Application of Electrospun Nanofibers for Fabrication of Versatile and Highly Efficient Electrochemical Devices: A Review
Abstract
:1. Introduction
2. Electrospinning Process
3. Electrolytic Cells
4. Batteries
4.1. Electrospun Cathode Materials
4.2. Electrospun Anode Materials
4.3. Electrospun Separator
4.4. Electrospun Electrolyte
5. Fuel Cells
5.1. Electrospun Cathode Materials
5.2. Electrospun Anode Materials
5.3. Electrospun Membranes
6. Supercapacitors
Electrospun Fibers as Supercapacitor Electrode Materials
7. Electrochemical Solar Cells
8. Sensors
8.1. Electrochemical Sensors Based on Electrospun Polymeric Fibers
8.2. Electrochemical Sensors Based on Carbon Nanofibers
8.3. Electrochemical Sensors Based on Metal and Metal Oxide Nanofibers
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Virkar, A.V. A model for degradation of electrochemical devices based on linear non-equilibrium thermodynamics and its application to lithium ion batteries. J. Power Sources 2011, 196, 5970–5984. [Google Scholar] [CrossRef]
- Molaiyan, P.; Witter, R. Mechanochemical synthesis of solid-state electrolyte Sm1−xCaxF3−x for batteries and other electrochemical devices. Mater. Lett. 2019, 244, 22–26. [Google Scholar] [CrossRef]
- Zhao, L.; Hu, Y.-S.; Li, H.; Wang, Z.X.; Chen, L.Q. Porous Li4Ti5O12 Coated with N-Doped Carbon from Ionic Liquids for Li-Ion Batteries. Adv. Mater. 2011, 23, 1385–1388. [Google Scholar] [CrossRef]
- Garcia, E.M.; Taroco, H.A.; Matencio, T.; Domingues, R.Z.; dos Santos, J.A.F.; Ferreira, R.V.; Lorencon, E.; Lima, D.Q.; de Freitas, B.J.G. Electrochemical recycling of cobalt from spent cathodes of lithium-ion batteries: Its application as supercapacitor. J. Appl. Electrochem. 2012, 42, 361–366. [Google Scholar] [CrossRef]
- Chen, G.Z. Supercapacitor and supercapattery as emerging electrochemical energy stores. Int. Mater. Rev. 2017, 62, 173–202. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.T.; Zhao, X.S. On the configuration of supercapacitors for maximizing electrochemical performance. ChemSusChem 2012, 5, 818–841. [Google Scholar] [CrossRef]
- Lucia, U. Overview on fuel cells. Renew. Sustain. Energy Rev. 2014, 30, 164–169. [Google Scholar] [CrossRef]
- Jacobson, A.J. Materials for solid oxide fuel cells. Chem. Mater. 2010, 22, 660–674. [Google Scholar] [CrossRef]
- Elabd, Y.A.; Hickner, M.A. Block copolymers for fuel cells. Macromolecules 2011, 44, 1–11. [Google Scholar] [CrossRef]
- Kumar, S.; Bukkitgar, S.D.; Singh, S.; Pratibha; Singh, V.; Reddy, K.R.; Shetti, N.P.; Reddy, C.V.; Sadhu, V.; Naveen, S. Electrochemical sensors and biosensors based on graphene functionalized with metal oxide nanostructures for healthcare applications. Chem. Sel. 2019, 4, 5322–5337. [Google Scholar] [CrossRef]
- Hernández-Rodríguez, J.F.; Rojas, D.; Escarpa, A. Electrochemical sensing directions for next-generation healthcare: Trends, challenges, and frontiers. Anal. Chem. 2021, 93, 167–183. [Google Scholar] [CrossRef] [PubMed]
- Bae, C.W.; Toi, P.T.; Kim, B.Y.; Lee, W.I.; Lee, H.B.; Hanif, A.; Lee, E.H.; Lee, N.-E. Fully Stretchable Capillary Microfluidics-Integrated Nanoporous Gold Electrochemical Sensor for Wearable Continuous Glucose Monitoring. ACS Appl. Mater. Interfaces 2019, 11, 14567–14575. [Google Scholar] [CrossRef] [PubMed]
- Bay, L.; West, K.; Winther-Jensen, B.; Jacobsen, T. Electrochemical reaction rates in a dye-sensitised solar cell—the iodide/tri-iodide redox system. Sol. Energy Mater. Sol. Cells 2006, 90, 341–351. [Google Scholar] [CrossRef]
- Ehrmann, A.; Blachowicz, T. Recent coating materials for textile-based solar cells. Aims Mater. Sci. 2019, 6, 234–251. [Google Scholar] [CrossRef]
- Hatamvand, M.; Kamrani, E.; Lira-Cantú, M.; Madsen, M.; Patil, B.R.; Vivo, P.; Mehmood, M.S.; Numan, A.; Ahmed, I.; Zhan, Y.Q. Recent advances in fiber-shaped and planar-shaped textile solar cells. Nano Energy 2020, 71, 104609. [Google Scholar] [CrossRef]
- McDowell, M.T.; Cui, Y. Single Nanostructure Electrochemical Devices for Studying Electronic Properties and Structural Changes in Lithiated Si Nanowires. Adv. Energy Mater. 2011, 1, 894–900. [Google Scholar] [CrossRef]
- Guo, Y.-G.; Hu, J.-S.; Wan, L.-J. Nanostructured materials for electrochemical energy conversion and storage devices. Adv. Mater. 2008, 20, 2878–2887. [Google Scholar] [CrossRef]
- Zhou, M.; Xu, Y.; Lei, Y. Heterogeneous nanostructure array for electrochemical energy conversion and storage. Nano Today 2018, 20, 33–57. [Google Scholar] [CrossRef]
- Greiner, A.; Wendorff, J.H. Electrospinning: A Fascinating Method for the Preparation of Ultrathin Fibers. Angew. Chem. Int. Ed. 2007, 46, 5670–5703. [Google Scholar] [CrossRef]
- Grothe, T.; Großerhode, C.; Hauser, T.; Kern, P.; Stute, K.; Ehrmann, A. Needleless electrospinning of PEO nanofibers mats. Adv. Eng. Res. 2017, 102, 54–58. [Google Scholar]
- Yadav, D.; Amini, F.; Ehrmann, A. Recent advances in carbon nanofibers and their applications—A review. Eur. Polym. J. 2020, 138, 109963. [Google Scholar] [CrossRef]
- Yarin, A.L.; Zussman, E. Upward needleless electrospinning of multiple nanofibers. Polymer 2004, 45, 2977–2980. [Google Scholar] [CrossRef]
- Wang, X.; Niu, H.T.; Wang, X.G.; Lin, T. Needleless electrospinning of uniform nanofibers using spiral coil spinnerets. J. Nanomater. 2012, 2012, 785920. [Google Scholar] [CrossRef]
- Liu, Y.Q.; Zhang, X.P.; Xia, Y.N.; Yang, H. Magnetic-field-assisted electrospinning of aligned straight and wavy polymeric nanofibers. Adv. Mater. 2010, 22, 2454–2457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Molnar, K.; Nagy, Z.K. Corona-electrospinning: Needleless method for high-throughput continuous nanofiber production. Eur. Polym. J. 2016, 74, 279–286. [Google Scholar] [CrossRef]
- Klinkhammer, K.; Seiler, N.; Grafahrend, D.; Gerardo-Nava, J.; Mey, J.; Brook, G.A.; Möller, M.; Dalton, P.D.; Klee, D. Deposition of electrospun fibers on reactive substrates for in vitro investigations. Tissue Eng Part. C 2009, 15, 77–85. [Google Scholar] [CrossRef] [PubMed]
- Mamun, A. Review of possible applications of nanofibrous mats for wound dressings. Tekstilec 2019, 62, 89–100. [Google Scholar] [CrossRef]
- Wehlage, D.; Blattner, H.; Mamun, A.; Kutzli, I.; Diestelhorst, E.; Rattenholl, A.; Gudermann, F.; Lütkemeyer, D.; Ehrmann, A. Cell growth on electrospun nanofiber mats from polyacrylonitrile (PAN) blends. Aims Bioeng. 2020, 7, 43–54. [Google Scholar] [CrossRef]
- Mamun, A.; Trabelsi, M.; Klöcker, M.; Storck, J.L.; Böttjer, R.; Sabantina, L. Needleless electrospun polyacrylonitrile/konjac glucomannan nanofiber mats. J. Eng. Fibers Fabr. 2020, 15, 1558925020964806. [Google Scholar]
- Ippel, B.D.; Van Haaften, E.E.; Bouten, C.V.; Dankers, P.Y. Impact of Additives on Mechanical Properties of Supramolecular Electrospun Scaffolds. ACS Appl. Polym. Mater. 2020, 2, 3742–3748. [Google Scholar] [CrossRef]
- Topuz, F.; Holtzl, T.; Szekely, G. Scavenging organic micropollutants from water with nanofibrous hypercrosslinked cyclodextrin membranes derived from green resources. Chem. Eng. J. 2021, 419, 129443. [Google Scholar] [CrossRef]
- Mahdieh, Z.; Mitra, S.; Holian, A. Core–Shell Electrospun Fibers with an Improved Open Pore Structure for Size-Controlled Delivery of Nanoparticles. Acs Appl. Polym. Mater. 2020, 2, 4004–4015. [Google Scholar] [CrossRef]
- Yim, V.M.-W.; Lo, A.S.-W.; Deka, B.J.; Guo, J.; Kharraz, J.A.; Horváth, I.T.; An, A.K. Molecular engineering low-surface energy membranes by grafting perfluoro-tert-butoxy chains containing fluorous silica aerogels. Green Chem. 2020, 22, 3283–3295. [Google Scholar] [CrossRef]
- Topuz, F.; Abdulhamid, M.A.; Nunes, S.P.; Szekely, G. Hierarchically porous electrospun nanofibrous mats produced from intrinsically microporous fluorinated polyimide for the removal of oils and non-polar solvents. Environ. Sci. Nano 2020, 7, 1365–1372. [Google Scholar] [CrossRef]
- Yalcinkaya, F.; Siekierka, A.; Bryjak, M. Surface modification of electrospun nanofibrous membranes for oily wastewater separation. RSC Adv. 2017, 7, 56704–56712. [Google Scholar] [CrossRef] [Green Version]
- Roche, R.; Yalcinkaya, F. Incorporation of PVDF nanofibre multilayers into functional structure for filtration applications. Nanomaterials 2018, 8, 771. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kozior, T.; Mamun, A.; Trabelsi, M.; Wortmann, M.; Sabantina, L.; Ehrmann, A. Electrospinning on 3D printed polymers for mechanically stabilized filter composites. Polymers 2019, 11, 2034. [Google Scholar] [CrossRef] [Green Version]
- Boyraz, E.; Yalcinkaya, F. Hydrophilic surface-modified PAN nanofibrous membranes for efficient oil-water emulsion separation. Polymers 2021, 13, 197. [Google Scholar] [CrossRef]
- Wu, W.-N.; Yu, H.-F.; Yeh, M.-H.; Ho, K.-C. Incorporating electrospun nanofibers of TEMPO-grafted PVDF-HFP polymer matrix in viologen-based electrochromic devices. Sol. Energy Mater. Sol. Cells 2020, 208, 110375. [Google Scholar] [CrossRef]
- Haider, A.; Haider, S.; Kang, I.-K. A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arab. J. Chem. 2018, 11, 1165–1188. [Google Scholar] [CrossRef]
- Ibrahim, H.M.; Klingner, A. A review on electrospun polymeric nanofibers: Production parameters and potential applications. Polym. Test. 2020, 90, 106647. [Google Scholar] [CrossRef]
- Rodríguez-Tobías, H.; Morales, G.; Grande, D. Comprehensive review on electrospinning techniques as versatile approaches toward antimicrobial biopolymeric composite fibers. Mater. Sci. Eng. C 2019, 101, 306–322. [Google Scholar] [CrossRef]
- Banitaba, S.N.; Semnani, D.; Heydari-Soureshjani, E.; Rezaei, B.; Ensafi, A.A. The effect of concentration and ratio of ethylene carbonate and propylene carbonate plasticizers on characteristics of the electrospun PEO-based electrolytes applicable in lithium-ion batteries. Solid State Ion. 2020, 347, 115252. [Google Scholar] [CrossRef]
- Sadek, A.Z.; Baker, C.O.; Powell, D.A.; Wlodarski, W.; Kaner, R.B.; Kalantar-zadeh, K. Polyaniline nanofiber based surface acoustic wave gas sensors—Effect of nanofiber diameter on H2 response. IEEE Sens. J. 2007, 7, 213–218. [Google Scholar] [CrossRef]
- Şener, A.G.; Altay, A.S.; Altay, F. Effect of voltage on morphology of electrospun nanofibers. In Proceedings of the 2011 7th International Conference on Electrical and Electronics Engineering (ELECO), Bursa, Turkey, 1–4 December 2011; pp. I-324–I-328. [Google Scholar]
- Shao, H.; Fang, J.; Wang, H.; Lin, T. Effect of electrospinning parameters and polymer concentrations on mechanical-to-electrical energy conversion of randomly-oriented electrospun poly (vinylidene fluoride) nanofiber mats. RSC Adv. 2015, 5, 14345–14350. [Google Scholar] [CrossRef]
- Beachley, V.; Wen, X. Effect of electrospinning parameters on the nanofiber diameter and length. Mater. Sci. Eng. C 2009, 29, 663–668. [Google Scholar] [CrossRef] [Green Version]
- Stachewicz, U.; Szewczyk, P.K.; Kruk, A.; Barber, A.H.; Czyrska-Filemonowicz, A. Pore shape and size dependence on cell growth into electrospun fiber scaffolds for tissue engineering: 2D and 3D analyses using SEM and FIB-SEM tomography. Mater. Sci. Eng. C 2019, 95, 397–408. [Google Scholar] [CrossRef] [PubMed]
- Tarus, B.; Fadel, N.; Al-Oufy, A.; El-Messiry, M. Effect of polymer concentration on the morphology and mechanical characteristics of electrospun cellulose acetate and poly(vinyl chloride) nanofiber mats. Alex. Eng. J. 2016, 55, 2975–2984. [Google Scholar] [CrossRef] [Green Version]
- Angammana, C.J.; Jayaram, S.H. Analysis of the effects of solution conductivity on electrospinning process and fiber morphology. IEEE Trans. Ind. Appl. 2011, 47, 1109–1117. [Google Scholar] [CrossRef]
- Marshall, R.J.; Walsh, F.C. A review of some recent electrolytic cell designs. Surf. Technol. 1985, 24, 45–77. [Google Scholar] [CrossRef]
- Furuya, N.; Yamazaki, T.; Shibata, M. High performance Ru-Pd catalysts for CO2 reduction at gas-diffusion electrodes. J. Electroanal. Chem. 1997, 431, 39–41. [Google Scholar] [CrossRef]
- Hara, K.; Sakata, T. Electrocatalytic formation of CH4 from CO2 on a Pt gas diffusion electrode. J. Electrochem. Soc. 1997, 144, 539–545. [Google Scholar] [CrossRef]
- Yamamoto, T.; Tryk, D.A.; Fujishima, A.; Ohata, H. Production of syngas plus oxygen from CO2 in a gas-diffusion electrode-based electrolytic cell. Electrochim. Acta 2002, 47, 3327–3334. [Google Scholar] [CrossRef]
