Radio-Oxidation Ageing of XLPE Containing Different Additives and Filler: Effect on the Gases Emission and Consumption
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
- XLPE M1: XLPE “as received”
- XLPE M2(Irg1076): XLPE + 1 phr of Irganox 1076
- XLPE M3(IrgPS802): XLPE + 1 phr of Irganox PS 802
- XLPE M4(Irg1076-IrgPS802): XLPE + 1 phr of Irganox 1076 + 1 phr of Irganox PS 802
- XLPE M5(ATH25): XLPE + 25 phr of ATH
- XLPE M6(ATH50): XLPE + 50 phr of ATH
- XLPE M7(Irg1076-IrgPS802-ATH50): XLPE + 1 phr of Irganox 1076 + 1 phr of Irganox PS 802 + 50 phr of ATH
2.2. Irradiation Conditions
- Low dose rate corresponds to 5 Gy·h−1. The three doses achieved at this dose rate were equal to 25 kGy, 67 kGy, and 138 kGy.
- Medium dose rate corresponds to 40 Gy·h−1. The three doses achieved at this dose rate were equal to 67 kGy, 220 kGy, and 374 kGy.
2.3. Radiation Chemical Yields Determination
3. Results
3.1. Radiation Chemical Yields Extrapolated at Zero Dose
3.2. Dose Effect
3.3. Dose Rate Effect
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- EDF; Framatome; IRSN; CEA; UJV; ARTTIC; Nexans; INCT; IZFP; VTT; et al. TeaM Cables (European Tools and Methodologies for an Efficient Ageing Management of Nuclear Power Plant Cables); H2020 Project: Moret-sur-Loing, France, 2017. [Google Scholar]
- Gillen, T.K.; Clough, R.L. Occurence and implications of radiation dose-rate effects for material aging studies. Radiat. Phys. Chem. 1981, 18, 679–687. [Google Scholar] [CrossRef]
- Ekelund, M.; Azhdar, B.; Hedenqvist, M.S.; Gedde, U.W. Long-term performance of poly(vinyl chloride) cables, Part 2: Migration of plasticizer. Polym. Degrad. Stab. 2008, 93, 1704–1710. [Google Scholar] [CrossRef]
- Ekelund, M.; Edin, H.; Gedde, U.W. Long-term performance of poly(vinyl chloride) cables. Part 1: Mechanical and electrical performances. Polym. Degrad. Stab. 2007, 92, 617–629. [Google Scholar] [CrossRef]
- Zaikov, G.E.; Gumargalieva, K.Z.; Pokholok, T.V.; Moiseev, Y.V. PVC Wire Coatings: Part l-Ageing Process Dynamics. Int. J. Polym. Mater. 1998, 39, 79. [Google Scholar] [CrossRef]
- Beneš, M.; Milanov, N.; Matuschek, G.; Kettrup, A.; Plaček, V.; Balek, V. Thermal degradation of PVC cable insulation studied by simultaneous TG-FTIR and TG-EGA methods. J. Therm. Anal. Calorim. 2004, 78, 621–630. [Google Scholar] [CrossRef]
- Gillen, K.T.; Assink, R.; Bernstein, R.; Celina, M. Condition monitoring methods applied to degradation of chlorosulfonated polyethylene cable jacketing materials. Polym. Degrad. Stab. 2006, 91, 1273–1288. [Google Scholar] [CrossRef]
- Gillen, K.T.; Bernstein, R.; Celina, M. Non-Arrhenius behavior for oxidative degradation of chlorosulfonated polyethylene materials. Polym. Degrad. Stab. 2005, 87, 335–346. [Google Scholar] [CrossRef]
- Gillen, K.T.; Bernstein, R.; Clough, R.L.; Celina, M. Lifetime predictions for semi-crystalline cable insulation materials: I. Mechanical properties and oxygen consumption measurements on EPR materials. Polym. Degrad. Stab. 2006, 91, 2146–2156. [Google Scholar]
- Gueguen, V.; Audouin, L.; Pinel, B.; Verdu, J. Lifetime prediction in the case of radiooxidative ageing of an ethylene/propylene rubber used for electrical insulation. Polym. Degrad. Stab. 1994, 46, 113–122. [Google Scholar] [CrossRef]
- Ito, M. Application of chemorheology to radiation damage of polymers. III: Synergism of heat and radiation on the chemorheology of ethylene-propylene rubber. Radiat. Phys. Chem. 1981, 17, 203–205. [Google Scholar]
- Lustiger, A.; Markham, R.L. Importance of tie molecules in preventing polyethylene fracture under long-term loading conditions. Polymer 1983, 24, 1647–1654. [Google Scholar] [CrossRef]
