Composites of Poly(vinyl chloride) with Residual Hops after Supercritical Extraction in CO2
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation
2.3. Testing Methods
2.3.1. Morphology of PVC Composites
2.3.2. Chemical Structure
2.3.3. Thermal Analysis of PVC Composites
2.3.4. Density Determination
2.3.5. Mechanical Properties
2.3.6. Flammability of PVC Composites
3. Results
3.1. Filler Testing Results
3.2. Results of Composite Tests
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tiseo, J. Global PVC Production Volume 2018 & 2025. Available online: https://www.statista.com/statistics/720296/global-polyvinyl-chloride-market-size-in-tons/ (accessed on 27 January 2021).
- Available online: https://www.plasticseurope.org/en/about-plastics/what-are-plastics/large-family/polyvinyl-chloride (accessed on 11 August 2021).
- Klyosov, A.A. Wood-Plastic Composites, 1st ed.; John Wiley and Sons Inc.: Hoboken, NJ, USA, 2007. [Google Scholar]
- Dan-asabe, B.; Yaro, S.A.; Yawas, D.S. Micro-Structural and Mechanical Characterization of Doum-Palm Leaves Particulate Reinforced PVC Composite as Piping Materials. Alex. Eng. J. 2018, 57, 2929–2937. [Google Scholar] [CrossRef]
- Liu, Y.-F.; Gu, K.; Shu, Y.-M.; Zhang, X.-L.; Liu, X.-X.; Mao, W. Shear Models and Parametric Analysis of the PVC Geomembrane-Cushion Interface in a High Rock-Fill Dam. PLoS ONE 2021, 16, e0245245. [Google Scholar]
- Garrido, M.; António, D.; Lopes, J.G.; Correia, J.R. Reparability of Aged PVC Waterproofing Membranes: Effect of Joining Method. J. Build. Eng. 2021, 33, 101569. [Google Scholar] [CrossRef]
- Barczewski, M.; Matykiewicz, D.; Sałasińska, K.; Kozicki, D.; Piasecki, A.; Skórczewska, K.; Lewandowski, K. Poly(Vinyl Chloride) Powder as a Low-Cost Flame Retardant Modifier for Epoxy Composites. Int. J. Polym. Anal. Charact. 2019, 24, 447–456. [Google Scholar] [CrossRef]
- Matykiewicz, D.; Sałasińska, K.; Barczewski, M. The Effect of Poly(Vinyl Chloride) Powder Addition on the Thermomechanical Properties of Epoxy Composites Reinforced with Basalt Fiber. Materials 2020, 13, 3611. [Google Scholar] [CrossRef] [PubMed]
- Li, Y. Effects of Chlorinated Polyethylene and Antimony Trioxide on Recycled Polyvinyl Chloride/Acryl-Butadiene-Styrene Blends. Flame Retard. Mech. Prop. 2020, 190, 122198. [Google Scholar]
- Mohammed, N.S.; Hamza, B.A.; AL-Shareef, N.H.; Hussein, H.H. Structural Behavior of Reinforced Concrete Slabs Containing Fine Waste Aggregates of Polyvinyl Chloride. Buildings 2021, 11, 26. [Google Scholar] [CrossRef]
- Ceran, Ö.B.; Şimşek, B.; Uygunoğlu, T.; Şara, O.N. PVC Concrete Composites: Comparative Study with Other Polymer Concrete in Terms of Mechanical, Thermal and Electrical Properties. J. Mater. Cycles Waste Manag. 2019, 21, 818–828. [Google Scholar] [CrossRef]
- Belmokaddem, M.; Mahi, A.; Senhadji, Y.; Pekmezci, B.Y. Mechanical and Physical Properties and Morphology of Concrete Containing Plastic Waste as Aggregate. Constr. Build. Mater. 2020, 257, 119559. [Google Scholar] [CrossRef]
- Błędzki, A.K.; Abdullah, A.M.; Volk, J. Physical, chemical and surface properties of wheat husk, rye husk and soft wood and their polypropylene composites. Compos. Part A 2010, 41, 480–488. [Google Scholar] [CrossRef]