- Issabayeva, G.; Aroua, M.K.; Sulaiman, N.M. Electrodeposition of copper and lead on palm shell activated carbon in a flow-through electrolytic cell. Desalination 2006, 194, 192–201. [Google Scholar] [CrossRef]
- Bertazzoli, R.; Widner, R.C.; Lanza, M.R.V.; Di Iglia, R.A.; Sousa, M.F.B. Electrolytic removal of metals using a flow-through cell with a reticulated vitreous carbon cathode. J. Braz. Chem. Soc. 1997, 8, 487–493. [Google Scholar] [CrossRef] [Green Version]
- Brennsteiner, A.; Zondlo, J.W.; Stiller, A.H.; Stansberry, P.G.; Tian, D.C.; Xu, Y. Environmental pollution control devices based on novel forms of carbon: Heavy metals. Energy Fuels 1997, 11, 348–353. [Google Scholar] [CrossRef]
- Abghou, Y.; Sigtryggsson, S.B.; Skúlason, E. Biomimetic nitrogen fixation catalyzed by transition metal sulfide surfaces in an electrolytic cell. ChemSusChem 2019, 12, 4265–4273. [Google Scholar] [CrossRef] [PubMed]
- Jeong, J.-Y.; Kim, H.-K.; Kim, J.-H.; Park, J.-Y. Electrochemical removal of nitrate using ZVI packed bed bipolar electrolytic cell. Chemosphere 2012, 89, 172–178. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.H.; Zhang, T.C. Enhancement of nitrate reduction in Fe0-packed columns by selected cations. J. Environ. Eng. 2005, 131, 603–611. [Google Scholar] [CrossRef]
- Zhu, H.B.; Wang, L.; Chen, Y.M.; Li, G.Y.; Li, H.; Tang, Y.; Wang, P.Y. Electrochemical depolymerization of lignin into renewable aromatic compounds in a nondiaphragm electrolytic cell. RSC Adv. 2014, 4, 29917. [Google Scholar] [CrossRef]
- Manesh, K.M.; Santhosh, P.; Gopalan, A.; Lee, K.-P. Electrospun poly(vinylidene fluoride)/poly(aminophenylboronic acid) composite nanofibrous membrane as a novel glucose sensor. Anal. Biochem. 2007, 360, 189–195. [Google Scholar] [CrossRef]
- Ignatova, M.; Manolova, N.; Rashkov, I. Novel antibacterial fibers of quaternized chitosan and poly(vinyl pyrrolidone) prepared by electrospinning. Eur. Polym. J. 2007, 43, 1112–1122. [Google Scholar] [CrossRef]
- Penchev, H.; Paneva, D.; Manolova, N.; Rashkov, I. Hybrid nanofibrous yarns based on N-carboxyethylchitosan and silver nanoparticles with antibacterial activity prepared by self-bundling electrospinning. Carbohydr. Res. 2010, 345, 2374–2380. [Google Scholar] [CrossRef]
- Toncheva, A.; Paneva, D.; Manolova, N.; Rashkov, I.; Mita, L.; Crispi, S.; Damiano, G.M. Dual vs. single spinneret electrospinning for the preparation of dual drug containing non-woven fibrous materials. Colloids Surf. A Physicochem. Eng. Asp. 2013, 439, 176–183. [Google Scholar] [CrossRef]
- Liu, F.F.; Wang, X.H.; Chen, T.T.; Zhang, N.Y.; Wie, Q.; Tian, J.L.; Wang, Y.B.; Ma, C.; Lu, Y. Hydroxyapatite/silver electrospun fibers for anti-infection and osteoinduction. J. Adv. Res. 2020, 21, 91–102. [Google Scholar] [CrossRef]
- Soto-Nieto, F.; Farías, R.; Reyes-López, S.Y. Sol-gel and electrospinning synthesis of silica-hydroxyapatite-silver nanofibers for SEIRAS and SERS. Coatings 2020, 10, 910. [Google Scholar] [CrossRef]
- Sun, Y.Y.; Wang, G.; Dong, Y.; Yian, B.Q.; Meng, Y.L.; Qiu, J.S. Electrolysis removal of methyl orange dye from water by electrospun activated carbon fibers modified with carbon nanotubes. Chem. Eng. J. 2014, 253, 73–77. [Google Scholar] [CrossRef]
- Li, L.; Liu, Y.; Li, Y.F. Electrochemical degradation of methylene blue aqueous solution on electrospinning nanofibers (ESF) electrodes. Adv. Mater. Res. 2013, 807–809, 1362–1367. [Google Scholar] [CrossRef]
- Hwang, I.-H.; Choi, S.-Y.; Lee, S.H.; Lee, Y.-H.; Lee, S.M.; Kim, S.-C.; Kim, S.S. Electrospinning method-based CNF properties analysis and its application to electrode in electrolysis process. Appl. Chem. Eng. 2017, 28, 257–262. [Google Scholar]
- Kim, J.-C.; Oh, S.-I.; Kang, W.H.; Yoo, H.-Y.; Lee, J.S.; Kim, D.-W. Superior anodic oxidation in tailored Sb-doped SnO2/RuO2 composite nanofibers for electrochemical water treatment. J. Catal. 2019, 374, 118–126. [Google Scholar] [CrossRef]
- Chen, Y.Y.; Wrubel, J.A.; Klein, W.E.; Kabir, S.; Smith, W.A.; Neyerlin, K.C.; Deutsch, T.G. High-performance bipolar membrane development for improved water dissociation. ACS Appl. Polym. Mater. 2020, 2, 4559–4569. [Google Scholar] [CrossRef]
- Wang, Z.M.; Liu, P.; Cao, Y.P.; Ye, F.; Xu, C.; Du, X.Z. Characterization and electrocatalytic properties of electrospun Pt-IrO2 nanofiber catalysts for oxygen evolution reaction. Internat. J. Energy Res. 2021, 45, 5841–5851. [Google Scholar] [CrossRef]
- Mugheri, A.Q.; Ali, S.; Narejo, G.S.; Otho, A.A.; Lal, R.; Abro, M.A.; Memon, S.H.; Abbasi, F. Electrospun fibrous active bimetallic electrocatalyst for hydrogen evolution. Internat. J. Hydrogen Energy 2020, 45, 21502–21511. [Google Scholar] [CrossRef]
- Aljabour, A. Long-lasting electrospun Co3O4 nanofibers for electrocatalytic oxygen evolution reaction. Chem. Sel. 2020, 5, 7482–7487. [Google Scholar]
- Zhang, J.X.; Sun, X.P.P.; Wei, P.; Lu, G.C.; Sun, S.X.; Xu, Y.; Fang, C.; Li, Q.; Han, J.T.T. Bimetallic Co/Mo2C nanoparticles embedded in 3D hierarchical N-doped carbon heterostructures as highly efficient electrocatalysts for water splitting. ChemCatChem 2020, 12, 3737–3745. [Google Scholar] [CrossRef]
- Sankar, S.S.; Karthick, K.; Sangeetha, K.; Gill, R.S.; Kundu, S. Annexation of nickel vanadate (Ni3V2O8) nanocubes on nanofibers: An excellent electrocatalyst for water oxidation. ACS Sustain. Chem. Eng. 2020, 11, 4572–4579. [Google Scholar] [CrossRef]
- Xie, L.C.; Shu, Y.; Hu, Y.Y.; Cheng, J.H.; Chen, Y.C. SWNTs-PAN/TPU/PANI composite electrospun nanofiber membrane for point-of-use efficient electrochemical disinfection: New strategy of CNT disinfection. Chemosphere 2020, 251, 126286. [Google Scholar] [CrossRef]
- Zaher, A.; El Rouby, W.M.A.; Barakat, N.A.M. Influences of tungsten incorporation, morphology and calcination temperature on the electrolytic activity of Ni/C nanostructures toward urea elimination from wastewaters. Intern. J. Hydrogen Energy 2020, 45, 8082–8093. [Google Scholar] [CrossRef]
- Zheng, X.J.; Zhang, Z.H.; Li, X.M.; Ding, C.F. MnO-carbon nanofiber composite material toward electro-chemical N2 fixation under ambient conditions. New J. Chem. 2019, 43, 7932–7935. [Google Scholar] [CrossRef]
- Barré, A.; Deguilhem, B.; Grolleau, S.; Gérard, M.; Suard, F.; Riu, D. A review on lithium-ion battery ageing mechanisms and estimations for automotive applications. J. Power Sources 2013, 241, 680–689. [Google Scholar] [CrossRef] [Green Version]
- Yoshio, M.; Brodd, R.J.; Kozawa, A. Lithium-Ion Batteries; Springer: Berlin/Heidelberg, Germany, 2009; Volume 1. [Google Scholar]
- Zhang, X.; Ji, L.; Toprakci, O.; Liang, Y.; Alcoutlabi, M. Electrospun nanofiber-based anodes, cathodes, and separators for advanced lithium-ion batteries. Polym. Rev. 2011, 51, 239–264. [Google Scholar] [CrossRef]
- Jung, J.-W.; Lee, C.-L.; Yu, S.; Kim, I.-D. Electrospun nanofibers as a platform for advanced secondary batteries: A comprehensive review. J. Mater. Chem. A 2016, 4, 703–750. [Google Scholar] [CrossRef]
- Banitaba, S.N. Chapter 14—Application of electrospun fibers for the fabrication of high performance all-solid-state fibrous batteries. In Nanosensors and Nanodevices for Smart Multifunctional Textiles; Ehrmann, A., Nguyen, T.A., Nguyen Tri, P., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 229–244. [Google Scholar]
- Fergus, J.W. Recent developments in cathode materials for lithium ion batteries. J. Power Sources 2010, 195, 939–954. [Google Scholar] [CrossRef]
- Manthiram, A. A reflection on lithium-ion battery cathode chemistry. Nat. Commun. 2020, 11, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Yu, F.-D.; Que, L.-F.; Xu, C.-Y.; Wang, M.-J.; Sun, G.; Duh, J.-G.; Wang, Z.-B. Dual conductive surface engineering of Li-rich oxides cathode for superior high-energy-density Li-ion batteries. Nano Energy 2019, 59, 527–536. [Google Scholar] [CrossRef]
- Bao, Y.; Wang, J.; Qian, Y.; Deng, Y.; Yang, X.; Chen, G. An appropriate amount of new spinel phase induced by control synthesis for the improvement of electrochemical performance of Li-rich layered oxide cathode material. Electrochim. Acta 2020, 330, 135240. [Google Scholar] [CrossRef]
- Shevtsov, A.; Han, H.; Morozov, A.; Carozza, J.C.; Savina, A.A.; Shakhova, I.; Khasanova, N.R.; Antipov, E.V.; Dikarev, E.V.; Abakumov, A.M. Protective Spinel Coating for Li1.17Ni0.17Mn0.50Co0.17O2 Cathode for Li-Ion Batteries through Single-Source Precursor Approach. Nanomaterials 2020, 10, 1870. [Google Scholar] [CrossRef] [PubMed]
- Gong, Z.; Yang, Y. Recent advances in the research of polyanion-type cathode materials for Li-ion batteries. Energy Environ. Sci. 2011, 4, 3223–3242. [Google Scholar] [CrossRef] [Green Version]
- Lei, L.; Zhang, B.; Huang, X.-J. A 3.9 V polyanion-type cathode material for Li-ion batteries. Prog. Nat. Sci. Mater. Int. 2011, 21, 211–215. [Google Scholar]
- Moshtev, R.; Johnson, B. State of the art of commercial Li ion batteries. J. Power Sources 2000, 91, 86–91. [Google Scholar] [CrossRef]
- Joho, F.; Rykart, B.; Imhof, R.; Novák, P.; Spahr, M.E.; Monnier, A. Key factors for the cycling stability of graphite intercalation electrodes for lithium-ion batteries. J. Power Sources 1999, 81, 243–247. [Google Scholar] [CrossRef]
- Ou, Y.; Wen, J.; Xu, H.; Xie, S.; Li, J. Ultrafine LiCoO2 powders derived from electrospun nanofibers for Li-ion batteries. J. Phys. Chem. Solids 2013, 74, 322–327. [Google Scholar] [CrossRef]
- Sun, K.; Lu, H.-W.; Li, D.; Zeng, W.; Li, Y.-S.; Fu, Z.-W. Electrospun manganese oxides nanofibers electrode for lithium ion batteries. J. Inorg. Mater. 2009, 24, 357–360. [Google Scholar] [CrossRef]
- Lu, H.-W.; Zeng, W.; Li, Y.-S.; Fu, Z.-W. Fabrication and electrochemical properties of three-dimensional net architectures of anatase TiO2 and spinel Li4Ti5O12 nanofibers. J. Power Sources 2007, 164, 874–879. [Google Scholar] [CrossRef]
- Jin, E.M.; Gu, H.-B. Synthesis and electrochemical properties of LiFePO4-graphite nanofiber composites as cathode materials for lithium ion batteries. J. Power Sources 2013, 244, 586–591. [Google Scholar]
- Kap, Ö.; Inan, A.; Er, M.; Horzum, N. Li-ion battery cathode performance from the electrospun binary LiCoO2 to ternary Li2CoTi3O8. J. Mater. Sci. Mater. Electron. 2020, 31, 8394–8402. [Google Scholar] [CrossRef]
- Cao, Z.; Sang, M.; Chen, S.; Jia, J.; Yang, M.; Zhang, H.; Li, X.; Yang, S. In situ constructed (010)-oriented LiFePO4 nanocrystals/carbon nanofiber hybrid network: Facile synthesis of free-standing cathodes for lithium-ion batteries. Electrochim. Acta 2020, 333, 135538. [Google Scholar] [CrossRef]
- Ahmadian, A. Design and Fabrication of High Capacity Lithium-Ion Batteries Using Electro-Spun Graphene Modified Vanadium Pentoxide Cathodes. Ph.D. Thesis, Purdue University Graduate School, West Lafayette, IN, USA, 2020. [Google Scholar]
- Vu, N.H.; Dao, V.-D.; Van, H.N.; Huy, L.T.; Quang, N.T.; Huu, H.T.; Choi, S.; Im, W.B. Spinel-layered Li2MnTiO4+z nanofibers as cathode materials for Li-ion batteries. Solid State Sci. 2020, 103, 106178. [Google Scholar] [CrossRef]
- Chen, W.; Xu, D.; Chen, Y.; Tang, T.; Kuang, S.; Fu, H.; Zhou, W.; Yu, X. In situ electrospinning synthesis of N-doped C nanofibers with uniform embedding of Mn doped MFe1−xMnxPO4 (M= Li, Na) as a High Performance Cathode for Lithium/Sodium-Ion Batteries. Adv. Mater. Interfaces 2020, 7, 2000684. [Google Scholar] [CrossRef]
- Yang, J.; Tan, R.; Li, D.; Ma, J.; Duan, X. Ionic liquid-assisted electrospinning of porous LiFe0.4Mn0 6PO4/CNFs as free-standing cathodes with pseudocapacitive contribution for high-performance lithium-ion batteries. Chem. A Eur. J. 2020, 26, 5341–5346. [Google Scholar] [CrossRef]
- Zeng, S.; Zhao, R.; Li, A.; Xue, S.; Lv, D.; Luo, Q.; Shu, D.; Chen, H. MnO/Carbon fibers prepared by an electrospinning method and their properties used as anodes for lithium ion batteries. Appl. Surf. Sci. 2019, 463, 211–216. [Google Scholar] [CrossRef]
- Ma, X.; Smirnova, A.L.; Fong, H. Flexible lignin-derived carbon nanofiber substrates functionalized with iron (III) oxide nanoparticles as lithium-ion battery anodes. Mater. Sci. Eng. B 2019, 241, 100–104. [Google Scholar] [CrossRef]
- Kim, C.; Yang, K.S.; Kojima, M.; Yoshida, K.; Kim, Y.J.; Kim, Y.A.; Endo, M. Fabrication of electrospinning-derived carbon nanofiber webs for the anode material of lithium-ion secondary batteries. Adv. Funct. Mater. 2006, 16, 2393–2397. [Google Scholar] [CrossRef]
