Polysaccharides as Support for Microbial Biomass-Based Adsorbents with Applications in Removal of Heavy Metals and Dyes
Abstract
:1. Introduction
2. Biosorption
Biomass | Free | Immobilized |
---|---|---|
Advantages |
|
|
Disadvantages |
|
|
3. Polymer Support for Immobilization of Microbial Biomass to Obtain Biosorbents
- -
- To have adequate rheological properties (flow easily even at high concentrations).
- -
- To have the ability to disperse biomass.
- -
- Do not react with biomass either during the process or during storage.
- -
- To keep the biomass active throughout the immobilization process and then during the storage period.
- -
- To be able to be purified from solvents or other materials used during the immobilization process.
- -
- To maintain the maximum sorption capacity of the biomass.
- -
- To be insoluble in the effluent (wastewater).
- -
- Do not damage the cells.
- -
- To have low cost.
4. Microbial Biomass-Based Biosorbents
4.1. Algal Biomass
4.2. Bacterial Biomass
4.3. Fungal Biomass
4.4. Factors Influencing the Batch Biosorption
5. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Elgarahy, A.M.; Elwakeel, K.Z.; Mohammad, S.H.; Elshoubaky, G.A. A critical review of biosorption of dyes, heavy metals and metalloids from wastewater as an efficient and green process. Clean. Eng. Technol. 2021, 4, 100209. [Google Scholar] [CrossRef]
- Nassar, H.N.; El-azab, W.I.M.; El-Gendy, N.S. Sustainable ecofriendly recruitment of bioethanol fermentation lignocellulosic spent waste biomass for the safe reuse and discharge of petroleum production produced water via biosorption and solid biofuel production. J. Hazard. Mater. 2021, 422, 126845. [Google Scholar] [CrossRef]
- Muñoz, A.J.; Espínola, F.; Ruiz, E.; Barbosa-Dekker, A.M.; Dekker, R.F.H.; Castro, E. Biosorption mechanisms of Ag(I) and the synthesis of nanoparticles by the biomass from Botryosphaeria rhodina MAMB-05. J. Hazard. Mater. 2021, 420, 126598. [Google Scholar] [CrossRef] [PubMed]
- De Sá Costa, H.P.; da Silva, M.G.C.; Adeodato Vieira, M.G. Fixed bed biosorption and ionic exchange of aluminum by brown algae residual biomass. J. Water Process. Eng. 2021, 42, 102117. [Google Scholar] [CrossRef]
- Hutchison, J.M.; Mayer, B.K.; Vega, M.; Chacha, W.E.; Zilles, J.L. Making Waves: Biocatalysis and Biosorption: Opportunities and Challenges Associated with a New Protein-Based Toolbox for Water and Wastewater Treatment. Water Res. X 2021, 12, 100112. [Google Scholar] [CrossRef]
- Suteu, D.; Zaharia, C.; Blaga, A.C. Biosorption-current bioprocess for wastewater treatment (chapter 10). In Current Topics, Concepts and Research Priorities in Environmental Chemistry; Zaharia, C., Ed.; Universitatii ‘Al.I. Cuza’: Iasi, Romania, 2012; Volume I, pp. 221–244. [Google Scholar]
- Zaharia, C.; Suteu, D. Industrial wasted materials as ‘low cost’ sorbents for effluent treatment (chapter 9). In Current Topics, Concepts and Research Priorities in Environmental Chemistry; Zaharia, C., Ed.; Universitatii ‘Al.I. Cuza’: Iasi, Romania, 2013; Volume II, pp. 189–212. [Google Scholar]
- Zaharia, C. Application of Waste Materials as ‘Low Cost’ Sorbents for Industrial Effluent Treatment. A Comparative Overview. Int. J. Mater. Prod. Technol. 2015, 50, 196–220. [Google Scholar] [CrossRef]
- Torres, E. Biosorption: A Review of the Latest Advances. Processes 2020, 8, 1584. [Google Scholar] [CrossRef]
- Mahato, N.; Sharma, K.; Sinha, M.; Baral, E.R.; Koteswararao, R.; Dhyani, A.; Cho, M.H.; Cho, S. Bio-sorbents, industrially important chemicals and novel materials from citrus processing waste as a sustainable and renewable bioresource: A review. J. Adv. Res. 2020, 23, 61–82. [Google Scholar] [CrossRef]
- Adewuyi, A. Chemically Modified Biosorbents and Their Role in the Removal of Emerging Pharmaceutical Waste in the Water System. Water 2020, 12, 1551. [Google Scholar] [CrossRef]
- Berber, M.R. Current Advances of Polymer Composites for Water Treatment and Desalination. J. Chem. 2020, 2020, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Alaba, P.A.; Oladoja, N.A.; Sani, Y.M.; Ayodele, O.B.; Mohammed, I.Y.; Olupinla, S.F.; Daud, W.M.W. Insight into wastewater decontamination using polymeric adsorbents. J. Environ. Chem. Eng. 2018, 6, 1651–1672. [Google Scholar] [CrossRef]
- Kubra, K.T.; Salman, M.S.; Hasan, M.N. Enhanced toxic dye removal from wastewater using biodegradable polymeric natural adsorbent. J. Mol. Liq. 2021, 328. [Google Scholar] [CrossRef]