- Mareş, G.; Ciutacu, S.; Budrugeac, P.; Chiparǎ, M. Determination of the lifetime of ethylene-propylene rubber under the simultaneous action of heat and ionizing radiation. Polym. Degrad. Stab. 1991, 32, 31–38. [Google Scholar] [CrossRef]
- Mopsik, F.I. Radiation-induced dielectric loss in hydrocarbon polymers. J. Polym. Sci. Part B Polym. Phys. 1993, 31, 1989–1993. [Google Scholar] [CrossRef]
- Reynolds, A.B.; Bell, R.M.; Bryson, N.M.N.; Doyle, T.E.; Hall, M.B.; Mason, L.R.; Quintric, L.; Terwilliger, P.L. Dose-rate effects on the radiation-induced oxidation of electric cable used in nuclear power plants. Radiat. Phys. Chem. 1995, 45, 103–110. [Google Scholar] [CrossRef]
- Seguchi, T.; Yamamoto, Y. Diffusion and Solubility of Oxygen in Gamma-Ray Irradiated Polymer Insulation Materials; Report of Japan Atomic Energy Research Institute JAERI: Tokai, Japan, 1986; p. 1299. [Google Scholar]
- Azizi, H.; Barzin, J.; Morshedian, J. Silane crosslinking of polyethylene: The effects of EVA, ATH and Sb2O3 on properties of the production in continuous grafting of LDPE. Express Polym. Lett. 2007, 1, 378–384. [Google Scholar] [CrossRef] [Green Version]
- Colombani, J.; Sidi, A.; Larche, J.F.; Taviot-Guého, C.; Rivaton, A. Thermooxidative degradation of crosslinked EVA/EPDM copolymers: Impact of Aluminium TriHydrate (ATH) filler incorporation. Polym. Degrad. Stab. 2018, 153, 130–144. [Google Scholar] [CrossRef]
- Przybytniak, G.; Boguski, J.; Placek, V.; Verardi, L.; Fabiani, D.; Linde, E.; Gedde, U.W. Inverse effect in simultaneous thermal and radiation aging of EVA insulation. Express Polym. Lett. 2015, 9, 384–393. [Google Scholar] [CrossRef]
- Sidi, A.; Colombani, J.; Larché, J.F.; Rivaton, A. Multiscale analysis of the radiooxidative degradation of EVA/EPDM composites. ATH filler and dose rate effect. Radiat. Phys. Chem. 2018, 142, 14–22. [Google Scholar] [CrossRef]
- Hegazy, E.-S.A.; Seguchi, T.; Machi, S. Radiation-induced oxidative degradation of poly(vinyl chloride). J. Appl. Polym. Sci. 1981, 26, 2947–2957. [Google Scholar] [CrossRef]
- Hoffendahl, C.; Fontaine, G.; Duquesne, S.; Taschner, F.; Mezger, M.; Bourbigot, S. The combination of aluminum trihydroxide (ATH) and melamine borate (MB) as fire retardant additives for elastomeric ethylene vinyl acetate (EVA). Polym. Degrad. Stab. 2015, 115, 77–88. [Google Scholar] [CrossRef]
- Vaari, J.; Paajanen, A. Evaluation of the reactive molecular dynamics method for Research on flame retardants: ATH-filled polyethylene. Comput. Mater. Sci. 2018, 153, 103–112. [Google Scholar] [CrossRef]
- Aymes-Chodur, C.; Betz, N.; Legendre, B.; Yagoubi, N. Structural and physico-chemical studies on modification of polypropylene and its polyphenolic antioxidant by electron beam irradiation. Polym. Degrad. Stab. 2006, 91, 649–662. [Google Scholar] [CrossRef]
- Ekelund, M.; Fantoni, P.F.; Gedde, U.W. Thermal ageing assessment of EPDM-chlorosulfonated polyethylene insulated cables using line resonance analysis (LIRA). Polym. Test. 2011, 30, 86–93. [Google Scholar] [CrossRef]
- Moisan, J.Y.; Lever, R. Diffusion des additifs du polyethylene—V: Influence sur le vieillissement du polymere. Eur. Polym. J. 1982, 18, 407–411. [Google Scholar] [CrossRef]
- Celette, N.; Stevenson, I.; Davenas, J.; David, L.; Vigier, G. Relaxation behaviour of radiochemically aged EPDM elastomers. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2001, 185, 305–310. [Google Scholar] [CrossRef]
- Celina, M.C. Review of polymer oxidation and its relationship with materials performance and lifetime prediction. Polym. Degrad. Stab. 2013, 98, 2419–2429. [Google Scholar] [CrossRef]
