Enzymatic Synthesis of Muconic Acid-Based Polymers: Trans, Trans-Dimethyl Muconate and Trans, β-Dimethyl Hydromuconate
Abstract
:1. Introduction
2. Materials and Methods
Synthetic Procedures
3. Results and Discussion
3.1. Monomer Synthesis
3.2. Enzymatic Polymerization
3.3. Polymer Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Dove, A. Polymer Science Tries to Make It Easy to Be Green. Science 2012, 335, 1382–1384. [Google Scholar] [CrossRef] [Green Version]
- Mülhaupt, R. Green Polymer Chemistry and Bio-based Plastics: Dreams and Reality. Macromol. Chem. Phys. 2013, 214, 159–174. [Google Scholar] [CrossRef]
- Robert, C.; de Montigny, F.; Thomas, C.M. Tandem synthesis of alternating polyesters from renewable resources. Nat. Commun. 2011, 2, 586. [Google Scholar] [CrossRef]
- Mathers, R.T. How well can renewable resources mimic commodity monomers and polymers? J. Polym. Sci. Part A Polym. Chem. 2012, 50, 1–15. [Google Scholar] [CrossRef]
- Gandini, A. Monomers and Macromonomers from Renewable Resources. In Biocatalysis in Polymer Chemistry; Loos, K., Ed.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2010; Charpter 1; pp. 1–33. [Google Scholar] [CrossRef]
- Jiang, Y.; Woortman, A.J.J.; Alberda van Ekenstein, G.O.R.; Loos, K. Environmentally benign synthesis of saturated and unsaturated aliphatic polyesters via enzymatic polymerization of biobased monomers derived from renewable resources. Polym. Chem. 2015, 6, 5451–5463. [Google Scholar] [CrossRef]
- Pellis, A.; Herrero Acero, E.; Gardossi, L.; Ferrario, V.; Guebitz, G.M. Renewable building blocks for sustainable polyesters: New biotechnological routes for greener plastics. Polym. Int. 2016, 65, 861–871. [Google Scholar] [CrossRef]
- Rorrer, N.A.; Dorgan, J.R.; Vardon, D.R.; Martinez, C.R.; Yang, Y.; Beckham, G.T. Renewable Unsaturated Polyesters from Muconic Acid. ACS Sustain. Chem. Eng. 2016, 4, 6867–6876. [Google Scholar] [CrossRef]
- Ahn, B.D.; Kim, S.H.; Kim, Y.H.; Yang, J.S. Synthesis and characterization of the biodegradable copolymers from succinic acid and adipic acid with 1,4-butanediol. J. Appl. Polym. Sci. 2001, 82, 2808. [Google Scholar] [CrossRef]
- Bechthold, I.; Bretz, K.; Kabasci, S.; Kopitzky, R.; Springer, A. Succinic acid: A new platform chemical for biobased polymers from renewable resources. Chem. Eng. Technol. 2008, 31, 647–654. [Google Scholar] [CrossRef]
- Jasinska, L.; Koning, C.E. Unsaturated, biobased polyesters and their cross-linking via radical copolymerization. J. Polym. Sci. Part A Polym. Chem. 2010, 48, 2885–2895. [Google Scholar] [CrossRef]
- Teramoto, N.; Ozeki, M.; Fujiwara, I.; Shibata, M. Crosslinking and biodegradation of poly(butylene succinate) prepolymers containing itaconic or maleic acid units in the main chain. J. Appl. Polym. Sci. 2005, 95, 1473–1480. [Google Scholar] [CrossRef]
- Barrett, D.G.; Merkel, T.J.; Luft, J.C.; Yousaf, M.N. One-Step Syntheses of Photocurable Polyesters Based on a Renewable Resource. Macromolecules 2010, 43, 9660–9667. [Google Scholar] [CrossRef]