- Crini, G.; Torri, G.; Lichtfouse, E.; Kyzas, E.; Wilson, L.; Crini, N.M. Dye removal by biosorption using cross-linked chitosan-based hydrogels. Environ. Chem. Lett. 2019, 17, 1645–1666. [Google Scholar] [CrossRef] [Green Version]
- Rizvi, A.; Ahmed, B.; Zaidi, A.; Khan, M.S. Biosorption of heavy metals by dry biomass of metal tolerant bacterial biosorbents: An efficient metal clean-up strategy. Environ. Monit. Assess. 2020, 192, 801. [Google Scholar] [CrossRef]
- Kargar, H.M.S.; Shirazi, N.H. Lactobacillus fermentum and Lactobacillus plantarum bioremediation ability assessment for copper and zinc. Arch. Microbiol. 2020, 202, 1957–1963. [Google Scholar] [CrossRef] [PubMed]
- Daza-López, E.V.; Fernández-Andrade, K.J.; Nóbrega, R.Q.; Zambrano-Intriago, L.A.; Ramos, G.V.; Quiroz-Fernández, L.S.; Montenegro, M.C.B.S.M.; Rodríguez-Díaz, J.M. Modified or Functionalized Natural Bioadsorbents: New Perspectives as Regards the Elimination of Environmental Pollutants. In Advances in the Domain of Environmental Biotechnology: Environmental and Microbial Biotechnology; Maddela, N.R., GarcíaCruzatty, L.C., Chakraborty, S., Eds.; Springer: Singapore, 2021; pp. 195–225. [Google Scholar] [CrossRef]
- Crini, G.; Lichtfouse, E.; Wilson, L.; Morin-Crini, N. Conventional and non-conventional adsorbents for wastewater treatment. Environ. Chem. Lett. 2019, 17, 195–213. [Google Scholar] [CrossRef]
- Kanamarlapudi, S.L.R.K.; Chintalpudi, V.K.; Muddada, S. Application of Biosorption for Removal of Heavy Metals from Wastewater. Biosorption 2018, 18, 69. [Google Scholar] [CrossRef] [Green Version]
- Suteu, D.; Blaga, A.C.; Zaharia, C. The action of microorganisms from organic pollutants in water, air, soil (Chapter 12). In Current Topics, Concepts and Research Priorities in Environmental Chemistry; Zaharia, C., Ed.; Universitatii ‘Al.I. Cuza’: Iasi, Romania, 2013; Volume II, pp. 259–274. [Google Scholar]
- Moghaddam, S.A.E.; Harun, R.; Mokhtar, M.N.; Zakaria, R. Potential of Zeolite and Algae in Biomass Immobilization. BioMed Res. Int. 2018, 2018. [Google Scholar] [CrossRef] [Green Version]
- Ayele, A.; Haile, S.; Alemu, D.; Kamaraj, M. Comparative Utilization of Dead and Live Fungal Biomass for the Removal of Heavy Metal: A Concise Review. Sci. World J. 2021, 2021. [Google Scholar] [CrossRef]
- Blaga, A.C.; Horciu, I.L.; Zaharia, C.; Rusu, L.; Grigoras, C.; Suteu, D. Biosorbents based on microorganisms. Bull. Polytech. Inst. Iasi Sect. Chem. Chem. Eng. 2020, 66, 39–53. [Google Scholar]
- Galaction, A.I.; Rotaru, R.; Caşcaval, D. Glucose mass transfer under substrate inhibitionconditions in a stationary basket bioreactor with immobilized yeast cells. Int. J. Chem. React. Eng. 2012, 10, 1–13. [Google Scholar] [CrossRef]
- Cascaval, D.; Galaction, A.I.; Rotaru, R.; Turnea, M. Study on the mixing efficiency in a basket bioreactor with immobilized yeasts cells. Environ. Eng. Manag. J. 2011, 10, 711–716. [Google Scholar] [CrossRef]
- Siwi, W.P.; Rinanti, A.; Silalahi, M.D.S.; Hadisoebroto, R.; Fachru, M.F. Effect of immobilized biosorbents on the heavy metals (Cu2+) biosorption with variations of temperature and initial concentration of waste. IOP Conf. Ser. Earth Environ. Sci. 2018, 106, 012113. [Google Scholar] [CrossRef]
- Lengyel, M.; Kállai-Szabó, N.; Antal, V.; Laki, A.J.; Antal, I. Microparticles, Microspheres, and Microcapsules for Advanced Drug Delivery. Sci. Pharm. 2019, 87, 20. [Google Scholar] [CrossRef] [Green Version]
- Banach, A.; Pudlo, A.; Ziembińska-Buczyńska, A. Immobilization of Anammox biomass in sodium alginate. E3S Web Conf. 2018, 44. [Google Scholar] [CrossRef] [Green Version]
- Abraham, R.E.; Puri, M. Nano-immobilized cellulases for biomass processing with application in biofuel production. In Methods in Enzymology; Kumar, C.V., Ed.; Academic Press Inc.: Cambridge, MA, USA, 2020; pp. 327–346. [Google Scholar] [CrossRef]
- Garbowski, T.; Pietryka, M.; Pulikowski, K.; Richter, D. The use of a natural substrate for immobilization of microalgae cultivated in wastewater. Sci. Rep. 2020, 10, 7915. [Google Scholar] [CrossRef] [PubMed]
- BeMiller, J.N. (Ed.) 5-Polysaccharides: Properties. In Carbohydrate Chemistry for Food Scientists, 3rd ed.; Woodhead Publishing: Sawston, UK; AACC International: Eagan, MN, USA, 2019; pp. 103–157. [Google Scholar] [CrossRef]
- Berillo, D.; Al-Jwaid, A.; Caplin, J. Polymeric Materials Used for Immobilisation of Bacteria for the Bioremediation of Contaminants in Water. Polymers 2021, 13, 1073. [Google Scholar] [CrossRef] [PubMed]