- Furkan, H.; Isikgora, C.; Remzi, B. Lignocellulosic Biomass: A Sustainable Platform for Production of Bio-Based Chemicals and Polymers. Polym. Chem. 2015, 6, 4497–4559. [Google Scholar]
- da Silva, M.A.; Vieira, M.G.A.; Maçumoto, A.C.G.; Beppu, M.M. Polyvinylchloride (PVC) and natural rubber films plasticized with a natural polymeric plasticizer obtained through polyesterification of rice fatty acid. Polym. Test. 2011, 30, 478–484. [Google Scholar] [CrossRef] [Green Version]
- Kemsley, E.K.; Holland, J.K.; Defernez, M.; Wilson, R.H. Detection of Adulteration of Raspberry Purees Using Infrared Spectroscopy and Chemometrics. J. Agric. Food Chem. 1996, 44, 3864–3870. [Google Scholar] [CrossRef]
- Mirowski, J.; Oliwa, R.; Oleksy, M.; Tomaszewska, J.; Ryszkowska, J.; Budzik, G. Poly(Vinyl Chloride) Composites with Raspberry Pomace Filler. Polymers 2021, 13, 1079. [Google Scholar] [CrossRef]
- Mahdi, E.; Dean, A. The Effect of Filler Content on the Tensile Behavior of Polypropylene/Cotton Fiber and Poly(Vinyl Chloride)/Cotton Fiber Composites. Materials 2020, 13, 753. [Google Scholar] [CrossRef] [Green Version]
- Pirayesh, H.; Khazaeian, A. Using almond (Prunus amygdalus L.) shell as bio-waste resource in wood based composites. Compos. Part B 2012, 43, 1475–1479. [Google Scholar] [CrossRef]
- Vercher, J.; Fombuena, V.; Diaz, A.; Soriano, M. Influence of Fibre and Matrix Characteristics on Properties and Durability of Wood–Plastic Composites in Outdoor Applications. J. Thermoplast. Compos. Mater. 2020, 33, 477–500. [Google Scholar] [CrossRef]
- Vahabi, H.; Laoutid, F.; Mehrpouya, M.; Saeb, M.R.; Dubois, P. Flame Retardant Polymer Materials: An Update and the Future for 3D Printing Developments. Mater. Sci. Eng. R Rep. 2021, 144, 100604. [Google Scholar] [CrossRef]
- Hirschler, M.M. Poly(Vinyl Chloride) and Its Fire Properties. Fire Mater. 2017, 41, 993–1006. [Google Scholar] [CrossRef]
- Dang, L.; Lv, Z.; Du, X.; Tang, D.; Zhao, Y.; Zhu, D.; Xu, S. Flame Retardancy and Smoke Suppression of Molybdenum Trioxide Doped Magnesium Hydrate in Flexible Polyvinyl Chloride. Polym. Adv. Technol. 2020, 31, 2108–2121. [Google Scholar] [CrossRef]
- Bocqué, M.; Lapinte, V.; Courault, V.; Couve, J.; Cassagnau, P.; Robin, J.-J. Phosphonated Lipids as Primary Plasticizers for PVC with Improved Flame Retardancy. Eur. J. Lipid Sci. Technol. 2018, 120, 1800062. [Google Scholar] [CrossRef] [Green Version]
- Jia, P.; Zhang, M.; Liu, C.; Hu, L.; Zhou, Y.-H. Properties of Poly(Vinyl Chloride) Incorporated with a Novel Soybean Oil Based Secondary Plasticizer Containing a Flame Retardant Group. J. Appl. Polym. Sci. 2015, 132. [Google Scholar] [CrossRef]
- Hou, D.; Wang, S.; Chang, J.; Xu, Z.; Zeng, Q.; Wang, Z.; Yang, Y.; Yan, J.; Chen, Y. Cardanol with a Covalently Attached Organophosphate Moiety as a Halogen-Free, Intrinsically Flame-Retardant PVC Bio-Plasticizer. Fibers Polym. 2020, 21, 1649–1656. [Google Scholar] [CrossRef]
- Meng, W.; Dong, Y.; Li, J.; Cheng, L.; Zhang, H.; Wang, C.; Jiao, Y.; Xu, J.; Hao, J.; Qu, H. Bio-Based Phytic Acid and Tannic Acid Chelate-Mediated Interfacial Assembly of Mg(OH)2 for Simultaneously Improved Flame Retardancy, Smoke Suppression and Mechanical Properties of PVC. Compos. Part B Eng. 2020, 188, 107854. [Google Scholar] [CrossRef]
