859. [Google Scholar] [CrossRef]
- Kumar, S.; Krishnan, S.; Kumar Samal, S.; Mohanty, S.; Kumar Nayak, S. Polymer Nanocomposites Coating for Anticorrosion Application. In Polymer Nanocomposites for Advanced Engineering and Military Applications; IGI Global: Hershey, PA, USA, 2019. [Google Scholar] [CrossRef]
- Yang, C.; Wei, H.; Guan, L.; Guo, Y.; Wang, J.; Yan, X.; Zhang, X.; Wei, S.; Guo, Z. Polymer nanocomposites for energy storage, energy saving, and anticorrosion. J. Mater. Chem. A 2015, 3, 14929–14941. [Google Scholar] [CrossRef]
- Shayeh, J.; Ehsani, A.; Ganjali, M.; Norouzi, P.; Jaleh, B. Conductive polymer/reduced graphene oxide/au nano particles as efficient compos-ite materials in electrochemical supercapacitors. Appl. Surf. Sci. 2015, 353, 594–599. [Google Scholar] [CrossRef]
- Yanik, M.; Yigit, E.; Sahmetlioglu, E. Magnetic conductive polymer-graphene nanocomposites based supercapacitors for energy storage. Energy 2017, 138, 883–889. [Google Scholar] [CrossRef]
- Cichosz, S.; Masek, A.; Zaborski, M. Polymer-based sensors: A review. Polym. Test. 2018, 67, 342–348. [Google Scholar] [CrossRef]
- Zor, E.; Bingol, H.; Ramanavicience, A.; Ramanavicius, A.; Ersoz, M. An electrochemical and computational study for discrimination of D- and L-Cystine by reduced graphene oxide/β-cyclodextrin. Analyst 2015, 140, 313–321. [Google Scholar] [CrossRef]
- Del Castillo, R.; Ramos, E.; Martinez, A. Interaction of graphene with antipsychotic drugs: Is there any charge transfer process? J. Comput. Chem. 2021, 42, 60–65. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, M. Polymer nanocomposites a comparison between carbon nanotubes, graphene, and clay as nanofillers. Materials 2016, 9, 262. [Google Scholar] [CrossRef]
- Sadeghi, S.; Arjmand, M.; Otero Navas, I.; Yazdi, A.; Sundararaj, U. Effect of nanofiller geometry on network formation in polymeric nanocomposites: Comparison of rheological and electrical properties of multiwalled carbon nanotube and graphene nanoribbon. Macromolecules 2017, 50, 3954–3967. [Google Scholar] [CrossRef]
- Zhao, F.; Zhang, G.; Zhao, S.; Cui, J.; Gao, A.; Yan, Y. Fabrication of pristine graphene-based conductive polystyrene composites towards high performance and light-weight. Compos. Sci. Technol. 2018, 504, 232–239. [Google Scholar] [CrossRef]
- Del Castillo, R.; del Castillo, L.; Calles, A.; Compañ, V. Experimental and computational conductivity study of multilayer graphene in polypropylene nanocomposites. J. Mater. Chem. C. 2018, 6, 7232–7241. [Google Scholar] [CrossRef]
- Stankovich, S.; Dikin, D.; Dommett, G.; Kohlhaas, K.M.; Zimmey, E.; Stach, E.A.; Piner, D.; Nguyen, S.; Ruoff, R. Graphene-based composite materials. Nature 2006, 442, 282–286. [Google Scholar] [CrossRef]
- Shtein, M.; Nadiv, R.; Buzaglo, M.; Kahil, K.; Regev, O. Thermally conductive graphene-polymer composites: Size, percolation, and synergy effects. Chem. Mater. 2015, 27, 2100–2106. [Google Scholar] [CrossRef]
- Afiqah, N.; Radzuan, M.; Sulong, A.B.; Sahari, J. A review of electrical conductivity models for conductive polymer composite. Int. J. Hydrog. Energy 2017, 42, 9262–9273. [Google Scholar]
- Mamunya, E.P.; Davidenko, V.V.; Lebedev, E.V. Percolation conductivity or polymer composites filled with dispersed conductive filler. Polym. Compos. 1995, 16, 319–324. [Google Scholar] [CrossRef]
- Ravindren, R.; Mondal, S.; Nath, K.; ChDas, N. Prediction of electrical conductivity, double percolation limit and electromagnetic interference shielding effectiveness of copper nanowire filled flexible polymer blend nanocomposites. Compos. Part B Eng. 2019, 164, 559–569. [Google Scholar] [CrossRef]
- Biswas, S.; Roy, S.; Ray, P. Nucleation versus percolation: Scaling criterion for failure in disordered solids. Phys. Rev. E 2015, 91, 050105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gorrasi, G.; Romeo, V.; Sannino, D.; Sarno, M.; Ciambelli, P.; Vittoria, V.; De Vivo, B.; Tucci, V. Carbon nanotube induced structural and physical property transitions of syndiotactic polypropylene. Nanotechnology 2007, 18, 1–11. [Google Scholar] [CrossRef]