- Pires, C.; Marques, A.P.; Guerreiro, A.; Magan, N.; Castro, P.M. Removal of heavy metals using different polymer matrixes as support for bacterial immobilisation. J. Hazard. Mater. 2011, 191, 277–286. [Google Scholar] [CrossRef] [Green Version]
- Khashei, S.; Etemadifar, Z.; Rahmani, H.R. Immobilization of Pseudomonas putida PT in resistant matrices to environmental stresses: A strategy for continuous removal of heavy metals under extreme conditions. Ann. Microbiol. 2018, 68, 931–942. [Google Scholar] [CrossRef]
- Gomez-Maldonado, D.; Erramuspe, I.B.V.; Peresin, M.S. Natural-Polymers as alternative adsorbents and treatment agents for Water Remediation. Bioresources 2019, 14, 10093–10160. [Google Scholar] [CrossRef]
- Zamel, D.; Hassanin, A.H.; Ellethy, R.; Singer, G.; Abdelmoneim, A. Novel Bacteria-Immobilized Cellulose Acetate/Poly(ethylene oxide) Nanofibrous Membrane for Wastewater Treatment. Sci. Rep. 2019, 9, 18994. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Żywicka, A.; Wenelska, K.; Junka, A.; Chodaczek, G.; Szymczyk, P.; Fijałkowski, K. Immobilization pattern of morphologically different microorganisms on bacterial cellulose membranes. World J. Microbiol. Biotechnol. 2019, 35, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Alyamani, E.J.; Booq, R.Y.; Bahkali, A.H.; Alharbi, S.A. Effect of Denitrifying Bacterial Biomass and Carbon Sources on Nitrate Removal. J. Pure Appl. Microbiol. 2020, 14, 2417–2424. [Google Scholar] [CrossRef]
- Musarurwa, H.; Tavengwa, N.T. Application of carboxymethyl polysaccharides as bio-sorbents for the sequestration of heavy metals in aquatic environments. Carbohydr. Polym. 2020, 237, 116142. [Google Scholar] [CrossRef]
- Braga, A.; Belo, I. Immobilization of Yarrowialipolytica for aroma production from castor oil. Appl. Biochem. Biotechnol. 2013, 169, 2202–2211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fijałkowski, K.; Peitler, D.; Rakoczy, R.; Żywicka, A. Survival of probiotic lactic acid bacteria immobilized in different forms of bacterial cellulose in simulated gastric juices and bile salt solution. LWT 2016, 68, 322–328. [Google Scholar] [CrossRef]
- Rezaee, A.; Godini, H.; Bakhtou, H. Microbial cellulose as support material for the immobilization of denitrifying bacteria. Environ. Eng. Manag. J. 2008, 7, 589–594. [Google Scholar] [CrossRef]
- Tam, T.T.M.; Huong, N.T. Optimization of Corynebacterium glutamicum immobilization process on bacterial cellulose carrier and its application for lysine fermentation. IOSR J. Eng. 2014, 4, 33–38. [Google Scholar] [CrossRef]
- Revin, V.V.; Dolganov, A.V.; Liyaskina, E.V.; Nazarova, N.B.; Balandina, A.V.; Devyataeva, A.A.; Revin, V.D. Characterizing Bacterial Cellulose Produced by Komagataeibactersucrofermentans H-110 on Molasses Medium and Obtaining a Biocomposite Based on It for the Adsorption of Fluoride. Polymers 2021, 13, 1422. [Google Scholar] [CrossRef]
- Wan, Y.; Wang, J.; Gama, M.; Guo, R.; Zhang, Q.; Zhang, P.; Yao, F.; Luo, H. Biofabrication of a novel bacteria/bacterial cellulose composite for improved adsorption capacity. Compos. Part A Appl. Sci. Manuf. 2019, 125, 105560. [Google Scholar] [CrossRef] [Green Version]
- Bayramoğlu, G.; Bektaş, S.; Arica, M.Y. Biosorption of heavy metal ions on immobilized white-rot fungus Trametes versicolor. J. Hazard. Mater. 2003, 101, 285–300. [Google Scholar] [CrossRef]
- Xu, L.; Luo, M.; Yang, L.; Wei, X.; Lin, X.; Liu, H. Encapsulation of Pannonibacter phragmitetus LSSE-09 in alginate–carboxymethyl cellulose capsules for reduction of hexavalent chromium under alkaline conditions. J. Ind. Microbiol. Biotechnol. 2011, 38, 1709–1718. [Google Scholar] [CrossRef]
- Arica, M.Y.; Bayramoğlu, G. Cr(VI) biosorption from aqueous solutions using free and immobilized biomass of Lentinussajor-caju: Preparation and kinetic characterization. Colloids Surf. A Physicochem. Eng. Asp. 2005, 253, 203–211. [Google Scholar] [CrossRef]
- Pogaku, R.; Kulkarni, S. Biosorption of Combined Industrial Effluents using Phanerochaetechrysosporium. Int. J. Chem. React. Eng. 2006, 4. [Google Scholar] [CrossRef]
- Saglam, A.; Yalçinkaya, Y.; Denizli, A.; Arica, M.; Genç, O.; Bektaş, S.; Arıca, M. Biosorption of mercury by carboxymethylcellulose and immobilized Phanerochaete chrysosporium. Microchem. J. 2002, 71, 73–81. [Google Scholar] [CrossRef]
- Wang, B.; Hu, Y.; Xie, L.; Peng, K. Bioaccumulation of azo dye using immobilised beads of Aspergillus fumigatus. Int. J. Environ. Pollut. 2009, 37, 2–3. [Google Scholar] [CrossRef]