- Zhang, Y.-R.; Spinella, S.; Xie, W.; Cai, J.; Yang, Y.; Wang, Y.-Z.; Gross, R.A. Polymeric triglyceride analogs prepared by enzyme-catalyzed condensation polymerization. Eur. Polym. J. 2013, 49, 793–803. [Google Scholar] [CrossRef]
- Kobayashi, S.; Makino, A. Enzymatic polymer synthesis: An opportunity for green polymer chemistry. Chem Rev. 2009, 109, 5288–5353. [Google Scholar] [CrossRef] [PubMed]
- Gross, R.A.; Kumar, A.; Kalra, B. Polymer synthesis by in vitro enzyme catalysis. Chem. Rev. 2001, 101, 2097–2124. [Google Scholar] [CrossRef]
- Douka, A.; Vouyiouka, S.; Papaspyridi, L.-M.; Papaspyrides, C.D. A review on enzymatic polymerization to produce polycondensation polymers: The case of aliphatic polyesters, polyamides and polyesteramides. Prog. Polym. Sci. 2018, 79, 1–25. [Google Scholar] [CrossRef]
- Kobayashi, S. 5.10—Enzymatic Polymerization. In Polymer Science: A Comprehensive Reference; Matyjaszewski, K., Möller, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2012; pp. 217–237. [Google Scholar] [CrossRef]
- Jiang, Y.; Maniar, D.; Woortman, A.J.J.; Alberda van Ekenstein, G.O.R.; Loos, K. Enzymatic Polymerization of Furan-2,5-Dicarboxylic Acid-Based Furanic-Aliphatic Polyamides as Sustainable Alternatives to Polyphthalamides. Biomacromolecules 2015, 16, 3674–3685. [Google Scholar] [CrossRef]
- Jiang, Y.; Maniar, D.; Woortman, A.J.J.; Loos, K. Enzymatic synthesis of 2,5-furandicarboxylic acid-based semi-aromatic polyamides: Enzymatic polymerization kinetics, effect of diamine chain length and thermal properties. RSC Adv. 2016, 6, 67941–67953. [Google Scholar] [CrossRef] [Green Version]
- Maniar, D.; Hohmann, K.F.; Jiang, Y.; Woortman, A.J.J.; van Dijken, J.; Loos, K. Enzymatic Polymerization of Dimethyl 2,5-Furandicarboxylate and Heteroatom Diamines. ACS Omega 2018, 3, 7077–7085. [Google Scholar] [CrossRef]
- Maniar, D.; Jiang, Y.; Woortman, A.J.J.; van Dijken, J.; Loos, K. Furan-Based Copolyesters from Renewable Resources: Enzymatic Synthesis and Properties. ChemSusChem 2019, 12, 990–999. [Google Scholar] [CrossRef] [Green Version]
- Skoczinski, P.; Espinoza Cangahuala, M.K.; Maniar, D.; Albach, R.W.; Bittner, N.; Loos, K. Biocatalytic Synthesis of Furan-Based Oligomer Diols with Enhanced End-Group Fidelity. ACS Sustain. Chem. Eng. 2020, 8, 1068–1086. [Google Scholar] [CrossRef]
- Adharis, A.; Loos, K. Green Synthesis of Glycopolymers Using an Enzymatic Approach. Macromol. Chem. Phys. 2019, 220, 1900219. [Google Scholar] [CrossRef]
- Fodor, C.; Golkaram, M.; Woortman, A.J.J.; van Dijken, J.; Loos, K. Enzymatic approach for the synthesis of biobased aromatic-aliphatic oligo-/polyesters. Polym. Chem. 2017, 8, 6795–6805. [Google Scholar] [CrossRef]
- Jiang, Y.; Loos, K. Enzymatic Synthesis of Biobased Polyesters and Polyamides. Polymers 2016, 8, 243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, Y.; Woortman, A.J.J.; Alberda van Ekenstein, G.O.R.; Loos, K. Enzyme-Catalyzed Synthesis of Unsaturated Aliphatic Polyesters Based on Green Monomers from Renewable Resources. Biomolecules 2013, 3, 461–480. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Woortman, A.J.J.; Alberda van Ekenstein, G.O.R.; Petrovic, D.M.; Loos, K. Enzymatic Synthesis of Biobased Polyesters Using 2,5-Bis(hydroxymethyl)furan as the Building Block. Biomacromolecules 2014, 15, 2482–2493. [Google Scholar] [CrossRef]