- Cheng, L.; Wu, W.; Meng, W.; Xu, S.; Han, H.; Yu, Y.; Qu, H.; Xu, J. Application of Metallic Phytates to Poly(Vinyl Chloride) as Efficient Biobased Phosphorous Flame Retardants. J. Appl. Polym. Sci. 2018, 135, 46601. [Google Scholar] [CrossRef]
- Meng, W.; Wu, W.; Zhang, W.; Cheng, L.; Han, X.; Xu, J.; Qu, H. Bio-Based Mg(OH)2@M-Phyt: Improving the Flame-Retardant and Mechanical Properties of Flexible Poly(Vinyl Chloride). Polym. Int. 2019, 68, 1759–1766. [Google Scholar] [CrossRef]
- Zhang, W.; Wu, H.; Zhou, N.; Cai, X.; Zhang, Y.; Hu, H.; Feng, Z.; Huang, Z.; Liang, J. Enhanced Thermal Stability and Flame Retardancy of Poly(Vinyl Chloride) Based Composites by Magnesium Borate Hydrate-Mechanically Activated Lignin. J. Inorg. Organomet. Polym. Mater. 2021. [Google Scholar] [CrossRef]
- Song, Q.; Wu, H.; Liu, H.; Wang, T.; Meng, W.; Qu, H. Chitosan-Regulated Inorganic Oxyacid Salt Flame Retardants: Preparation and Application in PVC Composites. J. Therm. Anal. Calorim. 2020. [Google Scholar] [CrossRef]
- Shi, H.; Zhao, W.; Zhao, X.; Li, Z.; Li, X.; Zhang, Z. Fabrication of Bismuth Oxychloride Nanosheets Decorated with Chitosan and Phytic Acid for Improvement of Flexible Poly(Vinyl Chloride) Flame Retardancy. Fibers Polym. 2021. [Google Scholar] [CrossRef]
- Huo, Z.; Wu, H.; Song, Q.; Zhou, Z.; Wang, T.; Xie, J.; Qu, H. Synthesis of Zinc Hydroxystannate/Reduced Graphene Oxide Composites Using Chitosan to Improve Poly(Vinyl Chloride) Performance. Carbohydr. Polym. 2021, 256, 117575. [Google Scholar] [CrossRef]
- Subasinghe, A.; Somashekar, A.A.; Bhattacharyya, D. Effects of Wool Fibre and Other Additives on the Flammability and Mechanical Performance of Polypropylene/Kenaf Composites. Compos. Part B Eng. 2018, 136, 168–176. [Google Scholar] [CrossRef]
- Elsabbagh, A.; Steuernagel, L.; Ring, J. Natural Fibre/PA6 Composites with Flame Retardance Properties: Extrusion and Characterisation. Compos. Part B Eng. 2017, 108, 325–333. [Google Scholar] [CrossRef]
- Guo, W.; Kalali, E.N.; Wang, X.; Xing, W.; Zhang, P.; Song, L.; Hu, Y. Processing Bulk Natural Bamboo into a Strong and Flame-Retardant Composite Material. Ind. Crop. Prod. 2019, 138, 111478. [Google Scholar] [CrossRef]
- Sanchez-Olivares, G.; Rabe, S.; Pérez-Chávez, R.; Calderas, F.; Schartel, B. Industrial-Waste Agave Fibres in Flame-Retarded Thermoplastic Starch Biocomposites. Compos. Part B Eng. 2019, 177, 107370. [Google Scholar] [CrossRef]
- Tran, T.M.N.; Lee, D.W.; Cabo, M., Jr.; Song, J.-I. Polypropylene/Abaca Fiber Eco-Composites: Influence of Bio-Waste Additive on Flame Retardancy and Mechanical Properties. Polym. Compos. 2021, 42, 1356–1370. [Google Scholar] [CrossRef]
- Dutta, N.; Maji, T.K. Valorization of Waste Rice Husk by Preparing Nanocomposite with Polyvinyl Chloride and Montmorillonite Clay. J. Thermoplast. Compos. Mater. 2021, 34, 801–816. [Google Scholar] [CrossRef]
- Dutta, N.; Maji, T.K. Synergic Effect of Montmorillonite and Microcrystalline Cellulose on the Physicochemical Properties of Rice Husk/PVC Composite. SN Appl. Sci. 2020, 2, 439. [Google Scholar] [CrossRef] [Green Version]
- Conway, J. Global Beer Production 1998–2019. Available online: https://www.statista.com/statistics/270275/worldwide-beer-production/ (accessed on 28 May 2021).