- Ahmad, A.; Mubarak, N.M.; Jannat, F.T.; Ashfaq, T.; Santulli, C.; Rizwan, M.; Najda, A.; Bin-Jumah, M.; Abdel-Daim, M.M.; Hussain, S.; et al. A Critical Review on the Synthesis of Natural Sodium Alginate Based Composite Materials: An Innovative Biological Polymer for Biomedical Delivery Applications. Processes 2021, 9, 137. [Google Scholar] [CrossRef]
- Yaashikaa, P.; Kumar, P.S.; Saravanan, A.; Vo, D.-V.N. Advances in biosorbents for removal of environmental pollutants: A review on pretreatment, removal mechanism and future outlook. J. Hazard. Mater. 2021, 420, 126596. [Google Scholar] [CrossRef] [PubMed]
- Bayat, Z.; Hassanshahian, M.; Cappello, S. Immobilization of Microbes for Bioremediation of Crude Oil Polluted Environments: A Mini Review. Open Microbiol. J. 2015, 9, 48–54. [Google Scholar] [CrossRef] [PubMed]
- Sutirman, Z.A.; Sanagi, M.M.; Aini, W.I.W. Alginate-based adsorbents for removal of metal ions and radionuclides from aqueous solutions: A review. Int. J. Biol. Macromol. 2021, 174, 216–228. [Google Scholar] [CrossRef]
- García Torres, S.G.; Hernández, S.C.; Jiménez, L.D. Bioadsorption of Cr (VI) in aqueous solutions by Pseudomonas koreensis immobilized in alginate beads. Int. J. Environ. Impacts 2019, 2, 229–239. [Google Scholar] [CrossRef]
- Tong, K. Preparation and biosorption evaluation of Bacillus subtilis/alginate-chitosan microcapsule. Nanotechnol. Sci. Appl. 2017, 10, 35–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horciu, I.L.; Blaga, A.C.; Rusu, L.; Zaharia, C.; Suteu, D. Biosorption of reactive dyes from aqueous media using the Bacillus sp. residual biomass. Desalination Water Treat. 2020, 195, 353–360. [Google Scholar] [CrossRef]
- Horciu, L.I.; Zaharia, C.; Blaga, A.C.; Rusu, L.; Suteu, D. Brilliant Red HE-3B dye biosorption by immobilisedresidualconsortium Bacillus sp. biomass: Fixed–Bed-Column Studies. Appl. Sci. 2021, 11, 4498. [Google Scholar] [CrossRef]
- Kumar, R.; Bhatia, D.; Singh, R.; Rani, S.; Bishnoi, N.R. Sorption of heavy metals from electroplating effluent using immobilized biomass Trichoderma viride in a continuous packed-bed column. Int. Biodeterior. Biodegrad. 2011, 65, 1133–1139. [Google Scholar] [CrossRef]
- Tan, W.S.; Ting, A.S.Y. Efficacy and reusability of alginate-immobilized live and heat-inactivated Trichoderma asperellum cells for Cu(II) removal from aqueous solution. Bioresour. Technol. 2012, 123, 290–295. [Google Scholar] [CrossRef]
- Ding, H.; Luo, X.; Zhang, X.; Yang, H. Alginate-immobilized Aspergillus niger: Characterization and biosorption removal of thorium ions from radioactive wastewater. Colloids Surf. A Physicochem. Eng. Asp. 2019, 562, 186–195. [Google Scholar] [CrossRef]
- Horciu, L.I.; Blaga, A.C.; Zaharia, C.; Dascalu, S.; Suteu, D. Valorization of resisual biomass as biosorbent: Study of biosorption of Brilliant Red HE-3B dye from aqueous media. Bull. Polytech. Inst. Iasi Sect. Chem. Chem. Eng. 2019, 65, 57–68. [Google Scholar]
- Ahmad, M.F.; Haydar, S.; Bhatti, A.A.; Bari, A.J. Application of artificial neural network for the prediction of biosorption capacity of immobilized Bacillus subtilis for the removal of cadmium ions from aqueous solution. Biochem. Eng. J. 2014, 84, 83–90. [Google Scholar] [CrossRef]
- Chen, C.; Wang, J. Uranium removal by novel graphene oxide-immobilized Saccharomyces cerevisiae gel beads. J. Environ. Radioact. 2016, 162–163, 134–145. [Google Scholar] [CrossRef] [PubMed]
- Sarri, S.; Misaelides, P.; Papanikolaou, M.; Zamboulis, D. Uranium removal from acidic aqueous solutions by Saccharomyces cerevisiae, Debaryomyceshansenii, Kluyveromycesmarxianus and Candida colliculosa. J. Radioanal. Nucl. Chem. 2009, 279, 709–711. [Google Scholar] [CrossRef]
- Bai, J.; Fan, F.; Wu, X.; Tian, W.; Zhao, L.; Yin, X.; Fan, F.; Li, Z.; Tian, L.; Wang, Y.; et al. Equilibrium, kinetic and thermodynamic studies of uranium biosorption by calcium alginate beads. J. Environ. Radioact. 2013, 126, 226–231. [Google Scholar] [CrossRef]
- Horciu, L.I.; Blaga, A.C.; Zaharia, C.; Suteu, D. Biosorbent based on nonliving biomass for textile dye retention from aqueous media. Bull. Polytech. Inst. Iasi Sect. Chem. Chem. Eng. 2018, 64, 9–17. [Google Scholar]
- Suteu, D.; Blaga, A.C.; Diaconu, M.; Malutan, T. Biosorption of reactive dye from aqueous media using Saccharomyces cerevisiae biomass. Equilibrium and kinetic study. Cent. Eur. J. Chem. 2013, 11, 2048–2057. [Google Scholar] [CrossRef] [Green Version]