- Chen, Y.; Li, X.; Park, K.; Song, J.; Hong, J.; Zhou, L.; Mai, Y.-W.; Huang, H.; Goodenough, J.B. Hollow Carbon-Nanotube/Carbon-Nanofiber Hybrid Anodes for Li-Ion Batteries. J. Am. Chem. Soc. 2013, 135, 16280–16283. [Google Scholar] [CrossRef] [PubMed]
- Culebras, M.; Geaney, H.; Beaucamp, A.; Upadhyaya, P.; Dalton, E.D.; Ryan, K.M.; Collins, M.N. Bio-derived carbon nanofibers from lignin as high performance Li-ion anode materials. ChemSusChem 2019, 12, 1–7. [Google Scholar] [CrossRef]
- Nan, D.; Huang, Z.-H.; Lv, R.; Lin, Y.; Yang, L.; Yu, X.; Ye, L.; Shen, W.; Sun, H.; Kang, F. Silicon-encapsulated hollow carbon nanofiber networks as binder-free anodes for lithium ion battery. J. Nanomater. 2014, 2014, 139639. [Google Scholar] [CrossRef] [Green Version]
- Peng, Y.-T.; Lo, C.-T. Electrospun porous carbon nanofibers as lithium ion battery anodes. J. Solid State Electrochem. 2015, 19, 3401–3410. [Google Scholar] [CrossRef]
- Zhang, D.; Li, G.; Fan, J.; Li, B.; Li, L. In Situ Synthesis of Mn3O4 nanoparticles on hollow carbon nanofiber as high-performance lithium-ion battery anode. Chem. A Eur. J. 2018, 24, 9632–9638. [Google Scholar] [CrossRef] [PubMed]
- Ryu, W.-H.; Shin, J.; Jung, J.-W.; Kim, I.-D. Cobalt(ii) monoxide nanoparticles embedded in porous carbon nanofibers as a highly reversible conversion reaction anode for Li-ion batteries. J. Mater. Chem. A 2013, 1, 3239–3243. [Google Scholar] [CrossRef]
- Aravindan, V.; Suresh Kumar, P.; Sundaramurthy, J.; Ling, W.C.; Ramakrishna, S.; Madhavi, S. Electrospun NiO nanofibers as high performance anode material for Li-ion batteries. J. Power Sources 2013, 227, 284–290. [Google Scholar] [CrossRef]
- Jang, B.-O.; Park, S.-H.; Lee, W.-J. Electrospun Co–Sn alloy/carbon nanofibers composite anode for lithium ion batteries. J. Alloys Compd. 2013, 574, 325–330. [Google Scholar] [CrossRef]
- Jiang, Y.; Chen, S.; Mu, D.; Wu, B.; Liu, Q.; Zhao, Z.; Wu, F. A three-dimensional network structure Si/C anode for Li-ion batteries. J. Mater. Sci. 2017, 52, 10950–10958. [Google Scholar] [CrossRef]
- Xia, J.; Liu, L.; Jamil, S.; Xie, J.; Yan, H.; Yuan, Y.; Zhang, Y.; Nie, S.; Pan, J.; Wang, X.; et al. Free-standing SnS/C nanofiber anodes for ultralong cycle-life lithium-ion batteries and sodium-ion batteries. Energy Storage Mater. 2019, 17, 1–11. [Google Scholar] [CrossRef]
- Li, X.; Sun, N.; Tian, X.; Yang, T.; Song, Y.; Xu, B.; Liu, Z. Electrospun coal liquefaction residues/polyacrylonitrile composite carbon nanofiber nonwoven fabrics as high-performance electrodes for lithium/potassium batteries. Energy Fuels 2020, 34, 2445–2451. [Google Scholar] [CrossRef]
- Zhu, L.; Li, F.; Yao, T.; Liu, T.; Wang, J.; Li, Y.; Lu, H.; Qian, R.; Liu, Y.; Wang, H. Electrospun MnCo2O4 nanotubes as high-performance anode materials for lithium-ion batteries. Energy Fuels 2020, 34, 11574–11580. [Google Scholar] [CrossRef]
- Su, D.; Liu, L.; Liu, Z.; Dai, J.; Wen, J.; Yang, M.; Jamil, S.; Deng, H.; Cao, G.; Wang, X. Electrospun Ta-doped TiO2/C nanofibers as a high-capacity and long-cycling anode material for Li-ion and K-ion batteries. J. Mater. Chem. A 2020, 8, 20666–20676. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, J.; Liu, Z.; Xu, H.; Zheng, Y.; Zhong, J.; Yang, Q.; Tian, H.; Shi, Z.; Yao, J.; et al. Facile fabrication of Fe3O4 nanoparticle/carbon nanofiber aerogel from Fe-ion cross-linked cellulose nanofibrils as anode for lithium-ion battery with superhigh capacity. J. Alloys Compd. 2020, 829, 154541. [Google Scholar] [CrossRef]
- Ran, L.; Gentle, I.; Lin, T.; Luo, B.; Mo, N.; Rana, M.; Li, M.; Wang, L.; Knibbe, R. Sn4P3@Porous carbon nanofiber as a self-supported anode for sodium-ion batteries. J. Power Sources 2020, 461, 228116. [Google Scholar] [CrossRef]
- Liberale, F.; Fiore, M.; Ruffo, R.; Bernasconi, R.; Shiratori, S.; Magagnin, L. Red phosphorus decorated electrospun carbon anodes for high efficiency lithium ion batteries. Sci. Rep. 2020, 10, 13233. [Google Scholar] [CrossRef]
- Tian, X.; Xu, Q.; Cheng, L.; Meng, L.; Zhang, H.; Jia, X.; Bai, S.; Qin, Y. Enhancing the performance of a self-standing si/pcnf anode by optimizing the porous structure. ACS Appl. Mater. Interfaces 2020, 12, 27219–27225. [Google Scholar] [CrossRef]
- Yadav, P.; Malik, W.; Dwivedi, P.K.; Jones, L.A.; Shelke, M.V. Electrospun nanofibers of tin phosphide (SnP0.94) nanoparticles encapsulated in a carbon matrix: A tunable conversion-cum-alloying lithium storage anode. Energy Fuels 2020, 34, 7648–7657. [Google Scholar] [CrossRef]
- Xia, J.; Yuan, Y.; Yan, H.; Liu, J.; Zhang, Y.; Liu, L.; Zhang, S.; Li, W.; Yang, X.; Shu, H.; et al. Electrospun SnSe/C nanofibers as binder-free anode for lithium–ion and sodium-ion batteries. J. Power Sources 2020, 449, 227559. [Google Scholar] [CrossRef]
- Shaji, N.; Santhoshkumar, P.; Kang, H.S.; Nanthagopal, M.; Park, J.W.; Praveen, S.; Sim, G.S.; Senthil, C.; Lee, C.W. Tin selenide/N-doped carbon composite as a conversion and alloying type anode for sodium-ion batteries. J. Alloys Compd. 2020, 834, 154304. [Google Scholar] [CrossRef]
- Cho, T.-H.; Tanaka, M.; Ohnishi, H.; Kondo, Y.; Yoshikazu, M.; Nakamura, T.; Sakai, T. Composite nonwoven separator for lithium-ion battery: Development and characterization. J. Power Sources 2010, 195, 4272–4277. [Google Scholar] [CrossRef]
- Hao, J.; Lei, G.; Li, Z.; Wu, L.; Xiao, Q.; Wang, L. A novel polyethylene terephthalate nonwoven separator based on electrospinning technique for lithium ion battery. J. Membr. Sci. 2013, 428, 11–16. [Google Scholar] [CrossRef]
- Liang, Y.; Cheng, S.; Zhao, J.; Zhang, C.; Sun, S.; Zhou, N.; Qiu, Y.; Zhang, X. Heat treatment of electrospun Polyvinylidene fluoride fibrous membrane separators for rechargeable lithium-ion batteries. J. Power Sources 2013, 240, 204–211. [Google Scholar] [CrossRef]
- Cao, L.; An, P.; Xu, Z.; Huang, J. Performance evaluation of electrospun polyimide non-woven separators for high power lithium-ion batteries. J. Electroanal. Chem. 2016, 767, 34–39. [Google Scholar] [CrossRef]
- Jiang, W.; Liu, Z.; Kong, Q.; Yao, J.; Zhang, C.; Han, P.; Cui, G. A high temperature operating nanofibrous polyimide separator in Li-ion battery. Solid State Ion. 2013, 232, 44–48. [Google Scholar] [CrossRef]
- Cho, T.-H.; Tanaka, M.; Onishi, H.; Kondo, Y.; Nakamura, T.; Yamazaki, H.; Tanase, S.; Sakai, T. Battery performances and thermal stability of polyacrylonitrile nano-fiber-based nonwoven separators for Li-ion battery. J. Power Sources 2008, 181, 155–160. [Google Scholar] [CrossRef]
- Evans, T.; Lee, J.-H.; Bhat, V.; Lee, S.-H. Electrospun polyacrylonitrile microfiber separators for ionic liquid electrolytes in Li-ion batteries. J. Power Sources 2015, 292, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Zhai, Y.; Wang, N.; Mao, X.; Si, Y.; Yu, J.; Al-Deyab, S.S.; El-Newehy, M.; Ding, B. Sandwich-structured PVdF/PMIA/PVdF nanofibrous separators with robust mechanical strength and thermal stability for lithium ion batteries. J. Mater. Chem. A 2014, 2, 14511–14518. [Google Scholar] [CrossRef]
- Zhu, C.; Nagaishi, T.; Shi, J.; Lee, H.; Wong, P.Y.; Sui, J.; Hyodo, K.; Kim, I.S. Enhanced wettability and thermal stability of a novel polyethylene terephthalate-based poly(vinylidene fluoride) nanofiber hybrid membrane for the separator of lithium-ion batteries. ACS Appl. Mater. Interfaces 2017, 9, 26400–26406. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Shi, C.; Huang, S.; Qiu, X.; Wang, H.; Zhan, Z.; Zhang, P.; Zhao, J.; Sun, D.; Lin, L. Electrospun nanofibers for sandwiched polyimide/poly (vinylidene fluoride)/polyimide separators with the thermal shutdown function. Electrochim. Acta 2015, 176, 727–734. [Google Scholar] [CrossRef]
- Peng, K.; Wang, B.; Ji, C. A poly(ethylene terephthalate) nonwoven sandwiched electrospun polysulfonamide fibrous separator for rechargeable lithium ion batteries. J. Appl. Polym. Sci. 2017, 134, 44907. [Google Scholar] [CrossRef]
- Cao, C.; Tan, L.; Liu, W.; Ma, J.; Li, L. Polydopamine coated electrospun poly(vinyldiene fluoride) nanofibrous membrane as separator for lithium-ion batteries. J. Power Sources 2014, 248, 224–229. [Google Scholar] [CrossRef]
- Shi, C.; Dai, J.; Huang, S.; Li, C.; Shen, X.; Zhang, P.; Wu, D.; Sun, D.; Zhao, J. A simple method to prepare a polydopamine modified core-shell structure composite separator for application in high-safety lithium-ion batteries. J. Membr. Sci. 2016, 518, 168–177. [Google Scholar] [CrossRef]
- Park, S.-R.; Jung, Y.-C.; Shin, W.-K.; Ahn, K.H.; Lee, C.H.; Kim, D.-W. Cross-linked fibrous composite separator for high performance lithium-ion batteries with enhanced safety. J. Membr. Sci. 2017, 527, 129–136. [Google Scholar] [CrossRef]
- Ye, W.; Zhu, J.; Liao, X.; Jiang, S.; Li, Y.; Fang, H.; Hou, H. Hierarchical three-dimensional micro/nano-architecture of polyaniline nanowires wrapped-on polyimide nanofibers for high performance lithium-ion battery separators. J. Power Sources 2015, 299, 417–424. [Google Scholar] [CrossRef]
- Shen, X.; Li, C.; Shi, C.; Yang, C.; Deng, L.; Zhang, W.; Peng, L.; Dai, J.; Wu, D.; Zhang, P.; et al. Core-shell structured ceramic nonwoven separators by atomic layer deposition for safe lithium-ion batteries. Appl. Surf. Sci. 2018, 441, 165–173. [Google Scholar] [CrossRef]
- Zainab, G.; Wang, X.; Yu, J.; Zhai, Y.; Ahmed Babar, A.; Xiao, K.; Ding, B. Electrospun polyacrylonitrile/polyurethane composite nanofibrous separator with electrochemical performance for high power lithium ion batteries. Mater. Chem. Phys. 2016, 182, 308–314. [Google Scholar] [CrossRef]
- Zhao, M.; Wang, J.; Chong, C.; Yu, X.; Wang, L.; Shi, Z. An electrospun lignin/polyacrylonitrile nonwoven composite separator with high porosity and thermal stability for lithium-ion batteries. RSC Adv. 2015, 5, 101115–101120. [Google Scholar] [CrossRef]
- Zhou, X.; Yue, L.; Zhang, J.; Kong, Q.; Liu, Z.; Yao, J.; Cui, G. A core-shell structured polysulfonamide-based composite nonwoven towards high power lithium ion battery separator. J. Electrochem. Soc. 2013, 160, A1341. [Google Scholar] [CrossRef]
- Yanilmaz, M.; Lu, Y.; Zhu, J.; Zhang, X. Silica/polyacrylonitrile hybrid nanofiber membrane separators via sol-gel and electrospinning techniques for lithium-ion batteries. J. Power Sources 2016, 313, 205–212. [Google Scholar] [CrossRef]
- Shayapat, J.; Chung, O.H.; Park, J.S. Electrospun polyimide-composite separator for lithium-ion batteries. Electrochim. Acta 2015, 170, 110–121. [Google Scholar] [CrossRef]
- Yanilmaz, M.; Zhu, J.; Lu, Y.; Ge, Y.; Zhang, X. High-strength, thermally stable nylon 6,6 composite nanofiber separators for lithium-ion batteries. J. Mater. Sci. 2017, 52, 5232–5241. [Google Scholar] [CrossRef]
- Ma, X.; Kolla, P.; Yang, R.; Wang, Z.; Zhao, Y.; Smirnova, A.L.; Fong, H. Electrospun polyacrylonitrile nanofibrous membranes with varied fiber diameters and different membrane porosities as lithium-ion battery separators. Electrochim. Acta 2017, 236, 417–423. [Google Scholar] [CrossRef]
- Dong, T.; Arifeen, W.U.; Choi, J.; Yoo, K.; Ko, T. Surface-modified electrospun polyacrylonitrile nano-membrane for a lithium-ion battery separator based on phase separation mechanism. Chem. Eng. J. 2020, 398, 125646. [Google Scholar] [CrossRef]
- Wei, Z.; Gu, J.; Zhang, F.; Pan, Z.; Zhao, Y. Core–Shell Structured Nanofibers for Lithium Ion Battery Separator with Wide Shutdown Temperature Window and Stable Electrochemical Performance. ACS Appl. Polym. Mater. 2020, 2, 1989–1996. [Google Scholar] [CrossRef]
- Xiao, W.; Song, J.; Huang, L.; Yang, Z.; Qiao, Q. PVA-ZrO2 multilayer composite separator with enhanced electrolyte property and mechanical strength for lithium-ion batteries. Ceram. Int. 2020, 46, 29212–29221. [Google Scholar] [CrossRef]
- Jaritphun, S.; Park, J.S.; Chung, O.H.; Nguyen, T.T.T. Sandwiched polyimide-composite separator for lithium-ion batteries via electrospinning and electrospraying. Polym. Compos. 2020, 41, 4478–4488. [Google Scholar] [CrossRef]
- Xu, Y.; Zhu, J.-W.; Fang, J.-B.; Li, X.; Yu, M.; Long, Y.-Z. Electrospun high-thermal-resistant inorganic composite nonwoven as lithium-ion battery separator. J. Nanomater. 2020, 2020, 3879040. [Google Scholar] [CrossRef] [Green Version]
- Cai, M.; Yuan, D.; Zhang, X.; Pu, Y.; Liu, X.; He, H.; Zhang, L.; Ning, X. Lithium ion battery separator with improved performance via side-by-side bicomponent electrospinning of PVDF-HFP/PI followed by 3D thermal crosslinking. J. Power Sources 2020, 461, 228123. [Google Scholar] [CrossRef]