- Roj, E. Ekstrakcja w Warunkach Nadkrytycznych z Użyciem CO2. In Adsorbenty i Katalizatory, Wybrane Technologie a Środowisko; Rozdział 22; Uniwersytet Rzeszowski: Rzeszow, Poland, 2012; pp. 413–428. [Google Scholar]
- Arbelaiz, A.; Fernandez, B.; Ramos, J.A. Mechanical properties of short flax fiber bundle/polypropylene composites: Influence of matrix/fibre modification, fibre content, water uptake and recycling. Compos. Sci. Technol. 2005, 65, 1582–1592. [Google Scholar] [CrossRef]
- Kubovsky, D.I.; Kacikova, F. Kacik Structural changes of oak wood main components caused by thermal modification. Polymers 2020, 12, 485. [Google Scholar] [CrossRef] [Green Version]
- Bodirlau, R.; Teaca, A.; Spiridon, I. Preparation and characterization of composites comprising modified hardwood and wood polymers/poly(vinyl chloride). Bioresources 2009, 4, 1285–1304. [Google Scholar]
- Ul-Hamid, A.; Al-Soufi, K.; Al-Hadhrami, L.; Shemsi, A. Failure Investigation of an Underground Low Voltage XLPE Insulated Cable. Anti-Corros. Methods Mater. 2015, 62, 281–287. [Google Scholar] [CrossRef]
- Pandey, K.K. A study of chemical structure of soft and hardwood and wood polymers by FT-IR spectroscopy. J. Appl. Polym. Sci. 1999, 71, 1969–1975. [Google Scholar] [CrossRef]
- Strezov, V.; Popovic, E.; Filkoski, R.V.; Shah, P.; Evans, T. Assessment of the thermal processing behavior of tobacco waste. Energy Fuels 2012, 26, 5930–5935. [Google Scholar] [CrossRef]
- Schulz, H.; Baranska, M. Identification and quantification of valuable plant substances by IR and Raman spectroscopy. Vib. Spectrosc. 2007, 43, 13–25. [Google Scholar] [CrossRef]
- Yu, P.; Block, H.; Niu, Z.; Doiron, K. Rapid characterization of molecular chemistry, nutrient make-up and microlocation of internal seed tissue. J. Synchrotron Radiat. 2007, 14, 382–390. [Google Scholar] [CrossRef] [PubMed]
- Adapa, P.K. Quantitative Analysis of Lignocellulosic Components of Non-Treated and Steam Exploded Barley, Canola, Oat and Wheat Straw Using Fourier Transform Infrared Spectroscopy. J. Agric. Sci. Technol. B 2011, 1, 177–188. [Google Scholar]
- Adapa, P.K.; Karunakaran, C.; Tabil, L.G.; Schoenau, G.J. Potential applications of infrared and Raman spectromicroscopy for agricultural biomass. Agric. Eng. Int. Cigre J. Manuscr. 2009, XI, 1–25. [Google Scholar]
- Calabuig, E.; Juarez-Serrano, N.; Marcilla, A. TG-FTIR study of evolved gas in the decomposition of different types of tobacco. Effect of the addition of SBA-15. Thermochim. Acta 2019, 671, 209–219. [Google Scholar] [CrossRef]
- Polat, S.; Apaydin-Varol, E.; Putun, A.E. Thermal decomposition behavior of tobacco stem Part I: TGA–FTIR–MS analysis. Energy Sources Part A Recovery Util. Environ. Eff. 2016, 38, 3065–3072. [Google Scholar] [CrossRef]
- Neugrodda, C.; Gastl, M.; Becker, T. Protein Profile Characterization of Hop (Humulus lupulus L.) Varieties. J. Am. Soc. Brew. Chem. Sci. Beer 2014, 72, 184–191. [Google Scholar] [CrossRef]
- Shen, J.; Ye, R.; Xiao, H.Z. TG-MS analysis for thermal decomposition of cellulose under different atmospheres. Carbohydr. Polym. 2013, 98, 514–521. [Google Scholar] [CrossRef] [PubMed]