- Akhtar, K.; Khalid, A.M.; Akhtar, M.W.; Ghauri, M.A. Removal and recovery of uranium from aqueous solutions by Ca-alginate immobilized Trichoderma harzianum. Bioresour. Technol. 2009, 100, 4551–4558. [Google Scholar] [CrossRef]
- Verma, A.; Shalu, S.A.; Bishnoi, N.R.; Gupta, A. Biosorption of Cu(II) using free and immobilized biomass of Penicilliumcitrinum. Ecol. Eng. 2013, 61, 486–490. [Google Scholar] [CrossRef]
- Copello, G.J.; Varela, F.; Vivot, R.M.; Díaz, L.E. Immobilized chitosan as biosorbent for the removal of Cd(II), Cr(III) and Cr(VI) from aqueous solutions. Bioresour. Technol. 2008, 99, 6538–6544. [Google Scholar] [CrossRef] [PubMed]
- Yin, Y.; Wang, J.; Yang, X.; Li, W. Removal of Strontium Ions by Immobilized Saccharomyces cerevisiae in magnetic chitosan microspheres. Nucl. Eng. Technol. 2017, 49, 172–177. [Google Scholar] [CrossRef] [Green Version]
- Peng, Q.; Liu, Y.G.; Zeng, G.M.; Xu, W.H.; Yang, C.P.; Zhang, J.J. Biosorption of copper(II) by immobilizing Saccharomyces cerevisiae on the surface of chitosan-coated magnetic nanoparticles from aqueous solution. J. Hazard. Mater. 2010, 177, 676–682. [Google Scholar] [CrossRef]
- Eroglu, E.; Agarwal, V.; Bradshaw, M.; Chen, X.; Smith, S.M.; Raston, C.L.; Iyera, K.S. Nitrate removal from liquid effluents using microalgae immobilized on chitosan nanofiber mats. Green Chem. 2012, 14, 2682–2685. [Google Scholar] [CrossRef]
- Vasilieva, S.; Lobakova, E.; Grigoriev, T.; Selyakh, I.; Semenova, L.; Chivkunova, O.; Gotovtsev, P.; Antipova, C.; Zagoskin, Y.; Scherbakov, P.; et al. Bio-inspired materials for nutrient biocapture from wastewater: Microalgal cells immobilized on chitosan-based carriers. J. Water Process Eng. 2021, 40, 101774. [Google Scholar] [CrossRef]
- Mallick, N.; Rai, L.C. Removal of inorganic ions from wastewater by immobilized microalgae. World J. Microbiol. Biotechnol. 1994, 10, 439–443. [Google Scholar] [CrossRef]
- Zhang, C.; Ren, H.X.; Zhong, C.Q.; Wu, D. Biosorption of Cr(VI) by immobilized waste biomass from polyglutamic acid production. Sci. Rep. 2020, 10, 3705. [Google Scholar] [CrossRef] [Green Version]
- Aryal, M. Calcium alginate entrapped Eupatorium adenophorum Sprengel stems powder for chromium (VI) biosorption in aqueous mediums. PLoS ONE 2019, 14, e0213477. [Google Scholar] [CrossRef] [Green Version]
- Wu, M.H.; Li, Y.Z.; Li, J.J.; Wang, Y.; Xu, H.; Zhao, Y. Bioreduction of hexavalent chromium using a novel strain CRB-7 immobilized on multiple materials. J. Hazard. Mater. 2019, 368, 412–420. [Google Scholar] [CrossRef] [PubMed]
- Shi, K.X.; Dai, X.L.; Fan, X.; Zhang, Y.X.; Chen, Z.J.; Wang, G.J. Simultaneous removal of chromate and arsenite by the immobilized Enterobacter bacterium in combination with chemical reagents. Chemosphere 2020, 259, 127428. [Google Scholar] [CrossRef]
- Yadav, P.; Yadav, A.; Srivastava, J.K.; Raj, A. Reduction of pollution load of tannery effluent by cell immobilization approach using Ochrobactrum intermedium. J. Water Process. Eng. 2021, 41, 102059. [Google Scholar] [CrossRef]
- Ma, L.; Chen, N.; Feng, C.; Hu, Y.; Li, M.; Liu, T. Feasibility and mechanism of microbial-phosphorus minerals-alginate immobilized particles in bioreduction of hexavalent chromium and synchronous removal of trivalent chromium. Bioresour. Technol. 2019, 294, 122213. [Google Scholar] [CrossRef]
- Saravanan, A.; Karishma, S.; Senthil Kumar, P.; Varjani, S.; Yaashikaa, P.R.; Jeevanantham, S.; Ramamurthy, R.; Reshma, B. Simultaneous removal of Cu (II) and reactive green 6 dye from wastewater using immobilized mixed fungal biomass and its recovery. Chemosphere 2021, 271, 129519. [Google Scholar] [CrossRef] [PubMed]
- Meringer, A.; Liffourrena, A.S.; Heredia, R.M.; Lucchesi, G.I.; Boeris, P.S. Removal of copper and/or zinc ions from synthetic solutions by immobilized, non-viable bacterial biomass: Batch and fixed-bed column lab-scale study. J. Biotechnol. 2021, 328, 87–94. [Google Scholar] [CrossRef]
- Boeris, P.S.; Liffourrena, A.S.; Lucchesi, G.I. Aluminum biosorption using non-viable biomass of Pseudomonas putida immobilized in agar–agar: Performance in batch and in fixed-bed column. Environ. Technol. Innov. 2018, 11, 105–115. [Google Scholar] [CrossRef]
- Sati, M.; Verma, M.; Rai, J.P.N. Biosorption of heavy metals from single and multimetal solutions by free and immobilized cells of Bacillus megaterium. Int. J. Adv. Res. 2014, 2, 923–934. [Google Scholar]