- Liang, T.; Liang, W.-H.; Cao, J.-H.; Wu, D.-Y. Enhanced performance of high energy density lithium metal battery with PVDF-HFP/LAGP composite separator. ACS Appl. Energy Mater. 2021, 4, 2578–2585. [Google Scholar] [CrossRef]
- Chen, Y.; Qiu, L.; Ma, X.; Dong, L.; Jin, Z.; Xia, G.; Du, P.; Xiong, J. Electrospun cellulose polymer nanofiber membrane with flame resistance properties for lithium-ion batteries. Carbohydr. Polym. 2020, 234, 115907. [Google Scholar] [CrossRef] [PubMed]
- Fu, Q.; Zhang, W.; Muhammad, I.P.; Chen, X.; Zeng, Y.; Wang, B.; Zhang, S. Coaxially electrospun PAN/HCNFs@PVDF/UiO-66 composite separator with high strength and thermal stability for lithium-ion battery. Microporous Mesoporous Mater. 2021, 311, 110724. [Google Scholar] [CrossRef]
- Long, L.; Wang, S.; Xiao, M.; Meng, Y. Polymer electrolytes for lithium polymer batteries. J. Mater. Chem. A 2016, 4, 10038–10069. [Google Scholar] [CrossRef]
- Murata, K.; Izuchi, S.; Yoshihisa, Y. An overview of the research and development of solid polymer electrolyte batteries. Electrochim. Acta 2000, 45, 1501–1508. [Google Scholar] [CrossRef]
- Wang, F.; Li, L.; Yang, X.; You, J.; Xu, Y.; Wang, H.; Ma, Y.; Gao, G. Influence of additives in a PVDF-based solid polymer electrolyte on conductivity and Li-ion battery performance. Sustain. Energy Fuels 2018, 2, 492–498. [Google Scholar] [CrossRef]
- Kim, J.-W.; Ji, K.-S.; Lee, J.-P.; Park, J.-W. Electrochemical characteristics of two types of PEO-based composite electrolyte with functional SiO2. J. Power Sources 2003, 119, 415–421. [Google Scholar] [CrossRef]
- Joge, P.N.; Kanchan, D.; Sharma, P.L. Effect of Al2O3 on crystallinity and conductivity of PVA-PEO-EC-LiCF3SO3 blend electrolyte system. AIP Conf. Proc. 2014, 1591, 356. [Google Scholar]
- Abdel-Samiea, B.; Basyouni, A.; Khalil, R.; Sheha, E.M.; Tsuda, H.; Matsui, T. The role of TiO2 anatase nano-filler to enhance the physical and electrochemical properties of PVA-based polymer electrolyte for magnesium battery applications. J. Mater. Sci. Eng. A 2013, 3, 678–689. [Google Scholar]
- Freitag, K.M.; Kirchhain, H.; Wullen, L.V.; Nilges, T. Enhancement of Li ion conductivity by electrospun polymer fibers and direct fabrication of solvent-free separator membranes for Li ion batteries. Inorg. Chem. 2017, 56, 2100–2107. [Google Scholar] [CrossRef]
- Freitag, K.; Walke, P.; Nilges, T.; Kirchhain, H.; Spranger, R.; van Wüllen, L. Electrospun sodiumtetrafluoroborate-polyethylene oxide membranes for solvent-free sodium ion transport in solid state sodium ion batteries. J. Power Sources 2018, 378, 610–617. [Google Scholar] [CrossRef]
- Banitaba, S.N.; Semnani, D.; Fakhrali, A.; Ebadi, S.V.; Heydari-Soureshjani, E.; Rezaei, B.; Ensafi, A.A. Electrospun PEO nanofibrous membrane enabled by LiCl, LiClO4, and LiTFSI salts: A versatile solvent-free electrolyte for lithium-ion battery application. Ionics 2020, 26, 3249–3260. [Google Scholar] [CrossRef]
- Banitaba, S.N.; Semnani, D.; Heydari-Soureshjani, E.; Rezaei, B.; Ensafi, A.A.; Taghipour-Jahromi, A. Novel electrospun polymer electrolytes incorporated with Keggin-type hetero polyoxometalate fillers as solvent-free electrolytes for lithium ion batteries. Polym. Int. 2020, 69, 675–687. [Google Scholar] [CrossRef]
- Banitaba, S.N.; Semnani, D.; Rezaei, B.; Ensafi, A.A. Morphology and electrochemical and mechanical properties of polyethy lene-oxide-based nanofibrous electrolytes applicable in lithium ion batteries. Polym. Int. 2019, 68, 746–754. [Google Scholar] [CrossRef]
- Walke, P.; Freitag, K.M.; Kirchhain, H.; Kaiser, M.; van Wüllen, L.; Nilges, T. Electrospun Li (TFSI)@polyethylene oxide membranes as solid electrolytes. Z. Für Anorg. Und Allg. Chem. 2018, 644, 1863–1874. [Google Scholar] [CrossRef]
- Banitaba, S.N.; Semnani, D.; Heydari-Soureshjani, E.; Rezaei, B.; Ensafi, A.A. Electrospun Polyethylene Oxide-Based Membranes Incorporated with Silicon Dioxide, Aluminum Oxide and Clay Nanoparticles as Flexible Solvent-Free Electrolytes for Lithium-Ion Batteries. JOM 2019, 71, 4537–4546. [Google Scholar] [CrossRef]
- Fu, K.K.; Gong, Y.; Dai, J.; Gong, A.; Han, X.; Yao, Y.; Wang, C.; Wang, Y.; Chen, Y.; Yan, C. Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries. Proc. Natl. Acad. Sci. USA 2016, 113, 7094–7099. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, W.; Liu, N.; Sun, J.; Hsu, P.-C.; Li, Y.; Lee, H.-W.; Cui, Y. Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers. Nano Lett. 2015, 15, 2740–2745. [Google Scholar] [CrossRef]
- Liu, W.; Lee, S.W.; Lin, D.; Shi, F.; Wang, S.; Sendek, A.D.; Cui, Y. Enhancing ionic conductivity in composite polymer electrolytes with well-aligned ceramic nanowire. Nat. Energy 2017, 2, 1–7. [Google Scholar] [CrossRef]
- Ormerod, R.M. Solid oxide fuel cells. Chem. Soc. Rev. 2003, 32, 17–28. [Google Scholar] [CrossRef] [PubMed]
- Mekhilef, S.; Saidur, R.; Safari, A. Comparative study of different fuel cell technologies. Renew. Sustain. Energy Rev. 2012, 16, 981–989. [Google Scholar] [CrossRef]
- Kirubakaran, A.; Jain, S.; Nema, R.K. A review on fuel cell technologies and power electronic interfaces. Renew. Sustain. Energy Rev. 2009, 13, 2430–2440. [Google Scholar] [CrossRef]
- Lin, G.; Nguyen, T.V. Effect of thickness and hydrophobic polymer content of the gas diffusion layer on electrode flooding level in a PEMFC. J. Electrochem. Soc. 2005, 152, A1942–A1948. [Google Scholar] [CrossRef]
- Chung, S.; Shin, D.Y.; Choun, M.H.; Kim, J.S.; Yang, S.G.; Choi, M.; Kim, J.W.; Lee, J.Y. Improved water management of Pt/C cathode modified by graphitized carbon nanofiber in proton exchange membrane fuel cell. J. Power Sources 2018, 399, 350–356. [Google Scholar] [CrossRef]
- Slack, J.J.; Brodt, M.; Cullen, D.A.; Reeves, K.S.; More, K.L.; Pintauro, P.N. Impact of polyvinylidene fluoride on nanofiber cathode structure and durability in proton exchange membrane fuel cells. J. Electrochem. Soc. 2020, 167, 054517. [Google Scholar] [CrossRef]
- Slack, J.J.; Gumeci, C.; Dale, N.; Parrondo, J.; Macauley, N.; Mukundan, R.; Cullen, D.; Sneed, B.; More, K.; Pintauro, P.N. Nanofiber fuel cell MEAs with a PtCo/C cathode. J. Electrochem. Soc. 2019, 166, F3202. [Google Scholar] [CrossRef]
- Khandavalli, S.; Sharma-Nene, N.; Kabir, S.; Sur, S.; Rothstein, J.P.; Neyerlin, K.C.; Mauger, S.A.; Ulsh, M. Towards optimizing electrospun nanofiber fuel cell catalyst layers: Polymer-particle interactions and spinnability. ACS Appl. Polym. Mater. 2021, 3, 2374–2384. [Google Scholar] [CrossRef]
- Zhang, W.J.; Brodt, M.W.; Pintauro, P.N. Nanofiber cathodes for low and high humidity hydrogen fuel cell operation. ECS Trans. 2011, 41, 891. [Google Scholar] [CrossRef]
- Wei, M.; Jiang, M.; Liu, X.B.; Wang, M.; Mu, S.C. Graphene-doped electrospun nanofiber membrane electrodes and proton exchange membrane fuel cell performance. J. Power Sources 2016, 327, 384–393. [Google Scholar] [CrossRef]
- Li, Y.; Hui, J.; Kawchuk, J.; O’Brien, A.; Jiang, Z.; Hoorfar, M. Composite membranes of PVDF nanofibers impregnated with Nafion for increased fuel concentrations in direct methanol fuel cells. Fuel Cells 2019, 19, 43–50. [Google Scholar] [CrossRef]
- Liu, X.P.; Yang, Z.H.; Zhang, Y.F.; Li, C.C.; Dong, J.M.; Liu, Y.; Cheng, H.S. Electrospun multifunctional sulfonated carbon nanofibers for design and fabrication of SPEEK composite proton exchange membranes for direct methanol fuel cell application. Int. J. Hydrogen Energy 2017, 42, 10275–10284. [Google Scholar] [CrossRef]
- Jindal, A.; Basu, S.; Chauhan, N.; Ukai, T.; Kumar, D.S.; Samudhyatha, K.T. Application of electrospun CNx nanofibers as cathode in microfluidic fuel cell. J. Power Sources 2017, 342, 165–174. [Google Scholar] [CrossRef]
- Jindal, A.; Basu, S. Improvement in electrocatalytic activity of oxygen reduction of electrospun carbon nitride/polyacrylonitrile nanofibers by addition of carbon black and nafion® fillers. Int. J. Hydrogen Energy 2016, 41, 11624–11633. [Google Scholar] [CrossRef]
- Mei, R.G.; Xi, J.J.; Ma, L.; An, L.; Wang, F.; Sun, H.Y.; Luo, Z.K.; Wu, Q.X. Multi-scaled porous Fe-N/C nanofibrous catalysts for the cathode electrodes of direct methanol fuel cells. J. Electrochem. Soc. 2017, 164, F1556. [Google Scholar] [CrossRef]
- Zhi, M.J.; Lee, S.W.; Miller, N.; Menzler, N.H.; Wu, N.Q. An intermediate-temperature solid oxide fuel cell with electrospun nanofiber cathode. Energy Environ. Sci. 2012, 5, 7066–7071. [Google Scholar] [CrossRef] [Green Version]
- Zhi, M.J.; Mariani, N.; Gemmen, R.; Gerdes, K.; Wu, N.Q. Nanofiber scaffolds for cathode of solid oxide fuel cell. Energy Environ. Sci. 2011, 4, 417–420. [Google Scholar] [CrossRef]
- Enrico, A.; Zhang, W.J.; Traulsen, M.L.; Sala, E.M.; Costamagna, P.; Holtappels, P. La0.6Sr0.4Co0.2Fe0.8O3−δ nanofiber cathode for intermediate-temperature solid oxide fuel cells by water-based sol-gel electrospinning: Synthesis and electrochemical behaviour. J. Eur. Ceram. Soc. 2018, 38, 2677–2686. [Google Scholar] [CrossRef] [Green Version]
- Zhao, E.Q.; Ma, C.; Yang, W.; Xiong, Y.P.; Li, J.Q.; Sun, C.W. Electrospinning La0.8Sr0.2Co0.2Fe0.8O3−δ tubes impregnated with Ce0.8Gd0.2O1.9 nanoparticles for an intermediate temperature solid oxide fuel cell cathode. Int. J. Hydrogen Energy 2013, 38, 6821–6829. [Google Scholar] [CrossRef]
- Ahn, M.W.; Cho, J.; Lee, W.Y. One-step fabrication of composite nanofibers for solid oxide fuel cell electrodes. J. Power Sources 2019, 434, 226749. [Google Scholar] [CrossRef]
- Sammes, N.; Bove, R.; Stahl, K. Phosphoric acid fuel cells: Fundamentals and applications. Curr. Opin. Solid State Mater. Sci. 2004, 8, 372–378. [Google Scholar] [CrossRef]
- Skupov, K.M.; Ponomarev, I.I.; Razorenov, D.Y.; Zhigalina, V.G.; Zhigalina, O.M.; Ponomarev, I.I.; Volkova, Y.A.; Volfkovich, Y.M.; Sosenkin, V.E. Carbon nanofiber paper cathode modification for higher performance of phosphoric acid fuel cells on polybenzimidazole membrane. Russ. J. Electrochem. 2017, 53, 728–733. [Google Scholar] [CrossRef]
- Ponomarev, I.I.; SKupov, K.M.; Razorenov, D.Y.; Zhigalina, V.G.; Zhigalina, O.M.; Ponomarev, I.I.; Volkova, Y.A.; Kondratenko, M.S.; Bukalov, S.S.; Davydova, E.S. Electrospun nanofiber pyropolymer electrodes for fuel cells on polybenzimidazole membranes. Russ. J. Electrochem. 2016, 52, 735–739. [Google Scholar] [CrossRef]
- Uhm, S.H.; Jeong, B.G.; Lee, J.Y. A facile route for preparation of non-noble CNF cathode catalysts in alkaline ethanol fuel cells. Electrochim. Acta 2011, 56, 9186–9190. [Google Scholar] [CrossRef]
- Sun, J.J.; Zhao, H.Z.; Yang, Q.Z.; Song, J.; Xue, A. A novel layer-by-layer self-assembled carbon nanotube-based anode: Preparation, characterization, and application in microbial fuel cell. Electrochim. Acta 2010, 55, 3041–3047. [Google Scholar] [CrossRef]
- Zhang, B.-G.; Zhou, S.-G.; Zhao, H.-Z.; Shi, C.-H.; Kong, L.-C.; Sun, J.-J.; Yang, Y.; Ni, J.-R. Factors affecting the performance of microbial fuel cells for sulfide and vanadium (V) treatment. Bioprocess. Biosyst. Eng. 2010, 33, 187–194. [Google Scholar] [CrossRef]
- Gardia-Gomez, N.A.; Balderas-Renteria, I.; Garcia-Gutierrez, D.I.; Mosqueda, H.A.; Sánchez, E.M. Development of mats composed by TiO2 and carbon dual electrospun nanofibers: A possible anode material in microbial fuel cells. Mater. Sci. Eng. B 2015, 193, 130–136. [Google Scholar] [CrossRef]
- Cai, T.; Huang, M.H.; Huang, Y.X.; Zheng, W. Enhanced performance of microbial fuel cells by electrospining carbon nanofibers hybrid carbon nanotubes composite anode. Int. J. Hydrogen Energy 2019, 44, 3088–3098. [Google Scholar] [CrossRef]
- Jung, H.-Y.; Roh, S.-H. Carbon nanofiber/polypyrrole nanocomposite as anode material in microbial fuel cells. J. Nanosci. Nanotechnol. 2017, 17, 5830–5833. [Google Scholar] [CrossRef]
- Massaglia, G.; Margaria, V.; Fiorentin, M.R.; Pasha, K.; Sacco, A.; Castellino, M.; Chiodoni, A.; Bianco, S.; Pirri, F.C.; Quaglio, M. Nonwoven mats of N-doped carbon nanofibers as high-performing anodes in microbial fuel cells. Mater. Today Energy 2020, 16, 100385. [Google Scholar] [CrossRef]
- Karra, U.; Manickam, S.S.; McCutcheon, J.R.; Patel, N.; Li, B. Power generation and organics removal from wastewater using activated carbon nanofiber (ACNF) microbial fuel cells (MFCs). Int. J. Hydrogen Energy 2013, 38, 1588–1597. [Google Scholar] [CrossRef]