- Spitalsky, Z.; Tasis, D.; Papagelis, K.; Galiotis, C. Carbon nanotube-polymer composites: Chemistry, processing, mechanical and electrical properties. Prog. Polym. Sci. 2010, 35, 357–401. [Google Scholar] [CrossRef]
- Marsden, A.; Papageorgiou, D.; Vallés, C.; Liscio, A.; Palermo, V.; Bissett, M.; Young, I.; Kinloch, R.J. Electrical percolation in graphene-polymer composites. 2D Mater. 2018, 5, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Brandao, A.; Soares, J.; Pinto, J.; Alberton, A. When polymer reaction engineers play Dice: Applications of monte carlo models in PRE. Macromol. React. Eng. 2015, 9, 141–185. [Google Scholar] [CrossRef]
- Singh, V.; Shirmardi, S.; Medhat, M.; Badiger, N. Determination of mass atenuation coefficient for some polymers using monte carlo simulation. Vacuum 2015, 199, 284–288. [Google Scholar] [CrossRef]
- Gu, H.; Wang, J.; Yu, C. Three-dimensional modeling of percolation behavior of electrical conductivity in segregated network polymer nanocomposites using monte carlo method. Adv. Mater. 2016, 5, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Zabihi, Z.; Araghi, H. Monte carlo simulations of effective electrical conductivity of graphene/poly (methyl metrhacrylate) nanocomposite: Landauer-buttiker approach. Synth. Met. 2016, 217, 87–93. [Google Scholar] [CrossRef]
- Ernzerhof, M.; Scuseria, G.E. Assessment of the perdew-burke-ernzerhof exchange-correlation functional. J. Chem. Phys. 1999, 10, 5029–5036. [Google Scholar] [CrossRef] [Green Version]
- Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456–1465. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian09 Revision E.01; Gaussian Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
- Hamaker, H. The london-van der waals attraction between spherical particles. Physica 1937, 4, 1058–1072. [Google Scholar] [CrossRef]
- Musher, J.I. Calculation of london-van der waals energies. J. Chem. Phys. 1963, 39, 2409–2417. [Google Scholar] [CrossRef]
- Ambrosetti, A.; Ferri, N.; DiStasio, J.; Tkatchenko, A. Wavelike charge density fluctuations and van der waals interactions at the nanoscales. Science 2016, 362, 1171–1176. [Google Scholar] [CrossRef] [Green Version]
- Blat, M.; Nielsen, B. Matrix-Exponential Distributions in Applied Probability, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Qi, X.Y.; Yan, D.; Jiang, Z.; Cao, Y.K.; Yu, Z.Z.; Yavari, F.; Koratkar, N. Enhanced electrical conductivity in polystyrene nanocomposites at ultra-low graphene content. ACS Appl. Mater. Interfaces 2011, 3, 3130–3133. [Google Scholar] [CrossRef]
- Zhang, H.; Zheng, W.; Qi, Y.; Yang, Y.; Wang, J.; Lu, Z.; Ji, G.; Yu, Z. Electrically conductive polyethylene terephthalate/graphene nanocomposites prepared by melt compounding. Polymer 2010, 51, 1191–1196. [Google Scholar] [CrossRef]
- Gaikward, S.; Goyal, R. Effect of manufacturing processes on percolation threshold and electrical conductivity of polymer/multilayers graphene nanocomposites. Diam. Relat. Mater. 2018, 85, 13–17. [Google Scholar] [CrossRef]
- Liao, K.; Park, Y.; Abdala, A.; Macosko, C. Aqueous reduced graphene/thermoplastic polyurethane nanocomposites. Polymer 2013, 54, 4555–4559. [Google Scholar] [CrossRef]
- Chee, W.K.; Lim, H.N.; Huang, N.M.; Harrison, I. Nanocomposites of Graphene/Polymers: A Review. RSC Adv. 2015, 5, 68014–68051. [Google Scholar] [CrossRef]
- Del Castillo, R.M.; Sansores, L.E. Study of the electronic structure of ag, au, pt and pd clusters adsorption on graphene and their effect on conductivity. Eur. Phys. J. B 2015, 88, 248. [Google Scholar] [CrossRef]
- Lifshitz, E.M.; Kosevich, A.M.; Pitaevskii, L.P. Theory of Elasticity, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 1986. [Google Scholar] [CrossRef]
