Effect of Off-Axis Ply on Tensile Properties of [0/θ]ns Thin Ply Laminates by Experiments and Numerical Method
Abstract
:1. Introduction
2. Experimental Procedure
2.1. Materials
2.2. Tensile Strength Test
2.3. In Situ Microscale Observation of Microscopic Failure Process
3. Experimental Results
3.1. Results of Tensile Tests
3.2. Results of Microscopy Observation of Various Damage Events
4. Finite Element Analysis of [0/θ]s Laminates Subjected to Tension
4.1. Finite Element Analysis (FEA)
4.2. Numerical Results
5. Conclusions
- (1)
- All six [0/θ]2s plies with an off-axis angle θ ranging from 15° to 90° show approximate linear stress–strain responses in the tensile tests. A simple theoretical approximate formula is proposed to evaluate the tensile strength using material constants of unidirectional lamina. The prediction results for the tensile strength of the [0/θ]2s laminates agree well with the experimental results.
- (2)
- Matrix cracks were not observed prior to the final catastrophic failure in off-axis layers of the [0/θ]2s laminates with a θ in the range of 15°–60°. Multiple matrix cracks were observed in the [0/75°]2s and [0/90°]2s plies only as the tensile strength increased from 50% to 80%. Delamination was not observed prior to the final catastrophic failure in all the [0/θ]2s laminates during the tensile tests.
- (3)
- Numerical analysis based on the crack-free micromechanical model leads to an upper bound of the tensile strength of the [0/θ]s laminates. The micromechanical model with potential matrix cracking leads to similar results to those obtained from the crack-free model. The numerical results from the initial crack micromechanical model show a lower bound of tensile strength of the [0/θ]s plies. A high stress concentration is observed adjacent to the cracked off-axis layer, inducing tensile strength loss of about 20%. Additionally, the simulated deformation results obtained from the fiber-matrix debonding model are consistent with the observation results from the tensile tests.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Nairn, J.A. Matrix microcracking in composites. Polym. Matrix Compos. 2001, 2, 1–34. [Google Scholar]
- Abrate, S. Matrix cracking in laminated composites: A review. Compos. Eng. 1991, 1, 337–353. [Google Scholar] [CrossRef]
- Wan, S.L.; Yi, W.; Yu, M. Current situations of carbon fiber reinforced composites used for lightweighting of automobile at home and abroad. China Text. Lead. 2016, 5, 48–52. [Google Scholar]
- Zhang, H.; Liu, M. Development and applications of carbon fiber reinforced polymer. Eng. Plast. Appl. 2015, 43, 132–135. [Google Scholar]
- Yang, X.J.; Zhang, Z.M.; Zheng, J.; Duan, S.Y. Multi-conditions/Multi-objective Optimazation Design of the Variable Cross-section of Composite Front Bumper. Automot. Eng. 2015, 37, 1130–1137. [Google Scholar]
- Vivekanandhan, S.; Misra, M.; Mohanty, A.K. Thermal, mechanical, and morphological investigation of injection molded poly (trimethylene terephthalate)/carbon fiber composites. Polym. Compos. 2012, 33, 1933–1940. [Google Scholar] [CrossRef]
- Talreja, R. Stiffness properties of composite laminates with matrix cracking and interior delamination. Eng. Fract. Mech. 1986, 25, 751–762. [Google Scholar] [CrossRef]
- Tan, S.C.; Nuismer, F.J. A Theory for progressive matrix cracking in composite laminates. Compos. Mater. 1989, 23, 1029–1047. [Google Scholar] [CrossRef]
- Takeda, N.; Ogihara, S. Initiation and growth of delamination from the tips of transverse cracks in CFRP cross-ply laminates. Compos. Sci. Technol. 1994, 52, 309–318. [Google Scholar] [CrossRef]
- Groves, S.E.; Harris, C.E.; Highsmith, A.L.; Allen, D.H.; Norvell, R.G. An experimental and analytical treatment of matrix cracking in cross-ply laminates. Exp. Mech. 1987, 27, 73–79. [Google Scholar] [CrossRef]
- Smith, P.A.; Boniface, L.; Glass, N.F. A Comparison of transverse cracking phenomena in (0/90)s and (90/0)s CFRP laminates. Appl. Compos. Mater. 1998, 5, 11–23. [Google Scholar] [CrossRef]