- Barakat, N.A.M.; Amen, M.T.; Al-Mubaddel, F.S.; Karim, M.R.; Alrashed, M. NiSn nanoparticle-incorporated carbon nanofibers as efficient electrocatalysts for urea oxidation and working anodes in direct urea fuel cells. J. Adv. Res. 2019, 16, 43–53. [Google Scholar] [CrossRef]
- Mohamed, I.M.A.; Kanagaraj, P.; Yasin, A.S.; Iqbal, W.; Liu, C.K. Electrochemical impedance investigation of urea oxidation in alkaline media based on electrospun nanofibers towards the technology of direct-urea fuel cells. J. Alloys Comp. 2020, 816, 152513. [Google Scholar] [CrossRef]
- Abdelkareem, M.A.; Al Haj, Y.; Alajami, M.; Alawadhi, H.; Barakat, N.A.M. Ni-Cd carbon nanofibers as an effective catalyst for urea fuel cell. J. Environ. Chem. Eng. 2018, 6, 332–337. [Google Scholar] [CrossRef]
- Hu, Q.J.; Fan, L.Q.; Wang, Y.W.; Wang, Z.; Xiong, Y.P. Nanofiber-based LaxSr1−xTiO3-GdyCe1−yO2−δ composite anode for solid oxide fuel cells. Ceram. Int. 2017, 43, 12145–12153. [Google Scholar] [CrossRef]
- Hu, Q.J.; Liu, C.J.; Fan, L.Q.; Wang, Y.W.; Xiong, Y.P. Nanofiber-based La0.4Sr0.6TiO 3-Gd0.2Ce0.8O1.9-Ni composite anode for solid oxide fuel cells. Electrochim. Acta 2018, 265, 1–9. [Google Scholar] [CrossRef]
- Fan, L.Q.; Xiong, Y.P.; Liu, L.B.; Wang, Y.W.; Kishimoto, H.; Yamaji, K.; Horita, T. Performance of Gd0.2Ce0.8O1.9 infiltrated La0.2Sr0.8TiO3 nanofiber scaffolds as anodes for solid oxide fuel cells. J. Power Sources 2014, 265, 125–131. [Google Scholar] [CrossRef]
- Fan, L.Q.; Xiong, Y.P.; Wang, Y.W.; Kishimoto, H.; Yamaji, K.; Horita, T. Performance of Gd0.2Ce0.8O1.9 infiltrated La0.2Sr0.8TiO3 nanofiber scaffolds as anodes for solid oxide fuel cells: Redox stability and effects of electrolytes. J. Power Sources 2015, 294, 452–459. [Google Scholar] [CrossRef]
- Li, L.P.; Zhang, P.G.; Liu, R.R.; Guo, S.M. Preparation of fibrous Ni-coated YSZ anodes for solid oxide fuel cells. J. Power Sources 2011, 196, 1242–1247. [Google Scholar] [CrossRef]
- Ahn, M.W.; Han, S.W.; Lee, J.S.; Lee, W.Y. Electrospun composite nanofibers for intermediate-temperature solid oxide fuel cell electrodes. Ceram. Int. 2020, 46, 6006–6011. [Google Scholar] [CrossRef]
- Yu, G.S.; Li, T.S.; Xu, M.; Andersson, M.; Li, B.H.; Tang, H.; Parbey, J.; Shao, J. Fabrication of nickel-YSZ cermet nanofibers via electrospinning. J. Alloys Comp. 2017, 693, 1214–1219. [Google Scholar] [CrossRef]
- Lee, K.-R.; Tseng, C.J.; Chang, J.-K.; Wang, K.-W.; Huang, Y.-S.; Chou, T.-C.; Tsai, L.-D.; Lee, S.-W. Nano-fibrous SrCe0·8Y0·2O3−δ-Ni anode functional layer for proton-conducting solid oxide fuel cells. J. Power Sources 2019, 436, 226863. [Google Scholar] [CrossRef]
- Li, W.D.; Cheng, Y.; Zhou, Q.J.; Wei, T.; Li, Z.P.; Yan, H.Y.; Wang, Z.; Han, X. Evaluation of double perovskite Sr2FeTiO6−δ as potential cathode or anode materials for intermediate-temperature solid oxide fuel cells. Ceram. Int. 2015, 41, 12393–12400. [Google Scholar] [CrossRef]
- Chen, P.; Wu, H.J.; Yuan, T.; Zou, Z.Q.; Zhang, H.F.; Zheng, J.W.; Yang, H. Electrospun nanofiber network anode for a passive direct methanol fuel cell. J. Power Sources 2014, 255, 70–75. [Google Scholar] [CrossRef]
- Feng, C.; Takeuchi, T.; Abdelkareem, M.A.; Tsujiguchi, T.; Nakagawa, N. Carbon–CeO2 composite nanofibers as a promising support for a PtRu anode catalyst in a direct methanol fuel cell. J. Power Sources 2013, 242, 57–64. [Google Scholar] [CrossRef]
- Thamer, B.M.; El-Newehy, M.H.; Barakat, N.A.M.; Abdelkareem, M.A.; Al-Deyab, S.S.; Kim, H.Y. Influence of nitrogen doping on the catalytic activity of Ni-incorporated carbon nanofibers for alkaline direct methanol fuel cells. Electrochim. Acta 2014, 142, 228–239. [Google Scholar] [CrossRef]
- Hanifah, M.F.R.; Jaafar, J.; Othman, M.H.D.; Ismail, A.F.; Rahman, M.A.; Yusof, N.; Aziz, F. Electro-spun of novel PVDF-Pt-Pd/RGO-CeO2 composite nanofibers as the high potential of robust anode catalyst in direct methanol fuel cell: Fabrication and characterization. Inorg. Chem. Commun. 2019, 107, 107487. [Google Scholar] [CrossRef]
- Abdullah, N.; Kamarudin, S.K.; Shyuan, L.K.; Karim, N.A. Fabrication and characterization of new composite TiO2 carbonnanofiber anodic catalyst support for direct methanol fuel cell via electrospinning method. Nanoscale Res. Lett. 2017, 12, 613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ito, Y.; Takeuchi, T.; Tsujiguchi, T.; Nakagawa, N. Ultrahigh methanol electro-oxidation activity of PtRu nanoparticles prepared on TiO2-embedded carbon nanofiber support. J. Power Sources 2013, 242, 280–288. [Google Scholar] [CrossRef]
- Wu, H.J.; Yuan, T.; Huang, Q.H.; Zhang, H.F.; Zou, Z.Q.; Zheng, J.W.; Yang, H. Polypyrrole nanowire networks as anodic micro-porous layer for passive direct methanol fuel cells. Electrochim. Acta 2014, 141, 1–5. [Google Scholar] [CrossRef]
- Zheng, Y.P.; Zhang, Z.Y.; Zhang, X.; Ni, H.M.; Sun, Y.M.; Lou, Y.B.; Li, X.J.; Lu, Y. Application of Pt-Co nanoparticles supported on CeO2-C as electrocatalyst for direct methanol fuel cell. Mater. Lett. 2018, 221, 301–304. [Google Scholar] [CrossRef]
- Suryamas, A.B.; Anilkumar, G.M.; Sago, S.; Ogi, T.; Okuyama, K. Electrospun Pt/SnO2 nanofibers as an excellent electrocatalysts for hydrogen oxidation reaction with ORR-blocking characteristic. Catal. Commun. 2013, 33, 11–14. [Google Scholar] [CrossRef]
- Park, J.W.; Wycisk, R.; Lin, G.G.; Chong, P.Y.; Powers, D.; van Nguyen, T.; Dowd, R.P., Jr.; Pintauro, P.N. Electrospun Nafion/PVDF single-fiber blended membranes for regenerative H2/Br2 fuel cells. J. Membr. Sci. 2017, 541, 85–92. [Google Scholar] [CrossRef]
- Ballengee, J.B.; Pintauro, P.N. Preparation of nanofiber composite proton-exchange membranes from dual fiber electrospun mats. J. Membr. Sci. 2013, 442, 187–195. [Google Scholar] [CrossRef]
- Park, J.W.; Wycisk, R.; Pintauro, P.N. Nafion/PVDF nanofiber composite membranes for regenerative hydrogen/bromine fuel cells. J. Membr. Sci. 2015, 490, 103–112. [Google Scholar] [CrossRef] [Green Version]
- Park, J.W.; Wycisk, R.; Pintauro, P.N.; Yarlagadda, V.; van Nguyen, T. Electrospun Nafion®/polyphenylsulfone composite membranes for regenerative hydrogen bromine fuel cells. Materials 2016, 9, 143. [Google Scholar] [CrossRef] [Green Version]
- Shahgaldi, S.; Ghasemi, M.; Wan Daud, W.R.; Yaakob, Z.; Sedighi, M.; Alam, J.; Ismail, A.F. Performance enhancement of microbial fuel cell by PVDF/Nafion nanofibre composite proton exchange membrane. Fuel Process. Technol. 2014, 124, 290–295. [Google Scholar] [CrossRef]
- Zhang, S.K.; He, G.H.; Gong, X.; Zhu, X.P.; Wu, X.M.; Sun, X.Y.; Zhao, X.Y.; Li, H. Electrospun nanofiber enhanced sulfonated poly (phthalazinone ether sulfone ketone) composite proton exchange membranes. J. Membr. Sci. 2015, 493, 58–65. [Google Scholar] [CrossRef]
- Vezzù, K.; Nawn, G.; Negro, E.; Crivellaro, G.; Park, J.W.; Wycisk, R.; Pintauro, P.N.; di Noto, V. Electric response and conductivity mechanism of blended polyvinylidene fluoride/Nafion electrospun nanofibers. J. Am. Chem. Soc. 2020, 142, 801–814. [Google Scholar] [CrossRef]
- Shen, C.H.; Wycisk, R.; Pintauro, P.N. High performance electrospun bipolar membrane with a 3D junction. Energy Environ. Sci. 2017, 10, 1435–1442. [Google Scholar] [CrossRef]
- Wu, B.; Pan, J.F.; Ge, L.; Wu, L.; Wang, H.T.; Xu, T.W. Oriented MOF-polymer composite nanofiber membranes for high proton conductivity at high temperature and anhydrous condition. Sci. Rep. 2014, 4, 4334. [Google Scholar] [CrossRef] [Green Version]
- Gong, X.; He, G.H.; Wu, Y.; Zhang, S.K.; Chen, B.; Dai, Y.; Wu, X.M. Aligned electrospun nanofibers as proton conductive channels through thickness of sulfonated poly (phthalazinone ether sulfone ketone) proton exchange membranes. J. Power Sources 2017, 358, 134–141. [Google Scholar] [CrossRef]
- Muthuraja, P.; Prakash, S.; Shanmugam, V.M.; Manisankar, P. Stable nanofibrous poly(aryl sulfone ether benzimidazole) membrane with high conductivity for high temperature PEM fuel cells. Solid State Ion. 2018, 317, 201–209. [Google Scholar] [CrossRef]
- Tamura, T.; Kawakami, H. Aligned electrospun nanofiber composite membranes for fuel cell electrolytes. Nano Lett. 2010, 10, 1324–1328. [Google Scholar] [CrossRef]
- Balakrishnan, M.; Shrestha, P.; Ge, N.; Lee, C.H.; Fahy, K.F.; Zeis, R.; Schulz, V.P.; Hatton, B.J.; Bazylak, A. Designing tailored gas diffusion layers with pore size gradients via electrospinning for polymer electrolyte membrane fuel cells. ACS Appl. Energy Mater. 2020, 3, 2695–2707. [Google Scholar] [CrossRef]
- Balakrishnan, M.; Shrestha, P.; Lee, C.H.; Ge, N.; Fahy, K.F.; Messerschmidt, M.; Scholta, J.; Eifert, L.; Maibach, J.; Zeis, R.; et al. Degradation characteristics of electrospun gas diffusion layers with custom pore structures for polymer electrolyte membrane fuel cells. ACS Appl. Mater. Interfaces 2021, 13, 2414–2427. [Google Scholar] [CrossRef]
- Kallem, P.; Yanar, N.; Choi, H. Nanofiber-based proton exchange membranes: Development of aligned electrospun nanofibers for polymer electrolyte fuel cell applications. ACS Sustain. Chem. Eng. 2019, 7, 1808–1825. [Google Scholar] [CrossRef]
- DeGostin, M.B.; Peracchio, A.A.; Myles, T.D.; Cassenti, B.N.; Chiu, W.K.S. Charge transport in the electrospun nanofiber composite membrane’s three-dimensional fibrous structure. J. Power Sources 2016, 307, 538–551. [Google Scholar] [CrossRef]
- Liang, J.; Zhao, H.; Yue, L.; Fan, G.; Li, T.; Lu, S.; Chen, G.; Gao, S.; Asiri, A.M.; Sun, X. Recent advances in electrospun nanofibers for supercapacitors. J. Mater. Chem. A 2020, 8, 16747–16789. [Google Scholar] [CrossRef]
- Lu, X.; Wang, C.; Favier, F.; Pinna, N. Electrospun nanomaterials for supercapacitor electrodes: Designed architectures and electrochemical performance. Adv. Energy Mater. 2017, 7, 1601301. [Google Scholar] [CrossRef]
- Mao, X.; Hatton, T.A.; Rutledge, G.C. A review of electrospun carbon fibers as electrode materials for energy storage. Curr. Org. Chem. 2013, 17, 1390–1401. [Google Scholar] [CrossRef] [Green Version]
- He, T.; Su, Q.; Yildiz, Z.; Cai, K.; Wang, Y. Ultrafine carbon fibers with hollow-porous multilayered structure for supercapacitors. Electrochim. Acta 2016, 222, 1120–1127. [Google Scholar] [CrossRef]
- Pech, O.; Maensiri, S. Effect of Calcining Temperature on Electrospun Carbon Nanofibers for Supercapacitor. J. Mater. Eng. Perform. 2020, 29, 2386–2394. [Google Scholar] [CrossRef]
- Kim, C.; Yang, K. Electrochemical properties of carbon nanofiber web as an electrode for supercapacitor prepared by electrospinning. Appl. Phys. Lett. 2003, 83, 1216–1218. [Google Scholar] [CrossRef]
- Kim, C.; Park, S.-H.; Lee, W.-J.; Yang, K.-S. Characteristics of supercapaitor electrodes of PBI-based carbon nanofiber web prepared by electrospinning. Electrochim. Acta 2004, 50, 877–881. [Google Scholar] [CrossRef]
- Ma, S.; Wang, Y.; Liu, Z.; Huang, M.; Yang, H.; Xu, Z.-L. Preparation of carbon nanofiber with multilevel gradient porous structure for supercapacitor and CO2 adsorption. Chem. Eng. Sci. 2019, 205, 181–189. [Google Scholar] [CrossRef]
- Lai, C.-C.; Lo, C.-T. Preparation of nanostructural carbon nanofibers and their electrochemical performance for supercapacitors. Electrochim. Acta 2015, 183, 85–93. [Google Scholar] [CrossRef]
- Niu, H.; Zhang, J.; Xie, Z.; Wang, X.; Lin, T. Preparation, structure and supercapacitance of bonded carbon nanofiber electrode materials. Carbon 2011, 49, 2380–2388. [Google Scholar] [CrossRef]
- He, T.-S.; Yu, X.-D.; Bai, T.-J.; Li, X.-Y.; Fu, Y.-R.; Cai, K.-D. Porous carbon nanofibers derived from PAA-PVP electrospun fibers for supercapacitor. Ionics 2020, 26, 4103–4111. [Google Scholar] [CrossRef]
- Kim, J.-G.; Kim, H.-C.; Kim, N.D.; Khil, M.-S. N-doped hierarchical porous hollow carbon nanofibers based on PAN/PVP@SAN structure for high performance supercapacitor. Compos. Part. B Eng. 2020, 186, 107825. [Google Scholar] [CrossRef]
- Ago, M.; Borghei, M.; Haataja, J.S.; Rojas, O.J. Mesoporous carbon soft-templated from lignin nanofiber networks: Microphase separation boosts supercapacitance in conductive electrodes. RSC Adv. 2016, 6, 85802–85810. [Google Scholar] [CrossRef] [Green Version]
- Ishita, I.; Singhal, R. Porous multi-channel carbon nanofiber electrodes using discarded polystyrene foam as sacrificial material for high-performance supercapacitors. J. Appl. Electrochem. 2020, 50, 809–820. [Google Scholar] [CrossRef]