- Stavila, E.; Alberda van Ekenstein, G.O.R.; Loos, K. Enzyme-catalyzed synthesis of aliphatic-aromatic oligoamides. Biomacromolecules 2013, 14, 1600–1606. [Google Scholar] [CrossRef]
- Stavila, E.; Alberda van Ekenstein, G.O.R.; Woortman, A.J.J.; Loos, K. Lipase-catalyzed ring-opening copolymerization of epsilon-caprolactone and beta-lactam. Biomacromolecules 2014, 15, 234–241. [Google Scholar] [CrossRef] [Green Version]
- Stavila, E.; Arsyi, R.Z.; Petrovic, D.M.; Loos, K. Fusarium solani pisi cutinase-catalyzed synthesis of polyamides. Eur. Polym. J. 2013, 49, 834–842. [Google Scholar] [CrossRef] [Green Version]
- Gross, R.A.; Ganesh, M.; Lu, W. Enzyme-catalysis breathes new life into polyester condensation polymerizations. Trends Biotechnol. 2010, 28, 435–443. [Google Scholar] [CrossRef]
- Draths, K.M.; Frost, J.W. Environmentally compatible synthesis of adipic acid from D-glucose. J. Am. Chem. Soc. 1994, 116, 399. [Google Scholar] [CrossRef]
- Vardon, D.R.; Franden, M.A.; Johnson, C.W.; Karp, E.M.; Guarnieri, M.T.; Linger, J.G.; Salm, M.J.; Strathmann, T.J.; Beckham, G.T. Adipic acid production from lignin. Energy Environ. Sci. 2015, 8, 617. [Google Scholar] [CrossRef]
- Khalil, I.; Quintens, G.; Junkers, T.; Dusselier, M. Muconic acid isomers as platform chemicals and monomers in the biobased economy. Green Chem. 2020, 22, 1517–1541. [Google Scholar] [CrossRef]
- Frost John, W.; Draths Karen, M. Synthesis Of Adipic Acid From Biomass-derived Carbon Sources. U.S. Patent 5487987 A, 30 January 1996. [Google Scholar]
- Lu, R.; Lu, F.; Chen, J.; Yu, W.; Huang, Q.; Zhang, J.; Xu, J. Production of Diethyl Terephthalate from Biomass-Derived Muconic Acid. Angew. Chem. Int. Ed. 2016, 55, 249–253. [Google Scholar] [CrossRef]
- Vardon, D.R.; Rorrer, N.A.; Salvachua, D.; Settle, A.E.; Johnson, C.W.; Menart, M.J.; Cleveland, N.S.; Ciesielski, P.N.; Steirer, K.X.; Dorgan, J. cis,cis-Muconic acid: Separation and catalysis to bio-adipic acid for nylon-6,6 polymerization. Green Chem. 2016, 18, 3397. [Google Scholar] [CrossRef]
- Yu, Y.; Xiong, H.; Xiao, J.; Qian, X.; Leng, X.; Wei, Z.; Li, Y. High Molecular Weight Unsaturated Copolyesters Derived from Fully Biobased trans-β-Hydromuconic Acid and Fumaric Acid with 1,4-Butanediol: Synthesis and Thermomechanical Properties. ACS Sustain. Chem. Eng. 2019, 7, 6859–6869. [Google Scholar] [CrossRef]
- Quintens, G.; Vrijsen, J.H.; Adriaensens, P.; Vanderzande, D.; Junkers, T. Muconic acid esters as bio-based acrylate mimics. Polym. Chem. 2019, 10, 5555–5563. [Google Scholar] [CrossRef]
- Maniar, D.; Fodor, C.; Adi, I.K.; Woortman, A.J.; van Dijken, J.; Loos, K. Enzymatic synthesis and characterization of muconic acid-based unsaturated polymer systems. Polym. Int. 2021, 70, 555–563. [Google Scholar] [CrossRef]
- Frost, J.W.; Miermont, A.; Schweitzer, D.; Bui, V. Preparation of Trans, Trans Muconic Acid and Trans, Trans Muconates. U.S. Patent 20100314243, 16 December 2010. [Google Scholar]