- Howard, J.B. DTA for control of stability in polyolefin wire and cable compounds. Polym. Eng. Sci. 1973, 13, 429–434. [Google Scholar] [CrossRef]
- Bartoníček, B.; Hnát, V.; Plaček, V. Life-assessment technique for nuclear power plant cables. Radiat. Phys. Chem. 1998, 52, 639–642. [Google Scholar] [CrossRef]
- Xu, A.; Roland, S.; Colin, X. Physico-chemical characterization of the blooming of Irganox 1076® antioxidant onto the surface of a silane-crosslinked polyethylene. Polym. Degrad. Stab. 2020, 171, 109046. [Google Scholar] [CrossRef]
- Ferry, M.; Pellizzi, E.; Boughattas, I.; Fromentin, E.; Dauvois, V.; de Combarieu, G.; Coignet, P.; Cochin, F.; Ngono-Ravache, Y.; Balanzat, E.; et al. Effect of cumulated dose on hydrogen emission from polyethylene irradiated under oxidative atmosphere using gamma rays and ion beams. Radiat. Phys. Chem. 2016, 118, 124–127. [Google Scholar] [CrossRef]
- Fromentin, E.; Aymes-Chodur, C.; Doizi, D.; Cornaton, M.; Miserque, F.; Cochin, F.; Ferry, M. On the radio-oxidation, at high doses, of an industrial polyesterurethane and its pure resin. Polym. Degrad. Stab. 2017, 146, 161–173. [Google Scholar] [CrossRef] [Green Version]
- Lebeau, D.; Beuvier, L.; Cornaton, M.; Miserque, F.; Tabarant, M.; Esnouf, S.; Ferry, M. Aging of magnesium stearate under high doses gamma irradiation and oxidative conditions. J. Nucl. Mater. 2015, 460, 130–138. [Google Scholar] [CrossRef]
- Ferry, M.; Dannoux-Papin, A.; Dély, N.; Legand, S.; Durand, D.; Roujou, J.L.; Lamouroux, C.; Dauvois, V.; Coignet, P.; Cochin, F.; et al. Chemical composition effects of methylene containing polymers on gas emission under γ-irradiation. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2014, 334, 69–76. [Google Scholar] [CrossRef]
- Ferry, M.; Bessy, E.; Harris, H.; Lutz, P.J.; Ramillon, J.M.; Ngono-Ravache, Y.; Balanzat, E. Aliphatic/Aromatic Systems under Irradiation: Influence of the Irradiation Temperature and of the Molecular Organization. J. Phys. Chem. B 2013, 117, 14497–14508. [Google Scholar] [CrossRef] [PubMed]
- Manion, J.P.; Burton, M. Radiolysis of Hydrocarbon Mixtures. J. Phys. Chem. 1952, 56, 560–569. [Google Scholar] [CrossRef]
- Norrish, R.G.W.; Bamford, C.H. Photo-decomposition of Aldehydes and Ketones. Nature 1937, 140, 195–196. [Google Scholar] [CrossRef]
- Schoepfle, C.S.; Fellows, C.H. Gaseous Products from Action of Cathode Rays on Hydrocarbons. Ind. Eng. Chem. 1931, 23, 1396–1398. [Google Scholar] [CrossRef]
- Bolland, J.L.; Gee, G. Kinetic studies in the chemistry of rubber and related materials. II. The kinetics of oxidation of unconjugated olefins. Trans. Faraday Soc. 1946, 42, 236–243. [Google Scholar] [CrossRef]
- Arakawa, K.; Seguchi, T.; Watanabe, Y.; Hayakawa, N. Radiation-induced oxidation of polyethylene, ethylene-butene copolymer, and ethylene-propylene copolymer. J. Polym. Sci. Polym. Chem. Ed. 1982, 20, 2681–2692. [Google Scholar] [CrossRef]
- Matsuo, H.; Dole, M. Irradiation of Polyethylene. IV. Oxidation Effects. J. Phys. Chem. 1959, 63, 837–842. [Google Scholar] [CrossRef]
- Rabek, J.F. Photodegradation of Polymers, Physical Characteristics and Applications; Springer: Berlin/Heidelberg, Germany, 1996. [Google Scholar]
- Gijsman, P. Chapter 18—Polymer Stabilization. In Handbook of Environmental Degradation of Materials, 3rd ed.; Kutz, M., Ed.; William Andrew Publishing: Norwich, NY, USA, 2018; pp. 369–395. [Google Scholar]
- Ventura, A.; Ngono-Ravache, Y.; Marie, H.; Levavasseur-Marie, D.; Legay, R.; Dauvois, V.; Chenal, T.; Visseaux, M.; Balanzat, E. Hydrogen emission and macromolecular radiation-induced defects in polyethylene irradiated under an inert atmosphere: The role of energy transfers toward trans-vinylene unsaturations. J. Phys. Chem. B 2016, 120, 10367–10380. [Google Scholar] [CrossRef]