- Lu, C.; Chen, X. Electrospun polyaniline nanofiber networks toward high-performance flexible supercapacitors. Adv. Mater. Technol. 2019, 4, 1900564. [Google Scholar] [CrossRef]
- Miao, F.; Shao, C.; Li, X.; Lu, N.; Wang, K.; Zhang, X.; Liu, Y. Polyaniline-coated electrospun carbon nanofibers with high mass loading and enhanced capacitive performance as freestanding electrodes for flexible solid-state supercapacitors. Energy 2016, 95, 233–241. [Google Scholar] [CrossRef]
- Chaudhari, S.; Sharma, Y.; Archana, P.S.; Jose, R.; Ramakrishna, S.; Mhaisalkar, S.; Srinivasan, M. Electrospun polyaniline nanofibers web electrodes for supercapacitors. J. Appl. Polym. Sci. 2013, 129, 1660–1668. [Google Scholar] [CrossRef]
- Miao, Y.-E.; Fan, W.; Chen, D.; Liu, T. High-performance supercapacitors based on hollow polyaniline nanofibers by electrospinning. ACS Appl. Mater. Interfaces 2013, 5, 4423–4428. [Google Scholar] [CrossRef] [PubMed]
- Sahoo, S.; Dhibar, S.; Das, C. Facile synthesis of polypyrrole nanofiber and its enhanced electrochemical performances in different electrolytes. Express Polym. Lett. 2012, 6, 965–974. [Google Scholar] [CrossRef]
- Liu, J.; An, J.; Ma, Y.; Li, M.; Ma, R.; Yu, M.; Li, S. Electrochemical properties comparison of the polypyrrole nanotube and polyaniline nanofiber applied in supercapacitor. Eur. Phys. J. Appl. Phys. 2012, 57, 30702. [Google Scholar] [CrossRef]
- Okuzaki, H.; Takahashi, T.; Miyajima, N.; Suzuki, Y.; Kuwabara, T. Spontaneous formation of poly(p-phenylenevinylene) nanofiber yarns through electrospinning of a precursor. Macromolecules 2006, 39, 4276–4278. [Google Scholar] [CrossRef]
- Okuzaki, H.; Yan, H. Uniaxially Aligned Poly(p-Phenylene Vinylene) and Carbon Nanofiber Yarns through Electrospinning of a Precursor; Coondoo, I., Ed.; IntechOpen: London, UK, 2010; pp. 139–154. [Google Scholar]
- Balakrishnan, K.; Kumar, M.; Angaiah, S. Synthesis of polythiophene and its carbonaceous nanofibers as electrode materials for asymmetric supercapacitors. Adv. Mater. Res. 2014, 938, 151–157. [Google Scholar] [CrossRef]
- Jiang, H.; Ma, J.; Li, C. Mesoporous carbon incorporated metal oxide nanomaterials as supercapacitor electrodes. Adv. Mater. 2012, 24, 4197–4202. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.H.; Kim, B.-H. Zinc oxide/activated carbon nanofiber composites for high-performance supercapacitor electrodes. J. Power Sources 2015, 274, 512–520. [Google Scholar] [CrossRef]
- Hyun, T.-S.; Tuller, H.L.; Youn, D.-Y.; Kim, H.-G.; Kim, I.-D. Facile synthesis and electrochemical properties of RuO2 nanofibers with ionically conducting hydrous layer. J. Mater. Chem. 2010, 20, 9172–9179. [Google Scholar] [CrossRef]
- Kolathodi, M.S.; Hanumantha Rao, S.N.; Natarajan, T.S.; Singh, G. Beaded manganese oxide (Mn2O3) nanofibers: Preparation and application for capacitive energy storage. J. Mater. Chem. A 2016, 4, 7883–7891. [Google Scholar] [CrossRef]
- Kolathodi, M.S.; Palei, M.; Natarajan, T.S. Electrospun NiO nanofibers as cathode materials for high performance asymmetric supercapacitors. J. Mater. Chem. A 2015, 3, 7513–7522. [Google Scholar] [CrossRef]
- Zhang, M.; Li, Q.; Fang, D.; Ayhan, I.A.; Zhou, Y.; Dong, L.; Xiong, C.; Wang, Q. NiO hierarchical hollow nanofibers as high-performance supercapacitor electrodes. RSC Adv. 2015, 5, 96205–96212. [Google Scholar] [CrossRef]
- Kumar, M.; Subramania, A.; Balakrishnan, K. Preparation of electrospun Co3O4 nanofibers as electrode material for high performance asymmetric supercapacitors. Electrochim. Acta 2014, 149, 152–158. [Google Scholar] [CrossRef]
- Simotwo, S.K.; DelRe, C.; Kalra, V. Supercapacitor electrodes based on high-purity electrospun polyaniline and polyaniline–carbon nanotube nanofibers. ACS Appl. Mater. Interfaces 2016, 8, 21261–21269. [Google Scholar] [CrossRef]
- Sivakkumar, S.; Kim, W.J.; Choi, J.-A.; MacFarlane, D.R.; Forsyth, M.; Kim, D.-W. Electrochemical performance of polyaniline nanofibres and polyaniline/multi-walled carbon nanotube composite as an electrode material for aqueous redox supercapacitors. J. Power Sources 2007, 171, 1062–1068. [Google Scholar] [CrossRef]
- Rose, A.; Prasad, K.G.; Sakthivel, T.; Gunasekaran, V.; Maiyalagan, T.; Vijayakumar, T. Electrochemical analysis of graphene oxide/polyaniline/polyvinyl alcohol composite nanofibers for supercapacitor applications. Appl. Surf. Sci. 2018, 449, 551–557. [Google Scholar] [CrossRef]
- Rose, A.; Raghavan, N.; Thangavel, S.; Maheswari, B.U.; Nair, D.P.; Venugopal, G. Investigation of cyclic voltammetry of graphene oxide/polyaniline/polyvinylidene fluoride nanofibers prepared via electrospinning. Mater. Sci. Semicond. Process. 2015, 31, 281–286. [Google Scholar] [CrossRef]
- Yanilmaz, M.; Dirican, M.; Asiri, A.M.; Zhang, X. Flexible polyaniline-carbon nanofiber supercapacitor electrodes. J. Energy Storage 2019, 24, 100766. [Google Scholar] [CrossRef]
- Zhou, Z.; Wu, X.-F.; Hou, H. Electrospun carbon nanofibers surface-grown with carbon nanotubes and polyaniline for use as high-performance electrode materials of supercapacitors. RSC Adv. 2014, 4, 23622–23629. [Google Scholar] [CrossRef]
- Anand, S.; Ahmad, M.W.; Ali Al Saidi, A.K.; Yang, D.-J.; Choudhury, A. Polyaniline nanofiber decorated carbon nanofiber hybrid mat for flexible electrochemical supercapacitor. Mater. Chem. Phys. 2020, 254, 123480. [Google Scholar] [CrossRef]
- Zhu, J.; Zhang, Q.; Chen, H.; Zhang, R.; Liu, L.; Yu, J. Setaria viridis-inspired electrode with polyaniline decorated on porous heteroatom-doped carbon nanofibers for flexible supercapacitors. ACS Appl. Mater. Interfaces 2020, 12, 43634–43645. [Google Scholar] [CrossRef] [PubMed]
- Jalil, N.A.; Mohd Abdah, M.A.A.; Azman, N.H.N.; Sulaiman, Y. Polyaniline and manganese oxide decorated on carbon nanofibers as a superior electrode material for supercapacitor. J. Electroanal. Chem. 2020, 867, 114188. [Google Scholar] [CrossRef]
- Kshetri, T.; Tran, D.T.; Nguyen, D.C.; Kim, N.H.; Lau, K.-T.; Lee, J.H. Ternary graphene-carbon nanofibers-carbon nanotubes structure for hybrid supercapacitor. Chem. Eng. J. 2020, 380, 122543. [Google Scholar] [CrossRef]
- Fu, H.; Zhang, X.; Fu, J.; Shen, G.; Ding, Y.; Chen, Z.; Du, H. Single layers of MoS2/graphene nanosheets embedded in activated carbon nanofibers for high-performance supercapacitor. J. Alloys Compd. 2020, 829, 154557. [Google Scholar] [CrossRef]
- Dai, Z.; Ren, P.-G.; He, W.; Hou, X.; Ren, F.; Zhang, Q.; Jin, Y.-L. Boosting the electrochemical performance of nitrogen-oxygen co-doped carbon nanofibers based supercapacitors through esterification of lignin precursor. Renew. Energy 2020, 162, 613–623. [Google Scholar] [CrossRef]
- Zhang, X.; Cui, X.; Lu, C.-H.; Li, H.; Zhang, Q.; He, C.; Yang, Y. Conjugated polyimide-coated carbon nanofiber aerogels in a redox electrolyte for binder-free supercapacitors. Chem. Eng. J. 2020, 401, 126031. [Google Scholar] [CrossRef]
- Mukhiya, T.; Ojha, G.P.; Dahal, B.; Kim, T.; Chhetri, K.; Lee, M.; Chae, S.-H.; Muthurasu, A.; Tiwari, A.P.; Kim, H.Y. Designed assembly of porous cobalt oxide/carbon nanotentacles on electrospun hollow carbon nanofibers network for supercapacitor. ACS Appl. Energy Mater. 2020, 3, 3435–3444. [Google Scholar] [CrossRef]
- Kolathodi, M.S.; Palei, M.; Natarajan, T.S.; Singh, G. MnO2 encapsulated electrospun TiO2 nanofibers as electrodes for asymmetric supercapacitors. Nanotechnology 2020, 31, 125401. [Google Scholar] [CrossRef] [PubMed]
- Jeong, J.H.; Kim, Y.A.; Kim, B.-H. Electrospun polyacrylonitrile/cyclodextrin-derived hierarchical porous carbon nanofiber/MnO2 composites for supercapacitor applications. Carbon 2020, 164, 296–304. [Google Scholar] [CrossRef]
- Yang, S.; Ai, J.; Han, Z.; Zhang, L.; Zhao, D.; Wang, J.; Yang, C.; Cao, B. Electrospun ZnFe2O4/carbon nanofibers as high-rate supercapacitor electrodes. J. Power Sources 2020, 469, 228416. [Google Scholar] [CrossRef]
- Hao, X.; Bi, J.; Wang, W.; Yan, W.; Gao, X.; Sun, X.; Liu, R. Electrospun Fe2MoC/C nanofibers as an efficient electrode material for high-performance supercapacitors. J. Power Sources 2020, 451, 227802. [Google Scholar] [CrossRef]
- Dirican, M.; Yanilmaz, M.; Asiri, A.M.; Zhang, X. Polyaniline/MnO2/porous carbon nanofiber electrodes for supercapacitors. J. Electroanal. Chem. 2020, 861, 113995. [Google Scholar] [CrossRef]
- He, Y.; Liu, L.; Tao, S.; Ye, J.; Wu, J.; Xu, C.; Guo, Q. Hierarchically hollow NiCo2S4/graphitic nanofiber film with ultrahigh-rate capability and long-term cycling durability for asymmetrical supercapacitor. Ionics 2020, 27, 305–314. [Google Scholar] [CrossRef]
- Yang, X.; Mao, L.; Peng, W.; Jin, J.; Yang, S.; Li, G. Synthesis of double-layered NiCo2O4-nanosheet-loaded PAN/lignin-based hollow carbon nanofibers for high-performance supercapacitor. Chem. Sel. 2020, 5, 2602–2609. [Google Scholar]
- Chapin, M.; Fuller, C.S.; Pearson, G.L. A new silicon p-n junction photocell for converting solar radiation into electrical power. J. Appl. Phys. 1954, 25, 676. [Google Scholar] [CrossRef]
- Veith, B.; Ohrdes, T.; Werner, F.; Brendel, R.; Altermatt, P.P.; Harder, N.-P.; Schmidt, J. Injection dependence of the effective lifetime of n-type Si passivated by Al2O2: An edge effect? Sol. Energy Mater. Sol. Cells 2014, 120A, 436–440. [Google Scholar] [CrossRef]
- Gerischer, H. Electrochemical photo and solar cells principles and some experiments. J. Electroanal. Chem. Interfacial Electrochem. 1975, 58, 263–274. [Google Scholar] [CrossRef]
- Lewerenz, H.J.; Goslowsky, H.; Husemann, K.-D.; Fiechter, S. Efficient solar energy conversion with CuInS2. Nature 1986, 321, 687–688. [Google Scholar] [CrossRef]
- Stempel, T.; Aggour, M.; Skorupska, K.; Munoz, A.; Lewerenz, H.-J. Efficient photoelectrochemical nanoemitter solar cell. Electrochem. Commun. 2008, 10, 1184–1186. [Google Scholar] [CrossRef]
- Lewerenz, H.J. Operational principles of electrochemical nanoemiter solar cells for photovoltaic and photoelectrocatalytic applications. J. Electroanal. Chem. 2011, 662, 184–195. [Google Scholar] [CrossRef]
- Kar, S.; Rajeshwar, K.; Singh, P.; DuBow, J. On the design and operation of electrochemical solar cells. Sol. Energy 1979, 23, 129–139. [Google Scholar] [CrossRef]
- Shalini, S.; Balasundaraprabhu, R.; Satish Kumar, T.; Prabavathy, N.; Senthilarasu, S.; Prasanna, S. Status and outlook of sensitizers/dyes used in dye sensitized solar cells (DSSC): A review. Int. J. Energy Res. 2016, 40, 1303–1320. [Google Scholar] [CrossRef]
- Kumara, N.T.R.N.; Lim, A.; Lim, C.M.; Petra, M.I.; Ekanayake, P. Recent progress and utilization of natural pigments in dye sensitized solar cells: A review. Renew. Sustain. Energy Rev. 2017, 78, 301–317. [Google Scholar] [CrossRef]
- Boro, B.; Gogoi, B.; Rajbongshi, B.M.; Ramchiary, A. Nano-structures TiO2/ZnO nanocomposite for dye-sensitized solar cells application: A review. Renew. Sustain. Energy Rev. 2018, 81, 2264–2270. [Google Scholar] [CrossRef]
- Zainudin, S.N.F.; Abdullah, H.; Markom, M. Electrochemical studies of tin oxide based-dye-sensitized solar cells (DSSC): A review. J. Mater. Sci. Mater. Electron. 2019, 30, 5342–5356. [Google Scholar] [CrossRef]
- Kumar, D.K.; Kriz, J.; Bennett, N.; Chen, B.X.; Upadhayaya, H.; Reddy, K.R.; Sadhu, V. Functionalized metal oxide nanoparticles for efficient dye-sensitized solar cells (DSSCs): A review. Mater. Sci. Energy Technol. 2020, 3, 472–481. [Google Scholar] [CrossRef]
- Petrus, M.L.; Schlipf, J.; Li, C.; Gujar, T.P.; Giesbrecht, N.; Müller-Buschbaum, P.; Thelakkat, M.; Bein, T.; Hüttner, S.; Docampo, P. Capturing the sund: A review of the challenges and perspectives of perovskite solar cells. Adv. Energy Mater. 2017, 7, 1700264. [Google Scholar] [CrossRef]
- Ansari, M.I.H.; Qurashi, A.; Nazeeruddin, M.K. Frontiers, opportunities, and challenges in perovskite solar cells: A critical review. J. Photochem. Photobiol. C Photochem. Rev. 2018, 35, 1–24. [Google Scholar] [CrossRef]
- Uddin, A.; Upama, M.B.; Yi, H.M.; Duan, L.P. Encapsulation of organic and perovskite solar cells: A review. Coatings 2019, 9, 65. [Google Scholar] [CrossRef] [Green Version]
- Roy, P.; Sinha, M.K.; Tiwari, S.; Khare, Y. A review on perovskite solar cells: Evolution of architecture, fabrication techniques, commercialization issues and status. Sol. Energy 2020, 198, 665–688. [Google Scholar] [CrossRef]
- Urbina, A. The balance between efficiency, stability and environmental impacts in perovskite solar cells: A review. J. Phys. Energy 2020, 2, 022001. [Google Scholar] [CrossRef]