- Naskar, A.; Bera, D. Mechanistic exploration of Ni (II) removal by immobilized bacterial biomass and interactive influence of coexisting surfactants. Environ. Prog. Sustain. Energy 2018, 37, 342–354. [Google Scholar] [CrossRef] [Green Version]
- Wen, X.; Du, C.; Zeng, G.; Huang, D.; Zhang, J.; Yin, L.; Tan, S.; Huang, L.; Chen, H.; Yu, G. A novel biosorbent prepared by immobilized Bacillus licheniformis for lead removal from wastewater. Chemosphere 2018, 200, 173–179. [Google Scholar] [CrossRef]
- Kumari, S.; Mahapatra, S.; Das, S. Ca-alginate as a support matrix for Pb(II) biosorption with immobilized biofilm associated extracellular polymeric substances of Pseudomonas aeruginosa N6P6. Chem. Eng. J. 2017, 328, 556–566. [Google Scholar] [CrossRef]
- Yin, Y.; Hu, J.; Wang, J. Removal of Sr2+, Co2+, and Cs+ from aqueous solution by immobilized Saccharomyces cerevisiae with magnetic chitosan beads. Environ. Prog. Sustain. Energy 2017, 36, 989–996. [Google Scholar] [CrossRef]
- De Araujo, L.G.; de Borba, T.R.; de Pádua Ferreira, R.V.; Canevesi, R.L.S.; da Silva, E.A.; Dellamano, J.C.; Marumo, J.T. Use of Calcium Alginate Beads and Saccharomyces Cerevisiae for Biosorption of 241Am. J. Environ. Radioact. 2020, 223, 106399. [Google Scholar] [CrossRef]
- Sharma, B.; Tiwari, S.; Bisht, N.; Tewari, L. Eco-friendly bioprocess using agar plug immobilized Penicilliumcrustosum PWWS-6 biomass for treatment of wastewater contaminated with toxic Congo red dye for use in agriculture. Ind. Crops Prod. 2021, 170, 113755. [Google Scholar] [CrossRef]
- Saravanan, N.; Kannadasan, T.; Basha, C.; Manivasagan, V. Biosorption of Textile Dye Using Immobilized Bacterial (Pseudomonas aeruginosa) and Fungal (Phanerochatechrysosporium) Cells. Am. J. Environ. Sci. 2013, 9, 377–387. [Google Scholar] [CrossRef]
- Dewi, R.S.; Mumpuni, A.; Tsabitah, N.I. Batik Dye Decolorization by Immobilized Biomass of Aspergillus sp. IOP Conf. Ser. Earth Environ. Sci. 2019, 550, 012020. [Google Scholar] [CrossRef]
- Zhang, L.F.; Wang, M. Biosorption of C. I. Reactive Red 2 by Immobilized Fungal Biomass. Adv. Mater. Res. 2011, 213, 432–436. [Google Scholar] [CrossRef]
- Bagchi, M.; Bera, D.; Adhikari, S. Biosorption of an azo dye Reactive Blue 4 from aqueous solution using dead and CMC immobilized biomass of Rhizopus oryzae (MTCC 262). Bioremediat. J. 2021. [Google Scholar] [CrossRef]
- Nath, J.; Das, A.; Ray, L. Biosorption of Malachite Green from Aqueous Solution Using Resting and Immobilised Biomass of Bacillus cereus M116 (MTCC 5521). Indian Chem. Eng. 2015, 57, 82–100. [Google Scholar] [CrossRef]
- Reddy, S.; Osborne, J.W. Biodegradation and biosorption of Reactive Red 120 dye by immobilized Pseudomonas guariconensis: Kinetic and toxicity study. Water Environ. Res. 2020. [Google Scholar] [CrossRef] [PubMed]
- Todorova, K.; Velkova, Z.; Stoytcheva, M.; Kirova, G.; Kostadinova, S.; Gochev, V. Novel composite biosorbent from Bacillus cereus for heavy metals removal from aqueous solutions. Biotechnol. Biotechnol. Equip. 2019, 33, 730–738. [Google Scholar] [CrossRef] [Green Version]
- Mustapha, M.U.; Halimoon, N. Microorganisms and Biosorption of Heavy Metals in the Environment: A Review Paper. J. Microb. Biochem. Technol. 2015, 7, 253–256. [Google Scholar] [CrossRef]
- Demey, H.; Vincent, T.; Guibal, E. A novel algal-based sorbent for heavy metal removal. Chem. Eng. J. 2018, 332, 582–595. [Google Scholar] [CrossRef]
- Salam, K.A. Towards sustainable development of microalgal biosorption for treating effluents containing heavy metals. Biofuel Res. J. 2019, 22, 948–961. [Google Scholar] [CrossRef]
- Villen-Guzman, M.; Jiménez, C.; Rodriguez-Maroto, J.M. Batch and Fixed-Bed Biosorption of Pb (II) Using Free and Alginate Immobilized Spirulina. Processes 2021, 9, 466. [Google Scholar] [CrossRef]
- Maznah, W.O.; Al-Fawwaz, A.T.; Surif, M. Biosorption of copper and zinc by immobilised and free algal biomass, and the effects of metal biosorption on the growth and cellular structure of Chlorella sp. and Chlamydomonas sp. isolated from rivers in Penang, Malaysia. J. Environ. Sci. 2012, 24, 1386–1393. [Google Scholar] [CrossRef]
- Vijayaraghavan, K.; Yun, Y.S. Bacterial biosorbents and biosorption. Biotechnol. Adv. 2008, 26, 266–291. [Google Scholar] [CrossRef] [PubMed]
- Redha, A.A. Removal of heavy metals from aqueous media by biosorption. Arab. J. Basic Appl. Sci. 2020, 27, 183–193. [Google Scholar] [CrossRef]
- Qiao, W.; Zhang, Y.; Xia, H.; Luo, Y.; Liu, S.; Wang, S.; Wang, W. Bioimmobilization of lead by Bacillus subtilis X3 biomass isolated from lead mine soil under promotion of multiple adsorption mechanisms. R. Soc. Open Sci. 2019, 6, 181701. [Google Scholar] [CrossRef] [Green Version]