- Sauceda, H.E.; Vassilev-Galindo, V.; Chmiela, S.; Müller, K.R.; Tkatchenko, A. Dynamical strengthening of covalent and non-covalent molecular interactions by nuclear quantum effects at finite temperature. Nat. Commun. 2021, 12, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Markland, T.; Ceriotti, M. Nuclear quantum effects enter the mainstream. Nat. Rev. Chem. 2018, 2, 109. [Google Scholar] [CrossRef] [Green Version]
- Tzioufas, A. The central limit theorem for supercritical oriented percolation in two dimensions. J. Stat. Phys. 2018, 171, 802–821. [Google Scholar] [CrossRef] [Green Version]
- Johansson, K. The two-time distribution in geometric last-passage percolation. Probab. Theory Relat. Fields 2019, 175, 802–821. [Google Scholar] [CrossRef] [Green Version]
- Camia, F.; Fontes, L.R.G.; Newman, C.M. The scaling limit geometry of near-critical 2d percolation. J. Stat. Phys. 2006, 125, 1155–1171. [Google Scholar] [CrossRef] [Green Version]
- Martin, J.B. Limiting shape for directed percolation models. Ann. Probab. 2004, 32, 2908–2937. [Google Scholar] [CrossRef] [Green Version]
- Das, M.; Green, F. Landauer formula without landauer’s assumptions. J. Phys. Condens. Matter 2013, 15, L687–L693. [Google Scholar] [CrossRef] [Green Version]
- Potts, J.; Dreyer, D.; Bielawski, C.; Ruo, R. Graphene-based polymer nanocomposites. Polymer 2011, 52, 25. [Google Scholar] [CrossRef] [Green Version]
System | Eads (eV) | Gap (eV) |
---|---|---|
PS-graphene | −0.843 | 0.60 |
PET-graphene | −0.880 | 0.20 |
PEK-graphene | −0.893 | 0.19 |
PP-graphene | −0.509 | 0.91 |
PU-graphene | −0.5011 | 0.90 |
System | Radius in Semi-Minor Axis (nm) | Radius in Semi-Major Axis (nm) | Action Radius (nm) |
---|---|---|---|
PS-graphene | 0.22 | 0.37 | 0.295 |
PET-graphene | 0.18 | 0.23 | 0.205 |
PEK-graphene | 0.07 | 0.245 | 0.157 |
PP-graphene | 0.07 | 0.18 | 0.125 |
PU-graphene | 0.07 | 0.07 | 0.07 |
System | R (nm) | PT (% of Graphene) | PT Exp. (% of Graphene) | Error % |
---|---|---|---|---|
PS-graphene | 0.3 | 10.13 | 10.07 [44] | 0.6 |
PET-graphene | 0.2 | 12.82 | 11.96 [45] | 7 |
PEK-graphene | 0.15 | 16.05 | 16.7645 [46] | 1.43 |
PP-graphene | 0.12 | 18.26 | 18.3 [27] | 0.3 |
PU-graphene | 0.07 | 22.17 | 22.45 [47] | 1.2 |
System | σmax (S/m) | σmax − σmin (S/m) | PT (%) | dx (%) | 〈R2〉 |
---|---|---|---|---|---|
PS-graphene | 0.37 | 0.36 | 10.13 | 1.15 | 0.986 |
PET-graphene | 0.16 | 0.1572 | 12.83 | 1.78 | 0.997 |
PEK-graphene | 0.0311 | 0.0306 | 16.05 | 1.27 | 0.9902 |
PP-graphene | 0.00295 | 1.0792 | 18.26 | 1.42 | 0.975 |
PU-graphene | 0.1582 | 0.15002 | 22.17 | 0.75 | 0.994 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Apátiga, J.L.; del Castillo, R.M.; del Castillo, L.F.; Calles, A.G.; Espejel-Morales, R.; Favela, J.F.; Compañ, V. Non-Covalent Interactions on Polymer-Graphene Nanocomposites and Their Effects on the Electrical Conductivity. Polymers 2021, 13, 1714. https://doi.org/10.3390/polym13111714
Apátiga JL, del Castillo RM, del Castillo LF, Calles AG, Espejel-Morales R, Favela JF, Compañ V. Non-Covalent Interactions on Polymer-Graphene Nanocomposites and Their Effects on the Electrical Conductivity. Polymers. 2021; 13(11):1714. https://doi.org/10.3390/polym13111714
Chicago/Turabian StyleApátiga, Jorge Luis, Roxana Mitzayé del Castillo, Luis Felipe del Castillo, Alipio G. Calles, Raúl Espejel-Morales, José F. Favela, and Vicente Compañ. 2021. "Non-Covalent Interactions on Polymer-Graphene Nanocomposites and Their Effects on the Electrical Conductivity" Polymers 13, no. 11: 1714. https://doi.org/10.3390/polym13111714
APA StyleApátiga, J. L., del Castillo, R. M., del Castillo, L. F., Calles, A. G., Espejel-Morales, R., Favela, J. F., & Compañ, V. (2021). Non-Covalent Interactions on Polymer-Graphene Nanocomposites and Their Effects on the Electrical Conductivity. Polymers, 13(11), 1714. https://doi.org/10.3390/polym13111714