- Seguchi, T. Mechanisms and kinetics of hydrogen yield from polymers by irradiation. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2001, 185, 43–49. [Google Scholar] [CrossRef]
- Decker, C.; Mayo, F.R. Aging and degradation of polyolefins. II. γ-initiated oxidations of atactic polypropylene. J. Polym. Sci. Polym. Chem. Ed. 1973, 11, 2847–2877. [Google Scholar] [CrossRef]
- Przybytniak, G.; Sadło, J.; Walo, M.; Wróbel, N.; Žák, P. Comparison of radical processes in non-aged and radiation-aged polyethylene unprotected or protected by antioxidants. Mater. Today Commun. 2020, 25, 101521. [Google Scholar] [CrossRef]
- Maléchaux, A.; Colombani, J.; Amat, S.; Marque, S.R.; Dupuy, N. Influence of gamma irradiation on electric cables: Study of additive effects by mid infrared spectroscopy. Polymers 2020. to be submitted. [Google Scholar]
- Armstrong, C.; Husbands, M.J.; Scott, G. Mechanisms of antioxidant action: Antioxidant-active products formed from the dialkyl thiodipropionate esters. Eur. Polym. J. 1979, 15, 241–248. [Google Scholar] [CrossRef]
- Bateman, L.; Hargrave, K.R.; Rideal, E.K. Oxidation of organic sulphides. I. Interaction of cyclohexyl methyl sulphide with hydroperoxides in alcohols. Proc. R. Soc. London. Ser. A Math. Phys. Sci. 1954, 224, 389–398. [Google Scholar]
- Bateman, L.; Hargrave, K.R.; Rideal, E.K. Oxidation of organic sulphides-II. Interaction of cyclohexyl methyl sulphide with hydroperoxides in hydrocarbons. Proc. R. Soc. London. Ser. A Math. Phys. Sci. 1954, 224, 399–411. [Google Scholar]
- Richaud, E.; Monchy-Leroy, C.; Colin, X.; Audouin, L.; Verdu, J. Kinetic modelling of stabilization coupled with stabilizer loss by evaporation. Case of dithioester stabilized polyethylene. Polym. Degrad. Stab. 2009, 94, 2004–2014. [Google Scholar] [CrossRef]
- Verdu, J.; Rychly, J.; Audouin, L. Synergism between polymer antioxidants—kinetic modelling. Polym. Degrad. Stab. 2003, 79, 503–509. [Google Scholar] [CrossRef]
- Xu, A.; Roland, S.; Colin, X. Thermal ageing of a silane-crosslinked polyethylene stabilised with a thiodipropionate antioxidant. Polym. Degrad. Stab. 2020, 181, 109276. [Google Scholar] [CrossRef]
G0(H2) | G0(-O2) | G0(CO2) | |
---|---|---|---|
(10−7 mol·J−1) | |||
XLPE M1 | 3.7 ± 0.3 | 17.9 ± 2.4 | 0.91 ± 0.16 |
XLPE M2(Irg1076) | 3.4 ± 0.3 | 4.6 ± 0.5 | 0.20 ± 0.02 |
XLPE M3(IrgPS802) | 3.3 ± 0.3 | 12.0 ± 1.2 | 0.66 ± 0.07 |
XLPE M4(Irg1076-IrgPS802) | 3.3 ± 0.3 | 6.5 ± 0.7 | 0.29 ± 0.03 |
XLPE M5(ATH25) | 2.9 ± 0.3 | 11.2 ± 1.1 | 0.63 ± 0.06 |
XLPE M6(ATH50) | 2.7 ± 0.3 | 10.7 ± 2.1 | 0.67 ± 0.17 |
XLPE M7(Irg1076-IrgPS802-ATH50) | 2.4 ± 0.3 | 4.6 ± 0.5 | 0.28 ± 0.03 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferry, M.; Carpentier, F.; Cornaton, M. Radio-Oxidation Ageing of XLPE Containing Different Additives and Filler: Effect on the Gases Emission and Consumption. Polymers 2021, 13, 2845. https://doi.org/10.3390/polym13172845
Ferry M, Carpentier F, Cornaton M. Radio-Oxidation Ageing of XLPE Containing Different Additives and Filler: Effect on the Gases Emission and Consumption. Polymers. 2021; 13(17):2845. https://doi.org/10.3390/polym13172845
Chicago/Turabian StyleFerry, Muriel, Floriane Carpentier, and Manon Cornaton. 2021. "Radio-Oxidation Ageing of XLPE Containing Different Additives and Filler: Effect on the Gases Emission and Consumption" Polymers 13, no. 17: 2845. https://doi.org/10.3390/polym13172845
APA StyleFerry, M., Carpentier, F., & Cornaton, M. (2021). Radio-Oxidation Ageing of XLPE Containing Different Additives and Filler: Effect on the Gases Emission and Consumption. Polymers, 13(17), 2845. https://doi.org/10.3390/polym13172845