- Páez-Vélez, C.; Rivas, R.E.; Dussán, J. Enhanced gold biosorption of Lysinibacillus sphaericus CBAM5 by encapsulation of bacteria in an alginate matrix. Metals 2019, 9, 818. [Google Scholar] [CrossRef] [Green Version]
- Arunraj, B.; Talasila, S.; Rajesh, V.; Rajesh, N. Removal of Europium from aqueous solution using Saccharomyces cerevisiae immobilized in glutaraldehyde cross-linked chitosan. Sep. Sci. Technol. 2018, 54, 1620–1631. [Google Scholar] [CrossRef]
- Yu, Z.; Han, H.; Feng, P.; Zhao, S.; Zhou, T.; Kakade, A.; Kulshrestha, S.; Majeed, S.; Li, X. Recent advances in the recovery of metals from waste through biological processes. Bioresour. Technol. 2020, 297, 122416. [Google Scholar] [CrossRef]
- Do Nascimento, W.J.; Landers, R.; Gurgel Carlos da Silva, M.; Vieira, M.G.A. Equilibrium and desorption studies of the competitive binary biosorption of silver(I) and copper(II) ions on brown algae waste. J. Environ. Chem. Eng. 2021, 9, 104840. [Google Scholar] [CrossRef]
- Franca, R.D.G.; Pinheiro, H.M.; Lourenço, N.D. Recent developments in textile wastewater biotreatment: Dye metabolite fate, aerobic granular sludge systems and engineered nanoparticles. Rev. Environ. Sci. Biotechnol. 2020, 19, 149–190. [Google Scholar] [CrossRef]
- Costa, C.S.D.; Bertagnolli, C.; Boos, A.; da Silva, M.G.C.; Vieira, M.G.A. Application of a dealginated seaweed derivative for the simultaneous metal ions removal from real and synthetic effluents. J. Water Process. Eng. 2020, 37, 101546. [Google Scholar] [CrossRef]
Support Characteristics | Examples of Supports |
---|---|
|
|
| |
| |
| |
| |
| |
| |
|
Compound | Chemical Formula | Properties | Immobilization Characteristics |
---|---|---|---|
Cellulose | (C6H10O5)m |
|
|
Alginate (sodium salt) | (C6H8O6)m |
|
|
Carboxymethyl cellulose (CMC) | C8H16NaO8 |
|
|
Chitosan | (C6H11NO4)m |
|
|
Agar (agarose and agaropectin) | C14H24O9 |
|
|
Contaminant | Support Polymer | Biomass | Operation Condition | Biosorption Efficiency * |
---|---|---|---|---|
Heavy metals | ||||
Cr (VI) | 3% sodium alginate | B. subtilis [79] | pH 7.0, initial Cr(VI) concentration of 200 mg/L, 35 °C, waste biomass of 2 g/L, 60 min | 96.38 ± 0.45% |
2% sodium alginate | Eupatorium adenophorum [80] | pH 2.0, biomass concentration: 1.0 g/L, contact time: 60 min, temperature: 30 °C | 28.011 mg/g | |
3% sodium alginate and 5% humic acid | Bacillus sp. CRB-7 [81] | pH = 7–9, temperature: 30–40 °C, Cr(VI) concentrations: 50–250 mg/ L, temperature: 37 °C | 88.96% | |
2% sodium alginate | Enterobacter sp. Z1 [82] | pH = 7.45, temperature: 20–45 °C, 10%, v/v bacteria immobilized | 94.7–100% | |
10% polyvinyl alcohol and 1% sodium alginate | Ochrobactrum intermedium [83] | pH = 7.46, temperature: 35 °C, 100 mg/L Cr(VI), average bead size 2.45 mm, 48 h | 95% | |
1.5% sodium alginate and 10% phosphorus minerals | Alcaligenes, Myroides and Acinetobacter [84] | pH = 5–11, 2.0–50.0 mg/L initial Cr(VI) concentrations, 4–6 mm spherical particles, temperature: 30 °C, 150 rpm | 94% | |
Cu (II) | 6% sodium alginate | Aspergillus niger and Aspergillus flavus [85] | pH 5.0, 25 mg/L initial concentration, 2.5 g/L biosorbent dosage, temperature: 30 °C | 24.92 mg/g |
Cu (II) and Zn (II) | 2% agar-agar | Pseudomonas putida [86] | pH 4.3, 6 mg/L metal concentration, 110 rpm, 24 °C, 5.5 mg biomass/g beads | 0.255 mg Cu(II)/g and 0.170 mg Zn(II)/g |
Al (III) | 2% agar-agar | Pseudomonas putida [87] | 180 mg/L initial concentration, beads: 0.15 g, contact time: 45 min, room temperature, pH 4.3, 12 successive adsorption/desorption cycles | 0.09 and 0.15 mg/g for batch and fixed-column |
Pb (II), Cr(VI) as CrO42− and Cd (II) | 3% sodium alginate | Bacillus megaterium [88] | pH 7, temperature: 40 °C for 50 ppm metal ion concentration | 60 mg/g (Pb(II)) 40.32 mg/g(Cd(II)) 18.92 mg/g (Cr(VI)) |
Ni (II) | 3% sodium alginate | Bacillus cereus [89] | 50 mg/L initial concentration, pH 6.0, 120 rpm, contact time: 24 h, temperature: 30 °C, 100 mg /mL biomass | 82.20% (157.79 mg/g) |
Pb (II) | 0.8% sodium alginate and magnetic PVA 9% | Bacillus licheniformis [90] | pH 6, the biosorbent dosage 0.7 g/L, initial concentration of lead ions: 200 mg/L, optimal adsorption time: 12 h, temperature: 30 °C, 150 rpm | 98% (113.84 mg/g) |