- Ramiah, M.V. Thermogravimetric and differential thermal analysis of cellulose, hemicellulose, and lignin. J. Appl. Polym. Sci. 1970, 14, 1323–1337. [Google Scholar] [CrossRef]
- Gomez-Siurana, A.; Marcilla, A.; Beltran, M.; Berenguer, D.; Martinez-Castellanos, I.; Menargues, S. TGA/FTIR study of tobacco and glycerol–tobacco mixtures. Acta 2013, 573, 146–157. [Google Scholar] [CrossRef]
- Collard, F.X.; Blin, J. A review on pyrolysis of biomass constituents: Mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin. Renew. Sustain. Energy Rev. 2014, 38, 594–608. [Google Scholar] [CrossRef]
- Oja, V.; Hajaligol, M.R.; Waymack, B.E. The vaporization of semi-volatile compounds during tobacco pyrolysis. J. Anal. Appl. Pyrolysis 2006, 76, 117–123. [Google Scholar] [CrossRef]
- Liu, B.; Li, Y.M.; Wu, S.B.; Li, Y.H.; Deng, S.S.; Xia, Z.L. Pyrolysis characteristic of tobacco stem studied by Py- GC/MS, TG-FTIR, and TG-MS. BioResources 2013, 8, 220–230. [Google Scholar] [CrossRef]
- Sung, Y.J.; Seo, Y.B. Thermogravimetric study on stem biomass of Nicotiana tabacum. Thermochim. Acta 2009, 486, 1–4. [Google Scholar] [CrossRef]
- Tomaszewska, J.; Klapiszewski, Ł.; Skórczewska, K.; Szalaty, T.J.; Jesionowski, T. Advanced organic-inorganic hybrid fillers as functional additives for poly(vinylchloride). Polimery 2017, 62, 19. [Google Scholar] [CrossRef]
- Czegeny, Z.; Jakab, E.; Bozi, J.; Blazso, M. Pyrolysis of wood–PVC mixtures. Formation of chloromethane from lignocellulosic materials in the presence of PVC. J. Anal. Appl. Pyrol. 2015, 113, 123–132. [Google Scholar] [CrossRef] [Green Version]
- Liu, F.; Xu, K.; Chen, M.; Cao, D. Thermal stability of PVC-lignin blends miscibilized by poly(ethyl acrylate-co-acrylic acid). Ciesc. J. 2012, 63, 3329. [Google Scholar]
- Tian, C.; Wang, H.; Liu, X.; Ma, Z.; Guo, H.; Xu, J. Flame retardant flexible poly (vinyl chloride) compound for cable application. J. Appl. Polym. Sci. 2003, 89, 3137–3142. [Google Scholar] [CrossRef]
- Ning, Y. Flame retardant and smoke suppressant properties of zinc borate and aluminum trihydrate-filled PVC. J. Appl. Polym. Sci. 2000, 77, 3119–3127. [Google Scholar] [CrossRef]
- Gumargalieva, K.Z.; Ivanov, V.B.; Zaikov, G.E.; Moiseev, J.V.; Pokholok, T.V. Problems of ageing and stabilization of poly (vinyl chloride). Polym. Degrad. Stab. 1996, 52, 73. [Google Scholar] [CrossRef]
- Gao, M.; Wan, M.; Chen, X. Synthesis of a Solid Superacid and Its Application in Flame-Retardant Poly(vinyl chloride) Material. ACS Omega 2019, 4, 7556–7564. [Google Scholar] [CrossRef]
- Knümann, R.; Bockhorn, H. Investigation of the Kinetics of Pyrolysis of PVC by TG-MS-analysis. Combust. Sci. Technol. 1994, 101, 285–299. [Google Scholar] [CrossRef]
- Tomaszewska, J.; Sterzyński, T.; Piszczek, K. Rigid Poly(vinyl chloride) Gelation in a Brabender Measuring Mixer. III. Transformation in the Torque Maximum. J. Appl. Polym. Sci. 2007, 106, 3158–3164. [Google Scholar] [CrossRef]