- Vijayaraghavan, S.N.; Ashok, A.; Gopakumar, G.; Menon, H.; Nair, S.V.; Shanmugam, M. All spray pyrolysis-coated CdTe–TiO2 heterogeneous films for photo-electrochemical solar cells. Mater. Renew. Sustain. Energy 2018, 7, 12. [Google Scholar] [CrossRef] [Green Version]
- Hazra, M.; Jana, A.; Datta, J. Improved stability toward photo-electrochemical behavior of multi-chalcogenide CdSeS thin films. Appl. Surf. Sci. 2018, 454, 334–342. [Google Scholar] [CrossRef]
- Kissinger, S. Structural and photo electrochemical (PEC) cell properties of Cd1−xZnxSe films. J. Environ. Nanotechnol. 2020, 9, 5–10. [Google Scholar]
- Tenne, R.; Wold, A. Passivation of recombination centers in n-WSe2 yields high efficiency (>14%) photo-electrochemical cell. Appl. Phys. Lett. 1985, 47, 707. [Google Scholar] [CrossRef]
- Prasad, G.; Srivastava, O.N. The high-efficiency (17.1%) WSe2 photo-electrochemical solar cell. J. Phys. D 1988, 21, 1028. [Google Scholar] [CrossRef]
- Huang, S.H.; Li, Q.N.; Chi, D.; Meng, X.Q.; He, L. Simulation approach for optimization of ZnO/c-WSe2 heterojunction solar cells. J. Semicond. 2017, 38, 044008. [Google Scholar] [CrossRef]
- Aljafari, B.; Ram, M.K.; Takshi, A. Integrated electrochemical energy storage and photovoltaic device with a gel electrolyte. Proc. SPIE 2019, 10913, 1091318. [Google Scholar]
- Lashgari, N.; Badiei, A.; Mohammadi Ziarani, G. Modification of mesoporous silica SBA-15 with different organic molecules to gain chemical sensors: A review. Nanochem. Res. 2016, 1, 127–141. [Google Scholar]
- Samokhvalov, A. Analysis of various solid samples by synchronous fluorescence spectroscopy and related methods: A review. Talanta 2020, 216, 120944. [Google Scholar] [CrossRef]
- Wei, F.; Patel, P.; Liao, W.; Chaudhry, K.; Zhang, L.; Arellano-Garcia, M.; Hu, S.; Elashoff, D.; Zhou, H.; Shukla, S. Electrochemical sensor for multiplex biomarkers detection. Clin. Cancer Res. 2009, 15, 4446–4452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clark, L.C., Jr.; Wolf, R.; Granger, D.; Taylor, Z. Continuous recording of blood oxygen tensions by polarography. J. Appl. Physiol. 1953, 6, 189–193. [Google Scholar] [CrossRef]
- Mondal, K.; Sharma, A. Recent advances in electrospun metal-oxide nanofiber based interfaces for electrochemical biosensing. RSC Adv. 2016, 6, 94595–94616. [Google Scholar] [CrossRef]
- Vamvakaki, V.; Tsagaraki, K.; Chaniotakis, N. Carbon nanofiber-based glucose biosensor. Anal. Chem. 2006, 78, 5538–5542. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Chou, W.; Liu, L.; Cui, Y.; Xue, P.; Jia, M. Electrochemical sensors fabricated by electrospinning technology: An overview. Sensors 2019, 19, 3676. [Google Scholar] [CrossRef]
- Ren, G.; Xu, X.; Liu, Q.; Cheng, J.; Yuan, X.; Wu, L.; Wan, Y. Electrospun poly(vinyl alcohol)/glucose oxidase biocomposite membranes for biosensor applications. React. Funct. Polym. 2006, 66, 1559–1564. [Google Scholar] [CrossRef]
- Arecchi, A.; Scampicchio, M.; Brenna, O.V.; Mannino, S. Biocatalytic nylon nanofibrous membranes. Anal. Bioanal. Chem. 2010, 398, 3097–3103. [Google Scholar] [CrossRef]
- Sapountzi, E.; Chateaux, J.-F.; Lagarde, F. Combining electrospinning and vapor-phase polymerization for the production of polyacrylonitrile/polypyrrole core-shell nanofibers and glucose biosensor application. Front. Chem. 2020, 8, 678. [Google Scholar] [CrossRef] [PubMed]
- Yezer, I.; Demirkol, D.O. Cellulose acetate—Chitosan based electrospun nanofibers for bio-functionalized surface design in biosensing. Cellulose 2020, 27, 10183–10197. [Google Scholar] [CrossRef]
- Apetrei, R.-M.; Camurlu, P. The effect of montmorillonite functionalization on the performance of glucose biosensors based on composite montmorillonite/PAN nanofibers. Electrochim. Acta 2020, 353, 136484. [Google Scholar] [CrossRef]
- Mehdizadeh, B.; Maleknia, L.; Amirabadi, A.; Shabani, M. Glucose sensing by a glassy carbon electrode modified with glucose oxidase/chitosan/graphene oxide nanofibers. Diam. Relat. Mater. 2020, 109, 108073. [Google Scholar] [CrossRef]
- Kholosi, F.; Afkhami, A.; Hashemi, P.; Madrakian, T.; Bagheri, H. Bioelectrocatalysis and direct determination of H2O2 using the high-performance platform: Chitosan nanofibers modified with SDS and hemoglobin. J. Iran. Chem. Soc. 2020, 17, 1401–1409. [Google Scholar] [CrossRef]
- Kutlu, N.; İspirli Doğaç, Y.; Deveci, İ.; Teke, M. Urease immobilized electrospun PVA/chitosan nanofibers with improved stability and reusability characteristics: An application for removal of urea from artificial blood serum. Prep. Biochem. Biotechnol. 2020, 50, 425–437. [Google Scholar] [CrossRef]
- Huang, J.; Liu, Y.; You, T. Carbon nanofiber based electrochemical biosensors: A review. Anal. Methods 2010, 2, 202–211. [Google Scholar] [CrossRef]
- Wu, L.; Zhang, X.; Ju, H. Amperometric glucose sensor based on catalytic reduction of dissolved oxygen at soluble carbon nanofiber. Biosens. Bioelectron. 2007, 23, 479–484. [Google Scholar] [CrossRef]
- Bae, T.-S.; Shin, E.; Im, J.S.; Kim, J.G.; Lee, Y.-S. Effects of carbon structure orientation on the performance of glucose sensors fabricated from electrospun carbon fibers. J. Non-Cryst. Solids 2012, 358, 544–549. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, D.; Xu, L.; Hou, H.; You, T. A novel and simple route to prepare a Pt nanoparticle-loaded carbon nanofiber electrode for hydrogen peroxide sensing. Biosens. Bioelectron. 2011, 26, 4585–4590. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.G.; Jun, J.M.; Kim, Y.K.; Kim, J.W.; Lee, J.S.; Jang, J.S. Facile synthesis of Co3O4-incorporated multichannel carbon nanofibers for electrochemical applications. ACS Appl. Mater. Interfaces 2020, 12, 20613–20622. [Google Scholar] [CrossRef] [PubMed]
- Simsek, M.; Hoecherl, K.; Schlosser, M.; Bäumner, A.J.; Wongkaew, N.N. Printable 3D carbon nanofiber networks with embedded metal nanocatalysts. ACS Appl. Mater. Interfaces 2020, 12, 39533–39540. [Google Scholar] [CrossRef]
- Yang, B.; Bin, D.; Tian, T.; Liu, Y.; Liu, B. An ordered mesoporous carbon nanofiber array for the sensitive electrochemical detection of malachite green. ChemElectroChem 2020, 7, 659–664. [Google Scholar] [CrossRef]
- Jahromi, Z.; Mirzaei, E.; Savardashtaki, A.; Afzali, M.; Afzali, Z. A rapid and selective electrochemical sensor based on electrospun carbon nanofibers for tramadol detection. Microchem. J. 2020, 157, 104942. [Google Scholar] [CrossRef]
- Fakude, C.T.; Arotiba, O.A.; Arduini, F.; Mabuba, N. Flexible Polyester Screen-printed Electrode Modified with Carbon Nanofibers for the Electrochemical Aptasensing of Cadmium (II). Electroanalysis 2020, 32, 2650–2658. [Google Scholar] [CrossRef]
- Sasal, A.; Tyszczuk-Rotko, K.; Chojecki, M.; Korona, T.; Nosal-Wiercińska, A. Direct determination of paracetamol in environmental samples using screen-printed carbon/carbon nanofibers sensor–experimental and theoretical studies. Electroanalysis 2020, 32, 1618–1628. [Google Scholar] [CrossRef]
- Aryal, K.P.; Jeong, H.K. Carbon nanofiber modified with reduced graphite oxide for detection of ascorbic acid, dopamine, and uric acid. Chem. Phys. Lett. 2020, 739, 136969. [Google Scholar] [CrossRef]
- Prasad Aryal, K.; Kyung Jeong, H. Electrochemical detection of ascorbic acid with chemically functionalized carbon nanofiber/β-cyclodextrin composite. Chem. Phys. Lett. 2020, 757, 137881. [Google Scholar] [CrossRef]
- Kaçar, C.; Erden, P.E. An amperometric biosensor based on poly(l-aspartic acid), nanodiamond particles, carbon nanofiber, and ascorbate oxidase–modified glassy carbon electrode for the determination of l-ascorbic acid. Anal. Bioanal. Chem. 2020, 412, 5315–5327. [Google Scholar] [CrossRef] [PubMed]
- Saunier, V.; Flahaut, E.; Blatché, M.-C.; Bergaud, C.; Maziz, A. Carbon nanofiber-PEDOT composite films as novel microelectrode for neural interfaces and biosensing. Biosens. Bioelectron. 2020, 165, 112413. [Google Scholar] [CrossRef]
- Yang, S.; Yang, M.; Yao, X.; Fa, H.; Wang, Y.; Hou, C. A zeolitic imidazolate framework/carbon nanofiber nanocomposite based electrochemical sensor for simultaneous detection of co-existing dihydroxybenzene isomers. Sens. Actuators B Chem. 2020, 320, 128294. [Google Scholar] [CrossRef]
- George, J.M.; Antony, A.; Mathew, B. Metal oxide nanoparticles in electrochemical sensing and biosensing: A review. Microchim. Acta 2018, 185, 1–26. [Google Scholar] [CrossRef] [PubMed]
- Huang, A.; He, Y.; Zhou, Y.; Zhou, Y.; Yang, Y.; Zhang, J.; Luo, L.; Mao, Q.; Hou, D.; Yang, J. A review of recent applications of porous metals and metal oxide in energy storage, sensing and catalysis. J. Mater. Sci. 2019, 54, 949–973. [Google Scholar] [CrossRef]
- Li, L.; Mun Lee, P.; Yang, G.; Liu, E. A review on electrospun nanofibers-based electrochemical sensor. Curr. Nanosci. 2015, 11, 710–721. [Google Scholar] [CrossRef]
- Salandari-Jolge, N.; Ensafi, A.A.; Rezaei, B. A novel three-dimensional network of CuCr2O4/CuO nanofibers for voltammetric determination of anticancer drug methotrexate. Anal. Bioanal. Chem. 2020, 412, 2443–2453. [Google Scholar] [CrossRef]
- Veeralingam, S.; Badhulika, S. Strain engineered biocompatible h-WO3 nanofibers based highly selective and sensitive chemiresistive platform for detection of Catechol in blood sample. Mater. Sci. Eng. C 2020, 108, 110365. [Google Scholar] [CrossRef]
- Oliveira, V.H.B.; Rechotnek, F.; da Silva, E.P.; Marques, V.d.S.; Rubira, A.F.; Silva, R.; Lourenço, S.A.; Muniz, E.C. A sensitive electrochemical sensor for Pb2+ ions based on ZnO nanofibers functionalized by L-cysteine. J. Mol. Liq. 2020, 309, 113041. [Google Scholar] [CrossRef]
- He, Y.; Wu, T.; Wang, J.; Ye, J.; Xu, C.; Li, F.; Guo, Q. A sensitive pyrimethanil sensor based on porous NiCo2S4/graphitized carbon nanofiber film. Talanta 2020, 219, 121277. [Google Scholar] [CrossRef]
- Xie, H.; Luo, G.; Niu, Y.; Weng, W.; Zhao, Y.; Ling, Z.; Ruan, C.; Li, G.; Sun, W. Synthesis and utilization of Co3O4 doped carbon nanofiber for fabrication of hemoglobin-based electrochemical sensor. Mater. Sci. Eng. C 2020, 107, 110209. [Google Scholar] [CrossRef] [PubMed]
- Rani, S.D.; Ramachandran, R.; Sheet, S.; Aziz, M.A.; Lee, Y.S.; Al-Sehemi, A.G.; Pannipara, M.; Xia, Y.; Tsai, S.-Y.; Ng, F.-L.; et al. NiMoO4 nanoparticles decorated carbon nanofiber membranes for the flexible and high performance glucose sensors. Sens. Actuators B Chem. 2020, 312, 127886. [Google Scholar] [CrossRef]
- Shamsabadi, A.S.; Tavanai, H.; Ranjbar, M.; Farnood, A.; Bazarganipour, M. Electrochemical non-enzymatic sensing of glucose by gold nanoparticles incorporated graphene nanofibers. Mater. Today Commun. 2020, 24, 100963. [Google Scholar] [CrossRef]
- Wei, J.; Yin, Z.; Zeng, X.; Allado, K.; Ji, Z.; Sheardy, A.; Arvapalli, D. Binary MnO2/Co3O4@well-aligned electrospun carbon nanofibers for sensitive, nonenzymatic glucose sensing. In Proceedings of the 237th ECS Meeting with the 18th International Meeting on Chemical Sensors (IMCS 2020), Montreal, QC, Canada, 10–14 May 2020. [Google Scholar]
- Shekh, M.I.; Amirian, J.; Du, B.; Kumar, A.; Sharma, G.; Stadler, F.J.; Song, J. Electrospun ferric ceria nanofibers blended with MWCNTs for high-performance electrochemical detection of uric acid. Ceram. Int. 2020, 46, 9050–9064. [Google Scholar] [CrossRef]
- Supraja, P.; Singh, V.; Vanjari, S.R.K.; Singh, S.G. Electrospun CNT embedded ZnO nanofiber based biosensor for electrochemical detection of Atrazine: A step closure to single molecule detection. Microsyst. Nanoeng. 2020, 6, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Riaz, M.A.; Yuan, Z.; Mahmood, A.; Liu, F.; Sui, X.; Chen, J.; Huang, Q.; Liao, X.; Wei, L.; Chen, Y. Hierarchically porous carbon nanofibers embedded with cobalt nanoparticles for efficient H2O2 detection on multiple sensor platforms. Sens. Actuators B Chem. 2020, 319, 128243. [Google Scholar] [CrossRef]
- Xie, H.; Niu, Y.; Deng, Y.; Cheng, H.; Ruan, C.; Li, G.; Sun, W. Electrochemical aptamer sensor for highly sensitive detection of mercury ion with Au/Pt@carbon nanofiber-modified electrode. J. Chin. Chem. Soc. 2021, 68, 114–120. [Google Scholar] [CrossRef]
- Zhou, S.; Hu, M.; Huang, X.; Zhou, N.; Zhang, Z.; Wang, M.; Liu, Y.; He, L. Electrospun zirconium oxide embedded in graphene-like nanofiber for aptamer-based impedimetric bioassay toward osteopontin determination. Microchim. Acta 2020, 187, 1–9. [Google Scholar] [CrossRef]