2% sodium alginate; 0.5% EPS and 1.5% sodium alginate | Pseudomonas aeruginosa N6P6 [91] | pH 6, temperature: 25 °C, contaminated water used (Pb(II) (15.4 ppm), Cd(II) (3.9 ppm), Cr(III) (56.6 ppm), and Cu(II) (22.8 ppm)) and 4–6 mm bead diameter | 120.48 mg/g alginate beads 232.55 mg/g for biomass alginate biosorbent 416.67 mg/g for EPS alginate biosorbent | |
Sr (II), Co(II) and Cs(I) | 2% chitosan | Saccharomyces cerevisiae [92] | pH 5, temperature: 30 °C, 30 mg absorbents per 30 mL of sample initial ion concentrations between 5 and 300 mg/L | 36.97 mg/g, 30.92 mg/g, and 16.67 mg/g for Sr(II), Co(II), and Cs(I) |
241Am | 2% sodium alginate | Saccharomyces cerevisiae [93] | pH 5, concentration: 2.31 × 10−8 mmol/L, contact time: 3.75 h | 4.38 × 10−7 mmol/g |
Dyes | ||||
Congo red | 2% agar | Penicilliumcrustosum PWWS-6 [94] | 100 ppm initial concentration, pH = 7, 16 h; temperature: 27 °C | 81.86 ± 0.03% |
Reactive green 6 | 6% sodium alginate= | Aspergillus niger and Aspergillus flavus [85] | pH 5.0, 25 mg/L initial concentration, 2.5 g/L biosorbent dosage, temperature: 30 °C | 21.2 mg/g |
Procion Blue 2G | 0.5–10% sodium alginate | P. aeruginosa and P. chrysosporium [95] | initial dye concentration: 100 mg/L, contact time: 4 h | 1.648 mg/g for P. aeruginosa and 1.242 mg/g for P. chrysosporium |
Indigosol Blue | 4% sodium alginate | Aspergillus sp. [96] | temperature: 27–30 °C, optimum pH between 5.5–7.5, contact time: 48 h | 86.3% |
Brilliant Red HE-3B | 1% sodium alginate | Bacillus sp. [59,60] | temperature: 20 °C, pH = 3, and low dye concentrations in aqueous solutions (<10 mg dye/L) | 34.742–38.05 mg/g in the dynamic regime and 588.235 mg/g in the static regime |
C. I. Reactive Red | 2% sodium alginate | Penicilium sp. [97] | pH 2 | 120.48 mg/g |
Reactive Blue 4 | carboxymethyl cellulose (CMC) | Rhizopusoryzae [98] | 200–500 mg/L initial dye concentration, pH: 3.0, temperature: 30 °C, contact time: 6 h | 97.44% |
Malachite green | 3% sodium alginate | Bacillus cereus [99] | pH 5.0, temperature: 30 °C, biomass concentration: 0.5 g/L, initial dye concentration: 100 mg/L, contact time: 6 h | 83% |
Reactive Red 120 | 2% sodium alginate | Pseudomonas guariconensis [100] | temperature 28 ± 2 °C, initial dye concentration 100 mg/L | 87% |
Preparation Status | Modification Category | Modification Type | Details | Characteristics |
---|---|---|---|---|
Preliminary preparation | No | Mechanical | Filtration from the fermentation broth |
|
Simple preparation | Physical | Thermal or/and mechanical | Thermal drying, grinding | |
Preparation of mixed biosorbents with biomass (mixed sorbents: organic/biomass) | Mixed modifycations (physical/ chemical/ biolological/) | Biomass immobilization/encapsulation (on inert support material) | Immobilization of non-living/living cells on inert supports (i.e., glass beads, paper, textile fibers, polymers, activated carbon) in the stage of cultivation or immobilization in situ on inert supports in a biosorption process reactor |
|
Entrapment (within polymeric matrix) | Enhancement or modification of active biosorptive functional groups onto different polymeric matrix support (i.e., alginate, polyacrylamide, polyethyleneine, polysulfone, polyurethane, polyhydroxyethylmethaacrylate) |
| ||
Cross-linking (chemical binder/linker) | Transfer and adsorption using different chemical binders (i.e., formaldehyde, glutaralaldehyde, glutaric dialdehyde, divinyl-sulfone, formaldehyde-urea mixtures, epichlorohydrin, ethylene glycol diglycidiyl ether, iminodiacetic acid, nitriloacetic acid, vinylketones, epoxides) |
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blaga, A.C.; Zaharia, C.; Suteu, D. Polysaccharides as Support for Microbial Biomass-Based Adsorbents with Applications in Removal of Heavy Metals and Dyes. Polymers 2021, 13, 2893. https://doi.org/10.3390/polym13172893
Blaga AC, Zaharia C, Suteu D. Polysaccharides as Support for Microbial Biomass-Based Adsorbents with Applications in Removal of Heavy Metals and Dyes. Polymers. 2021; 13(17):2893. https://doi.org/10.3390/polym13172893
Chicago/Turabian StyleBlaga, Alexandra Cristina, Carmen Zaharia, and Daniela Suteu. 2021. "Polysaccharides as Support for Microbial Biomass-Based Adsorbents with Applications in Removal of Heavy Metals and Dyes" Polymers 13, no. 17: 2893. https://doi.org/10.3390/polym13172893
APA StyleBlaga, A. C., Zaharia, C., & Suteu, D. (2021). Polysaccharides as Support for Microbial Biomass-Based Adsorbents with Applications in Removal of Heavy Metals and Dyes. Polymers, 13(17), 2893. https://doi.org/10.3390/polym13172893