- Pakdel, H.; Mohammadi, B. Progressive matrix cracking master curves of mid and outer off-axis plies in CFRP laminates. Compos. Struct. 2018, 188, 497–502. [Google Scholar] [CrossRef]
- Fuller, J.D.; Wisnom, M.R. Pseudo-ductility and damage suppression in thin ply CFRP angle-ply laminates. Compos. Part A Appl. Sci. Manuf. 2015, 69, 64–71. [Google Scholar] [CrossRef] [Green Version]
- Thomas, R.P.; Mohamad, F.; Xun, W.; Jamie, W.H.; Wisnom, M.R.; Ian, H. Pseudo-ductile behavior in fiber reinforced thermoplastic angle-ply composites. Compos. Sci. Technol. 2020, 197, 108261. [Google Scholar]
- Moreno, M.C.; Horta, S.; Romero, A.; Rappold, C.; Vicente, J.L.; Morales, P.A.; Cela, J.J. Pseudo-ductility in flexural testing of symmetric ±45 angle-ply CFRP laminates. Compos. Sci. Technol. 2018, 156, 8–18. [Google Scholar] [CrossRef]
- Kashtalyan, M.; Soutis, C. Stiffness and fracture analysis of laminated composites with off-axis ply matrix cracking. Compos. Part A Appl. Sci. Manuf. 2007, 38, 1262–1269. [Google Scholar] [CrossRef]
- Vaughan, T.J.; McCarthy, C.T. Micromechanical modelling of the transverse damage behaviour in fibre reinforced composites. Compos. Sci. Technol. 2011, 71, 388–396. [Google Scholar] [CrossRef]
- Barulich, N.D.; Godoy, L.A.; Dardati, P.M. Evaluation of cross-ply laminate stiffness with a non-uniform distribution of transverse matrix cracks by means of a computational meso-mechanic model. Compos. Struct. 2018, 185, 561–572. [Google Scholar] [CrossRef]
- Zhang, J.; Fan, J.; Soutis, C. Analysis of multiple matrix cracking in [±θm/90n]s composite laminates. Part 1: In-plane stiffness properties. Composites 1992, 23, 291–298. [Google Scholar] [CrossRef]
- Zhang, J.; Herrmann, K.P. Stiffness degradation induced by multilayer intralaminar cracking in composite laminates. Compos. Part A Appl. Sci. Manuf. 1999, 30, 683–706. [Google Scholar] [CrossRef]
- Katerelos, D.T.; Kashtalyan, M.; Soutis, C.; Galiotis, C. Matrix cracking in polymeric composites laminates: Modelling and experiments. Compos. Sci. Technol. 2008, 68, 2310–2317. [Google Scholar] [CrossRef] [Green Version]
- Fuller, J.D.; Wisnom, M.R. Exploration of the potential for pseudo-ductility in thin ply CFRP angle-ply laminates via an analytical method. Compos. Sci. Technol. 2015, 112, 8–15. [Google Scholar] [CrossRef] [Green Version]
- Torayca Prepreg Data Sheet. Available online: http://www.torayca.com/en/download/pdf/prepreg.pdf (accessed on 20 May 2018).
- Takeda, S.; Minakuchi, S.; Okabe, Y.; Takeda, N. Delamination monitoring of laminated composites subjected to low-vilocity impact using small-diameter FGB sensors. Compos. Part A Appl. Sci. Manuf. 2005, 36, 903–908. [Google Scholar] [CrossRef]
- Mohammad, M.J.; Ogihara, S.; Vinogradov, V. The effect of matrix cracking on mechanical properties in FRP laminates. Mech. Adv. Mater. Mod. Process. 2018, 4, 1–16. [Google Scholar]
- Jones, R.M. Mechanics of Composite Materials, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Deng, X.; Hu, J.F.; Wang, W.X.; Matsubara, T. A micromechanical model for the analysis of multidirectional fiber reinforced polymer laminates. Compos. Struct. 2019, 208, 507–516. [Google Scholar] [CrossRef]
- Deng, X.; Wang, W.X.; Matsubara, T. Effects of the off-axis layer on the tensile failure of carbon fiber reinforced polymer [0/θ]s laminates. IOP Conf. Ser. Mater. Sci. Eng. 2019, 576, 012024. [Google Scholar] [CrossRef]
- Romanowicz, M. A mesoscale study of failure mechanisms in angle-ply laminates under tensile loading. Compos. Part B Eng. 2016, 90, 45–57. [Google Scholar] [CrossRef]
- Rajan, V.P.; Zok, F.W. Matrix cracking of fiber-reinforced ceramic composites in shear. J. Mech. Phys. Solids 2014, 73, 3–21. [Google Scholar] [CrossRef]
- MSC Software. MSC Marc 2011 User Documentation. Volume A: Theory and User Information. Available online: https://help.mscsoftware.com (accessed on 21 May 2011).