- Aouat, H.; Hammiche, D.; Boukerrou, A.; Djidjelli, H.; Grohens, Y.; Pillin, I. Effects of Interface Modification on Composites Based on Olive Husk Flour. Mater. Today Proc. 2021, 36, 94–100. [Google Scholar] [CrossRef]
- Allahbakhsh, A. PVC/Rice Straw/SDBS-Modified Graphene Oxide Sustainable Nanocomposites: Melt Mixing Process and Electrical Insulation Characteristics. Compos. Part A Appl. Sci. Manuf. 2020, 134, 105902. [Google Scholar] [CrossRef]
- Petchwattana, N.; Sanetuntikul, J. Static and Dynamic Mechanical Properties of Poly (Vinyl Chloride) and Waste Rice Husk Ash Composites Compatibilized with γ-Aminopropyltrimethoxysilane. Silicon 2018, 10, 287–292. [Google Scholar] [CrossRef]
- Abdellah Ali, S.F.; El Batouti, M.; Abdelhamed, M.; El Rafey, E. Formulation and Characterization of New Ternary Stable Composites: Polyvinyl Chloride-Wood Flour- Calcium Carbonate of Promising Physicochemical Properties. J. Mater. Res. Technol. 2020, 9, 12840–12854. [Google Scholar] [CrossRef]
- Kieling, A.C.; Santana, G.P.; Santos, M.C.D.; Neto, J.C.D.M.; Pino, G.G.D.; Santos, M.D.D.; Duvoisin, S.; Panzera, T.H. Wood-Plastic Composite Based on Recycled Polypropylene and Amazonian Tucumã (Astrocaryum aculeatum) Endocarp Waste. Fibers Polym. 2021. [Google Scholar] [CrossRef]
- Hugot, F.; Cazaurang, G. Mechanical Properties of an Extruded Wood Plastic Composite: Analytical Modeling. J. Wood Chem. Technol. 2008, 28, 283–295. [Google Scholar] [CrossRef]
- Mousa, A.; Heinrich, G.; Gohs, U.; Hässler, R.; Wagenknecht, U. Application of Renewable Agro-Waste-Based Olive Pomace on the Mechanical and Thermal Performance of Toughened PVC. Polym. Plast. Technol. Eng. 2009, 48, 10. [Google Scholar] [CrossRef]
- Mousa, A.; Heinrich, G. Thermoplastic Composites Based on Renewable Natural Resources: Unplasticized PVC/Olive Husk. Int. J. Polym. Mater. 2010, 59, 843–853. [Google Scholar] [CrossRef]
- Bahari, S.A.; Krause, A. Utilizing Malaysian Bamboo for Use in Thermoplastic Composites. J. Clean. Prod. 2016, 110, 16–24. [Google Scholar] [CrossRef]
- Chand, N.; Fahim, M.; Sharma, P.; Bapat, M.N. Influence of Foaming Agent on Wear and Mechanical Properties of Surface Modified Rice Husk Filled Polyvinylchloride. Wear 2012, 278–279, 83–86. [Google Scholar] [CrossRef]
- Anays, M.M.; Tutikian, B.F.; Ortolan, V.; Oliveira, M.L.S.; Sampaio, C.H.; Gómez, P.L.; Silva, O.L.F. Fire Resistance Performance of Concrete-PVC Panels with Polyvinyl Chloride (PVC) Stay in Place (SIP) Formwork. J. Mater. Res. Technol. 2019, 8, 4094–4107. [Google Scholar] [CrossRef]
- Rabe, S.; Chuenban, Y.; Schartel, B. Exploring the Modes of Action of Phosphorus-Based Flame Retardants in Polymeric Systems. Materials 2017, 10, 455. [Google Scholar] [CrossRef] [Green Version]
Functional Groups | Vibrational Modes | Wave Number, cm–1 | Assigned Species | Ref. |
---|---|---|---|---|
O–H | Stretch | 3770 | Phenols, alcohols or carboxylic acids | [44,45] |
O–H | Stretch | 3474 | H2O | [44,45,46,47] |
CH, CH2 | Stretch | 2925 | Long-chain fatty acids, waxes, carotenoids and phytosterols | [44,47,48,49] |
CH, CH2 | Stretch | 2856 | ||
C=O | Stretch | 1600–1800 | Carboxylic acid/ester or aldehyde/ketone groups | [44,49,50] |