- Zhu, L.; Wang, Y.; Ai, Z.; Zhang, X.; Li, X.; Zhang, X.; Sun, W. Titanium dioxide nanoparticle and carbon nanotube incorporated carbon nanofiber nanocomposite modified electrode for hemoglobin electrochemistry. Int. J. Electrochem. Sci. 2020, 15, 4712–4721. [Google Scholar] [CrossRef]
- Ansari, S.H.; Arvand, M. A magnetic nanocomposite prepared from electrospun CoFe2O4 nanofibers and graphene oxide as a material for highly sensitive determination of rutin. Microchim. Acta 2020, 187, 103. [Google Scholar] [CrossRef]
- Yin, D.; Liu, J.; Bo, X.; Guo, L. Cobalt-iron selenides embedded in porous carbon nanofibers for simultaneous electrochemical detection of trace of hydroquinone, catechol and resorcinol. Anal. Chim. Acta 2020, 1093, 35–42. [Google Scholar] [CrossRef] [PubMed]
Material | Capacity (mAh·g−1) | Cycling Stability | Autor (Year) | Ref. |
---|---|---|---|---|
Li2CoTi3O8/TiO2 | 82 at 0.1 C | 83% after 25 cycles | Kap et al. (2020) | [99] |
LiFePO4 nanocrystals/carbon nanofibers (CNFs) | 152 at 0.5 C | 98.2% after 500 cycles | Cao et al. (2020) | [100] |
V2O5/GO | 342 at 0.5 C | 80% after 20 cycles | Ahmadian et al. (2020) | [101] |
Li2MnTiO4+z | 210 at 0.1 C | 95.3% after 100 cycles | Vu et al. (2020) | [102] |
LiFe0.8Mn0.2PO4/C | 169.9 at 0.1 C | 160 after 200 cycles | Chen et al. (2020) | [103] |
LiFe0.4Mn0.6PO4/CNFs | 133.5 at 1 C | 138.8 after 100 cycles | Yang et al. (2020) | [104] |
Material | Energy Storage Mechanism | Capacity (mAh·g−1) | Autor (Year) | Ref. |
---|---|---|---|---|
CNF | Intercalation | 294 at 0.2 A·g−1 | Li et al. (2020) | [118] |
MnCo2O4 | Conversion reaction | 701 at 0.5 A·g−1 | Zhu et al. (2020) | [119] |
TiO2/CNF | 399 | Su et al. (2020) | [120] | |
Fe3O4/CNF | 1635 at 1 A·g−1 | Liu et al. (2020) | [121] | |
Sn4P3/CNF | 710 | Ran et al. (2020) | [122] | |
P/CNF | Alloying reaction | 730 at 0.1 A·g−1 | Liberale et al. (2020) | [123] |
Si/PCNF | 1033 at 5 A·g−1 | Tian et al. (2020) | [124] | |
SnP0.94/CNF | Conversion/Alloying reactions | 750 at 0.1 A·g−1 | Yadav et al. (2020) | [125] |
SnSe/CNF | 405 at 1 A·g−1 | Xia et al. (2020) | [126] | |
SnSe/N-doped CNF | 460 at 0.2 A·g−1 | Shaji et al. (2020) | [127] |
Material | Porosity (%) | Tensile Strength (MPa) | Electrolyte Uptake (%) | Ionic Conductivity (mS·cm−1) | Autor (Year) | Ref. |
---|---|---|---|---|---|---|
PAN | 67.7 | 11.3 | 478.2 | 1.97 | Dong et al. (2020) | [151] |
PAN/PBS | 59.3 | 7.66 | 665 | 2.1 | Wei et al. (2020) | [152] |
PVA/ZrO2 | 78 | 14.5 | 350 | 2.19 | Xiao et al. (2020) | [153] |
PI/Al2O3 | 81 | - | 912 | - | Iaritphun et al. (2020) | [154] |
PVDF-HFP/SiO2 | 89.7 | 5 | 483 | - | Xu et al. (2020) | [155] |
PVDF-HFP/PI | 85.9 | 9.76 | 483.5 | 1.78 | Cai et al. (2020) | [156] |
PVDF-HFP/LAGP | - | - | 215 | 3.18 | Liang et al. (2021) | [157] |
PVDF/TPP/CA | 90 | 6.9 | 301 | 4.4 | Chen et al. (2020) | [158] |
PAN/HCNFs@PVDF/UiO-66 | 77.61 | 24.77 | 570.97 | 1.59 | Fa et al. (2021) | [159] |
Material | Fabrication Method | Ionic Conductivity (mS·cm−1) | Author (Year) | Ref. |
---|---|---|---|---|
PEO/PC/LiClO4 | Casting | 1.7 × 10−3 | Banitaba et al. (2019) | [170] |
Electrospinning | 5 × 10−2 | |||
PEO/Li(TFSI) | Casting | 1 × 10−3 | Walk et al. (2018) | [171] |
Electrospinning | 4.4 × 10−3 | |||
PEO/EC/LiClO4 | Casting | 8 × 10−3 | Banitaba et al. (2020) | [169] |
Electrospinning | 1.72 × 10−1 | |||
PEO/EC/LiClO4/Al2O3 | Casting | 4.4 × 10−3 | Banitaba et al. (2019) | [172] |
Electrospinning | 5.9 × 10−2 |
Host [Guest] Components | Thermal Treatment | SSA (m2.g−1) | Electrochemical Performance | Author (Year) | Ref. | ||
---|---|---|---|---|---|---|---|
Specific Capacity (F·g−1) | Energy Density (Wh·kg−1) | Capacity Retention | |||||
PAN | Stabilized at 280 °C for 1 h, carbonized at 700–800 °C, and activated by N2 and steam for 30 min | 1230 | 173 at 0.01 A·g−1 | - | - | Kim & Yang (2003) | [249] |
Polybenzimidazole | Activated by N2 and steam at 750–850 °C for 30 min | 1220 | 178 at 0.007 A | - | - | Kim et al. (2004) | [250] |
PVDF/PVP | Dehydrofluorinated at 60 °C for 1 h and heated to 800 °C in N2 | 1084 | 331 F·g−1 at 1 A·g−1 | 13.1 | 89.2% after 2000 cycles | Ma et al. (2019) | [251] |
PAN/PMMA | Stabilized at 250 °C for 4 h and carbonized at 800 °C for 1 h in N2 | 224 | 210 F·g−1 at 1 A·g−1 | - | 100% after 2000 cycles | Lai et al. (2015) | [252] |
PAN/PVP | Stabilized at 300 °C for 2 h, carbonized at 300 to 970 °C for 3 h in N2, and activated by CO2 at 850 °C for 1.5 h | 531 | 220 F·g−1 | - | - | Niu et al. (2011) | [253] |
Polyamic acid (PAA)/PVP | Stabilized at 280 °C for 2 h, carbonized at 280 to 900 °C for 7 h in Ar, and activated by KOH at 850 °C for 2 h | 743.5 | 211.7 F·g−1 | 23.1 | - | He et al. (2020) | [254] |
poly(styrene-co-acrylonitrile)/PAN/PVP | Stabilized at 250 °C for 2 h and carbonized at 800 °C for 1 h in N2 | 26 | 239 F·g−1 at 1 A·g−1 | 15 | 92.33% after 10,000 cycles | Kim et al. (2020) | [255] |
Lignin/PVA | Stabilized at 250 °C in N2 for 2 h and carbonized at 900 °C for 2 h in N2 | 2005 | 205 F·g−1 at 1 A·g−1 | - | 83% after 1500 cycles | Ago et al. (2016) | [256] |
PAN [PVP/Silicone oil] | Stabilized at 300 °C for 2 h, carbonized at 300 to 970 °C for 3 h in Ar, and activated by KOH at 850 °C for 1.5 h | 1120.3 | 231.6 F·g−1 | 15.1 | 99.7% after 2000 cycles | Ishita & Singhal (2020) | [257] |
PAN [PS] | Stabilized at 280 °C for 2 h and carbonized at 800 °C for 1 h in N2 | 432 | 271.6 F·g−1 at 0.5 A·g−1 | 18.8 | 100% after 5000 cycles | Ishita & Singhal (2020) | [257] |
Electrospun Hybrid Materials | Thermal Treatment | Electrochemical Performance | Author (Year) | Ref. | ||
---|---|---|---|---|---|---|
Specific Capacity (F·g−1) | Energy Density (Wh·kg−1) | Capacity Retention | ||||
PAni/CNF | Stabilized at 280 °C for 4 h and carbonized at 800 °C in N2 | 439 at 1 mA·cm−2 | 68.6 | 90% after 5000 cycles | Anand et al. (2020) | [280] |
PAni/heteroatom-doped CNF | Annealed at 250 °C for 2 h and pyrolysed at 900 °C for 1 h in N2 | 680.8 at 0.5 A·g−1 | 27.7 | 93.5% after 3000 cycles | Zhu et al. (2020) | [281] |
PAni/MnO2/CNF | Stabilized at 280 °C for 2 h and carbonized at 800 °C for 0.5 h in N2 | 937.66 at 1 A·g−1 | 66.12 | 97.6% after 5000 cycles | Jalil et al. (2020) | [282] |
Graphene/CNT/CNF | Stabilized, maintained at 500 °C for 1 h, and kept at 700 °C | 218 at 1 A·g−1 | 62.13 | 94.98% after 10,000 cycles | Kshetri et al. (2020) | [283] |
MoS2/graphene/CNF | Pretreated at 450 °C for 1.5 h and carbonized at 800 °C for 2 h in H2 | 334 at 0.5 A·g−1 | - | 83.8% after 5000 cycles | Fu et al. (2020) | [284] |
Nitrogen-oxygen co-doped CNF | Stabilized at 200 °C for 1 h, annealed at 1000 °C for 0.5 h in N2, and maintained at 600 °C for 1 h | 320 at 1 A·g−1 | 17.92 | 94.5% after 5000 cycles | Dai et al. (2020) | [285] |
PI/CNF | Solvothermal treatment at 200 °C for 12 h | 1139 at 5 A·g−1 | 94 | 90% after 10000 cycles | Zhang et al. (2020) | [286] |
Co3O4/C/CNF | Stabilized at 250 °C for 4 h and carbonized at 950 °C for 1 h | 1632 at 5 A·g−1 | 36.6 | 82.5% after 7000 cycles | Mukhiya et al. (2020) | [287] |
MnO2/TiO2 | Calcinated at 500 °C for 1 h | 111.5 at 1 A·g−1 | 62 | 87.2% after 5000 cycles | Kolathodi et al. (2020) | [288] |
MnO2/porous CNF | Oxidized at 280 °C for 1 h and carbonized at 280 °C for 1 h in N2 | 228 at 1 A·g−1 | 25.3 | 94% after 10,000 cycles | Jeong et al. (2020) | [289] |
ZnFe2O4/carbon | Stabilized at 250 °C, carbonized at 600 °C, and annealed at 280 °C | 237 at 1 A·g−1 | - | 93.1% after 10,000 cycles | Yang et al. (2020) | [290] |
Fe2MoC/carbon | Stabilized at 250 °C for 2 h and carbonized at 800 °C for 2 h in Ar | 347 at 1 A·g−1 | 14.5 | 93% after 5000 cycles | Hao et al. (2020) | [291] |
PAni/MnO2/CNF | stabilized at 280 °C for 5.5 h and carbonized at 700 °C for 2 h | 289 at 1 A·g−1 | 119 | 91% after 1000 cycles | Dirican et al. (2020) | [292] |
NiCo2S4/graphite | Carbonized at 2000 °C | 1175.2 at 10 A·g−1 | 52.3 | 94.7% after 10,000 cycles | He et al. (2020) | [293] |
NiCo2O4/CNF | Carbonized | 111 at 1 A·g−1 | 40.3 | 92% after 5000 cycles | Yang et al. (2020) | [294] |
Support Materials | Target | Linear Response Range | Detection Limit | Author (Year) | Ref. |
---|---|---|---|---|---|
PAN/PPy/PPy3COOH | Glucose | 20 nM−2 μM | 2 nM | Sapountzi et al. (2020) | [328] |
Cellulose acetate/chitosan | Glucose | 5 µM–0.75 mM | 4.8 µM | Yezer & Demirkol (2020) | [329] |
PAN/montmorillonite | Glucose | 1.0 × 10−5–2.45 × 10−3 M and 2.45 × 10−3–15 × 10−3 M | 2.4 µM | Apetrei & Camurlu (2020) | [330] |
Chitosan/GO | Glucose | 0.05–20 mM | 0.02 mM | Mehdizadeh et al. (2020) | [331] |
Chitosan/sodium dodecyl sulfate/hemoglobin | Hydrogen peroxide | 3–2940 µM | 0.16 µM | Kholosi et al. (2020) | [332] |
PVA/chitosan | Urea | 0.023–0.23 mM | - | Kutlu et al. (2020) | [333] |
PAni/GO | Breast cancer biomarker | 10−15–10−7 M | 3.01 × 10−16 M | Su et al. (2020) | [120] |
Support Materials | Target | Linear Response Range | Detection Limit | Author (Year) | Ref. |
---|---|---|---|---|---|
CNF | Malachite green | 0.1–22.1 µM | 0.05 µM | Yang et al. (2020) | [340] |
CNF | Tramadol | 0.05–100 nM | 0.05 nM | Jahromi et al. (2020) | [341] |
CNF | Cadmium (II) | 2–100 ppb | 0.11 ppb | Fakude et al. (2020) | [342] |
CNF | Paracetamol | 2.0 × 10−9–5.0 × 10−8 and 1.0 × 10−7–2.0 × 10−6 M | 5.4 × 10−10 M | Sasal et al. (2020) | [343] |
CNF/GO | Uric acid | 100–700 µM | 0.14 µA.µM−1 | Aryal & Jeong et al. (2020) | [344] |
CNF/β-cyclodextrin | Ascorbic acid | 0.9 µM | 100–400 µM | Aryal & Jeong et al. (2020) | [345] |
CNF/poly(L-aspartic acid)/nanodiamond particles | L-ascorbic acid | 0.2 µM–1.8 mM | 0.1 µM | Kacer & Erden (2020) | [346] |
CNF/PEDOT | neurotransmitters | 0.1–9 µM | 0.045 µM | Saunier et al. (2020) | [347] |
CNF/zeolitic imidazolate framework-8 | dihydroxybenzene isomers | 0.06 µM | 2-400 µM | Yang et al. (2020) | [348] |
Materials | Target | Linear Response Range | Detection Limit | Author (Year) | Ref. |
---|---|---|---|---|---|
CuCr2O4/CuO | Methotrexate | 0.1–300 μM | 25 nM | Salandari-Jolge et al. (2020) | [352] |
WO3 | Catechol | 1–100 μM | 0.52 μM | Veeralingam & Badhulika (2020) | [353] |
L-cysteine/ZnO | Lead ion | 10–140 µg·Lit−1 | 0.397 µg·L−1 | Oliviera et al. (2020) | [354] |
NiCo2S4/graphene/CNF | Pyrimethanil | 0.06–800 µM | 20 nM | He et al. (2020) | [355] |
Co3O4/CNF | Hemoglobin | 1–12 mM | 0.33 mM | Xie et al. (2020) | [356] |
NiMoO4/CNF | Glucose | 0.0003–4.5 mM | 50 nM | Rani et al. (2020) | [357] |
Graphene/gold | Glucose | 0.5–9 mM | 55 µM | Shamsabadi et al. (2020) | [358] |
MnO2/Co3O4/CNF | Glucose | <10.2 mM | 0.02 µM | Wei et al. (2020) | [359] |
Ferric ceria | Uric acid | 0.5–500 µM | 0.3 µM | Shekh et al. (2020) | [360] |
ZnO/CNT | Atrazine | 10 zM–1 µM | 5.368 zM | Supraja et al. (2020) | [361] |
CNF/Co | Hydrogen peroxide | <50 mM | 10 µM | Riaz et al. (2020) | [362] |
Au/Pt/CNF | Mercury ion | 10−15–10−6 M | 3.33 × 10−16 M | Xie et al. (2021) | [363] |
ZrO2/graphene | Osteopontin | 0.01 pg·mLit−1–2.0 ng·mLit−1 | 4.76 fg·mL−1 | Zhou et al. (2020) | [364] |
TiO2/CNT/CNF | Bovine hemoglobin | 5–80 mM | 1.67 mM | Zhu et al. (2020) | [365] |
CoFe2O4/GO | Rutin | 0.001–0.1 nM and from 1.0–100 nM | 0.94 pM | Ansari et al. (2020) | [366] |
CoFe2Se4/CNF | Hydroquinone | 0.5–200 µM | 0.13 µM | Yin et al. (2020) | [367] |
Catechol | 0.5–190 µM | 0.15 µM | |||
Resorcinol | 5–350 µM | 1.36 µM |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Banitaba, S.N.; Ehrmann, A. Application of Electrospun Nanofibers for Fabrication of Versatile and Highly Efficient Electrochemical Devices: A Review. Polymers 2021, 13, 1741. https://doi.org/10.3390/polym13111741
Banitaba SN, Ehrmann A. Application of Electrospun Nanofibers for Fabrication of Versatile and Highly Efficient Electrochemical Devices: A Review. Polymers. 2021; 13(11):1741. https://doi.org/10.3390/polym13111741
Chicago/Turabian StyleBanitaba, Seyedeh Nooshin, and Andrea Ehrmann. 2021. "Application of Electrospun Nanofibers for Fabrication of Versatile and Highly Efficient Electrochemical Devices: A Review" Polymers 13, no. 11: 1741. https://doi.org/10.3390/polym13111741
APA StyleBanitaba, S. N., & Ehrmann, A. (2021). Application of Electrospun Nanofibers for Fabrication of Versatile and Highly Efficient Electrochemical Devices: A Review. Polymers, 13(11), 1741. https://doi.org/10.3390/polym13111741