- Elices, M.; Guinea, G.V.; Gómez, J.; Planas, J. The cohesive zone model: Advantages, limitations and challenges. Eng. Fract. Mech. 2002, 69, 137–163. [Google Scholar] [CrossRef]
- Rene, B. Numerical aspects of cohesive-zone models. Eng. Fract. Mech. 2003, 70, 1743–1757. [Google Scholar]
- Kroupa, T.; Janda, P.; Zemčík, R. Linear two-scale model for determining the mechanical properties of a textile composite material. Mater. Tehnol. 2012, 46, 97–101. [Google Scholar]
- Srbov, H.; Zem, R. Identification of Material Parameters of Unidirectional Composite Micromodel. Eng. Mech. 2012, 19, 113–119. [Google Scholar]
- Drach, A.; Drach, B.; Tsukrov, I. Processing of fiber architecture data for finite element modeling of 3D woven composites. Adv. Eng. Softw. 2014, 72, 18–27. [Google Scholar] [CrossRef]
E1 (GPa) | E2,E3 (GPa) | ν12, ν13 | ν23 | G12, G13 (GPa) | G23 (GPa) |
---|---|---|---|---|---|
134 | 9.5 | 0.34 | 0.48 | 3.18 | 3.22 |
Off-Axis Angle θ | Modulus (GPa) | C.V. | Failure Strain (%) | C.V. | Strength (MPa) | C.V. |
---|---|---|---|---|---|---|
15 | 99.60 | 0.042 | 1.91 | 0.036 | 1706.15 | 0.063 |
30 | 77.79 | 0.027 | 2.08 | 0.032 | 1610.58 | 0.042 |
45 | 71.08 | 0.038 | 2.08 | 0.030 | 1569.48 | 0.012 |
60 | 68.57 | 0.024 | 2.02 | 0.019 | 1501.32 | 0.015 |
75 | 69.91 | 0.012 | 2.01 | 0.038 | 1490.04 | 0.036 |
90 | 69.79 | 0.023 | 2.03 | 0.025 | 1520.65 | 0.022 |
Constants | Carbon Fiber (f) | Epoxy (e) |
---|---|---|
Ef11, Ee11 (GPa) | 235 | 3.3 |
Ef22, Ef33, Ee22, Ee33 (GPa) | 13 | 3.3 |
νf12, νf13, νe12, νe13 | 0.2 | 0.38 |
νf23, νe23 | 0.3 | |
Gf12, Gf13, Ge12, Ge13 (GPa) | 15 | 1.2 |
Gf23, Ge23 (GPa) | 5 |
Items | Element inside Matrix | Elements at Fiber-Matrix Interface |
---|---|---|
Critical energy release rate (N/mm) | 0.4 | 0.002 |
Critical opening displacement (mm) | 6 × 10−5 | 8 × 10−7 |
Maximum opening displacement (mm) | 0.01 | 5 × 10−5 |
Initial stiffness (N/mm3) | 1.33 × 106 | 108 |
Critical traction (N/mm2) | 80 | 80 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, J.; Deng, X.; Zhang, X.; Wang, W.-X.; Matsubara, T. Effect of Off-Axis Ply on Tensile Properties of [0/θ]ns Thin Ply Laminates by Experiments and Numerical Method. Polymers 2021, 13, 1809. https://doi.org/10.3390/polym13111809
Hu J, Deng X, Zhang X, Wang W-X, Matsubara T. Effect of Off-Axis Ply on Tensile Properties of [0/θ]ns Thin Ply Laminates by Experiments and Numerical Method. Polymers. 2021; 13(11):1809. https://doi.org/10.3390/polym13111809
Chicago/Turabian StyleHu, Junfeng, Xi Deng, Xutong Zhang, Wen-Xue Wang, and Terutake Matsubara. 2021. "Effect of Off-Axis Ply on Tensile Properties of [0/θ]ns Thin Ply Laminates by Experiments and Numerical Method" Polymers 13, no. 11: 1809. https://doi.org/10.3390/polym13111809
APA StyleHu, J., Deng, X., Zhang, X., Wang, W. -X., & Matsubara, T. (2021). Effect of Off-Axis Ply on Tensile Properties of [0/θ]ns Thin Ply Laminates by Experiments and Numerical Method. Polymers, 13(11), 1809. https://doi.org/10.3390/polym13111809