C=O | Stretch | 1735 | Carboxylic acids of the ester | [44,49,50] |
C=O | Stretch | 1607, | The aromatic ring | [50,51] |
C=C | Stretch | 1350–1600 | The aromatic structures | [50,51] |
N–H | Bending | 1536 | Amides and amines group | [50] |
C–O | Stretch | 1516 | Aromatic lignin | [50,51,52] |
C–H | Stretch | 1463 | methyl and methylene group | [50,51,52] |
C–O | Stretch | 1432 | The aromatic structures | [49,51,52] |
C–O | Stretch | 1386 | The aromatic structures | [50,51,52] |
C–O | Stretch | 1333 | The aromatic structures | [50,51,52] |
C–H | Wagging | 1313 | Cellulose | [51,52] |
C–O | Stretch | 1247 | Hemicellulose | [44,51,52] |
C−O | Stretch | 1203 | Hemicellulose | [51,52] |
C–O–C | Stretch | 1162 | Glycosidic linkage | [44,49,51,52] |
C–O | 1104 | Aromatic ring skeleton of lignin | [49,51,52] | |
C–O–CC−O and/or C−C | Stretch | 1055 | Phenyl/methyl ether | [49,51,52] |
Wave Numbers, cm–1 | Cellulose 100% | H | Hemicellulose 100% | H | Lignin 100% | H |
---|---|---|---|---|---|---|
1650–1600 | - | - | 1606 | 1607 | - | - |
1600–1550 | - | - | - | - | 1599 | 1607 |
1550–1500 | - | - | - | - | 1511 | 1513 |
1500–1450 | - | - | 1461 | 1463 | 1467 | 1468 |
1450–1400 | 1431 | 1432 | - | - | 1429 | 1432 |
1400–1350 | 1373 | 1386 | - | - | - | - |
1350–1300 | 1319 1338 | 1313 - | - | - | - | - |
1300–1250 | - | - | 1251 | 1247 | - | - |
1250–1200 | 1203 | - | 1213 | - | - | - |
1200–1150 | - | - | 1166 | 1162 | 1157 | - |
1150–1100 | - | - | - | 1104 | 1104 | |
1100–1050 | - | - | 1050 | - | 1054 | 1055 |
Parameter | Value |
---|---|
Temperature at 5% weight loss (T5%), °C | 177 |
Mass loss at 180 °C, % | 5.2 |
Residue at 750 °C, % | 30.8 |
Stage 1—release of associated water | |
Temperature range, °C | 90–140 |
Mass change (ΔΔm1), % | 1.4 |
Temperature at Vmax1 (Tmax1), °C | 111 |
Maximum degradation rate (Vmax1), %/°C | 0.04 |
Stage 2—lipid and protein degradation | |
Temperature range, °C | 140−215 |
Mass change (Δm2), % | 5 |
Temperature at Vmax2 (Tmax2), °C | * |
Maximum degradation rate (Vmax2), %/°C | * |
Stage 3—hemicellulose degradation | |
Temperature range, °C | 215−280 |
Mass change (Δm3), % | 15.0 |
Temperature at Vmax3 (Tmax3), °C | 263 |
Maximum degradation rate (Vmax3), %/°C | 0.28 |
Stage 4—cellulose degradation | |
Temperature range, °C | 280−370 |
Mass change (Δm4), % | 29.5 |
Temperature at Vmax4 (Tmax4), °C | 315 |
Maximum degradation rate (Vmax4), %/°C | 0.36 |
Stage 5—lignin degradation | |
Temperature range, °C | 370–620 |
Mass change (Δm5), % | 13.4 |
Temperature at Vmax5 (Tmax5), °C | 477 |
Maximum degradation rate (Vmax5), %/°C | 0.08 |
Stage 6—aromatic compounds degradation | |
Temperature range, °C | 620−725 |
Mass change (Δm6), % | 5.0 |
Temperature at Vmax6 (Tmax6), °C | 671 |
Maximum degradation rate (Vmax6), %/°C | 0.07 |
Parameter | PVC | PVC/10H | PVC/20H | PVC/30H |
---|---|---|---|---|
Thermostability determined by Congo method, min | 22 | 90 | 95 | 100 |
Temperature of 2% mass loss (T2%P), °C | 285 | 240 | 210 | 196 |
Mass loss at 180 °C, R180P, % | 0.4 | 0.8 | 1.5 | 1.7 |