- Feder, D.; Gross, R.A. Exploring Chain Length Selectivity in HIC-Catalyzed Polycondensation Reactions. Biomacromolecules 2010, 11, 690–697. [Google Scholar] [CrossRef] [PubMed]
- Balani, K.; Verma, V.; Agarwal, A.; Narayan, R. Physical, Thermal, and Mechanical Properties of Polymers. In Biosurfaces; John Wiley & Sons, Inc: Hoboken, NJ, USA, 2014; pp. 329–344. [Google Scholar]
- Gilbert, M.; Hybart, F.J. Effect of chemical structure on crystallization rates and melting of polymers: 2. Aliphatic polyesters. Polymer 1974, 15, 407–412. [Google Scholar] [CrossRef]
Entry | Diester | Diol (C#) | Diester/Diol Ratio | Yield (%) | NMR | GPC | ||
---|---|---|---|---|---|---|---|---|
Mn (g mol−1) | Mn (g mol−1) | Mw (g mol−1) | Ð | |||||
1 | ttMUC | 4 | 50/50 | 5 | 3000 | 1000 | 1300 | 1.30 |
2 | ttMUC | 6 | 50/50 | 4 | 4600 | 1800 | 2200 | 1.22 |
3 | ttMUC | 8 | 50/50 | 13 | 4900 | 2700 | 3600 | 1.33 |
4 | ttMUC | 10 | 50/50 | 4 | 4300 | 2900 | 4800 | 1.65 |
5 | ttMUC | 12 | 50/50 | 2 | 5000 | 3100 | 5100 | 1.65 |
6 | TBHM | 4 | 50/50 | 49 | 6200 | 7600 | 16,000 | 2.11 |
7 | TBHM | 6 | 50/50 | 53 | 9900 | 18,600 | 46,500 | 2.50 |
8 | TBHM | 8 | 50/50 | 56 | 11,700 | 21,900 | 59,400 | 2.71 |
9 | TBHM | 10 | 50/50 | 67 | 5300 | 11,900 | 22,000 | 1.85 |
10 | TBHM | 12 | 50/50 | 76 | 9400 | 14,400 | 36,900 | 2.56 |
Entry | Diester | Diol (C#) | Feed Diester (M1/M2)/Diol Ratio | TBHM (M2) Incorporation in Polymer Chain (%) | Yield (%) | GPC | |||
---|---|---|---|---|---|---|---|---|---|
M1 | M2 | Mn (g mol−1) | Mw (g mol−1) | Ð | |||||
11 | ADIP | TBHM | 8 | (37.5/12.5)/50 | 10.0 | 20 | 7500 | 12,500 | 1.66 |
12 | ADIP | TBHM | 8 | (25/25)/50 | 20.5 | 18 | 6800 | 10,100 | 1.49 |
13 | ADIP | TBHM | 8 | (12.5/37.5)/50 | 17.5 | 2 | 9100 | 18,800 | 2.07 |
14 | ADIP | TBHM | 6 | (37.5/12.5)/50 | 9.5 | 40 | 28,000 | 53,600 | 1.92 |
15 | ADIP | TBHM | 6 | (25/25)/50 | 20.9 | 9 | 9600 | 14,200 | 1.47 |
16 | ADIP | TBHM | 6 | (12.5/37.5)/50 | 33.9 | 19 | 6400 | 8700 | 1.35 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maniar, D.; Fodor, C.; Karno Adi, I.; Woortman, A.J.J.; van Dijken, J.; Loos, K. Enzymatic Synthesis of Muconic Acid-Based Polymers: Trans, Trans-Dimethyl Muconate and Trans, β-Dimethyl Hydromuconate. Polymers 2021, 13, 2498. https://doi.org/10.3390/polym13152498
Maniar D, Fodor C, Karno Adi I, Woortman AJJ, van Dijken J, Loos K. Enzymatic Synthesis of Muconic Acid-Based Polymers: Trans, Trans-Dimethyl Muconate and Trans, β-Dimethyl Hydromuconate. Polymers. 2021; 13(15):2498. https://doi.org/10.3390/polym13152498
Chicago/Turabian StyleManiar, Dina, Csaba Fodor, Indra Karno Adi, Albert J. J. Woortman, Jur van Dijken, and Katja Loos. 2021. "Enzymatic Synthesis of Muconic Acid-Based Polymers: Trans, Trans-Dimethyl Muconate and Trans, β-Dimethyl Hydromuconate" Polymers 13, no. 15: 2498. https://doi.org/10.3390/polym13152498
APA StyleManiar, D., Fodor, C., Karno Adi, I., Woortman, A. J. J., van Dijken, J., & Loos, K. (2021). Enzymatic Synthesis of Muconic Acid-Based Polymers: Trans, Trans-Dimethyl Muconate and Trans, β-Dimethyl Hydromuconate. Polymers, 13(15), 2498. https://doi.org/10.3390/polym13152498