Stage 1 | ||||
Temperature range, °C | 200–400 | |||
Mass change (Δm1P), % | 65.3 | 59.2 | 55.2 | 54.5 |
Temperature at Vmax1P (Tmax1P), °C | 305 | 305 | 288 | 270 |
Maximum degradation rate (Vmax1P), %/°C | 2.38 | 0.91 | 1.00 | 1.07 |
Stage 2 | ||||
Temperature range, °C | 400–550 | |||
Mass change (Δm2P), % | 26.2 | 25.4 | 23.5 | 22.9 |
Temperature at Vmax2P (Tmax2P), °C | 472 | 469 | 468 | 469 |
Maximum degradation rate (Vmax2P), %/°C | 0.43 | 0.43 | 0.39 | 0.36 |
Residue at 600 °C, R600P, % | 7.5 | 14.3 | 19.3 | 20.3 |
Sample | Tg, °C |
---|---|
PVC | 79.0 |
PVC/10H | 78.3 |
PVC/20H | 76.1 |
PVC/30H | 75.6 |
Sample Symbol | D, g/cm3 | σy, MPa | εy, % | Et, MPa | σb, MPa | εb, % |
---|---|---|---|---|---|---|
PVC | 1.364 ± 0.002 | 56.3 ± 3.2 | 3.81 ± 0.32 | 2212 ± 54 | 36.9 ± 1.9 | 18.81 ± 2.1 |
PVC/10H | 1.368 ± 0.001 | 48.8 ± 2.8 | 3.21 ± 0.36 | 3779 ± 68 | 43.7 ± 1.4 | 4.73 ± 0.5 |
PVC/20H | 1.378 ± 0.001 | 42.5 ± 3.6 | 2.40 ± 0.41 | 3879 ± 55 | 40.5 ± 1.1 | 2.60 ± 0.3 |
PVC/30H | 1.385 ± 0.001 | - | - | 3959 ± 71 | 35.8 ± 1.8 | 2.15 ± 0.3 |
Sample Symbol | σf, MPa | εf, % | Ef, MPa | HR, N/mm2 | KC, kJ/m2 |
---|---|---|---|---|---|
PVC | 86.1 ± 2.4 | 5.54 ± 0.8 | 3110 ± 64 | 106.2 ± 1.8 | 65.2 ± 1.6 |
PVC/10H | 84.6 ± 3.0 | 4.59 ± 0.9 | 3240 ± 35 | 106.2 ± 2.7 | 18.6 ± 1.0 |
PVC/20H | 78.5 ± 2.7 | 3.35 ± 0.5 | 3610 ± 52 | 114.9 ± 2.8 | 18.5 ± 0.7 |
PVC/30H | 71.2 ± 2.1 | 2.49 ± 0.4 | 3840 ± 48 | 119.8 ± 2.6 | 11.3 ± 0.5 |
Sample Symbol | LOI, % | UL 94 | tti, s | pHRR, kW/m2 | ttpHRR, s | EHC, MJ/kg | THR, MJ/m2 | PML, % | FIGRA, kW/m2 |
---|---|---|---|---|---|---|---|---|---|
PVC | 37.4 | V0 | 39 ± 3 | 105.7 ± 3.8 | 102 ± 3 | 4.1 ± 0.2 | 13.5 ± 0.8 | 92.0 ± 0.1 | 1.10 |
PVC/10H | 34.1 | V0 | 28 ± 4 | 88.6 ± 4.0 | 87 ± 4 | 4.4 ± 0.4 | 13.5 ± 1.3 | 89.0 ± 0.3 | 1.01 |
PVC/20H | 33.0 | V0 | 18 ± 3 | 80.5 ± 2.6 | 77 ± 2 | 4.4 ± 0.5 | 14.3 ± 1.3 | 86.3 ± 0.5 | 1.05 |
PVC/30H | 32.3 | V0 | 15 ± 1 | 73.3 ± 1.1 | 76 ± 1 | 5.1 ± 0.7 | 16.1 ± 2.1 | 84.9 ± 0.6 | 0.96 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mirowski, J.; Oliwa, R.; Oleksy, M.; Rój, E.; Tomaszewska, J.; Mizera, K.; Ryszkowska, J. Composites of Poly(vinyl chloride) with Residual Hops after Supercritical Extraction in CO2. Polymers 2021, 13, 2736. https://doi.org/10.3390/polym13162736
Mirowski J, Oliwa R, Oleksy M, Rój E, Tomaszewska J, Mizera K, Ryszkowska J. Composites of Poly(vinyl chloride) with Residual Hops after Supercritical Extraction in CO2. Polymers. 2021; 13(16):2736. https://doi.org/10.3390/polym13162736
Chicago/Turabian StyleMirowski, Jacek, Rafał Oliwa, Mariusz Oleksy, Edward Rój, Jolanta Tomaszewska, Kamila Mizera, and Joanna Ryszkowska. 2021. "Composites of Poly(vinyl chloride) with Residual Hops after Supercritical Extraction in CO2" Polymers 13, no. 16: 2736. https://doi.org/10.3390/polym13162736
APA StyleMirowski, J., Oliwa, R., Oleksy, M., Rój, E., Tomaszewska, J., Mizera, K., & Ryszkowska, J. (2021). Composites of Poly(vinyl chloride) with Residual Hops after Supercritical Extraction in CO2. Polymers, 13(16), 2736. https://doi.org/10.3390/polym13162736