Preparation and Characterization of Cellulose Acetate Film Reinforced with Cellulose Nanofibril
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Mechanical Properties
3.2. UV-Visible Spectroscopy
3.3. Thermal Stability
3.4. Water Absorption
3.5. Viscosity
3.6. Morphological Observation
3.7. XRD and FTIR
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, B.; Chen, J.; Peng, H.; Gai, J.; Kang, J.; Cao, Y. Investigation on Changes in the Miscibility, Morphology, Rheology and Mechanical Behavior of Melt Processed Cellulose Acetate through Adding Polyethylene Glycol as a Plasticizer. J. Macromol. Sci. Part B Phys. 2016, 55, 894–907. [Google Scholar] [CrossRef]
- Ezugbe, E.O.; Rathilal, S. Membrane technologies in wastewater treatment: A review. Membranes 2020, 10, 89. [Google Scholar] [CrossRef]
- Thakur, V.K.; Voicu, S.I. Recent advances in cellulose and chitosan based membranes for water purification: A concise review. Carbohydr. Polym. 2016, 146, 148–165. [Google Scholar] [CrossRef]
- Căprărescu, S.; Zgârian, R.G.; Tihan, G.T.; Purcar, V.; Totu, E.E.; Modrogan, C.; Chiriac, A.L.; Nicolae, C.A. Biopolymeric membrane enriched with chitosan and silver for metallic ions removal. Polymers 2020, 12, 1792. [Google Scholar] [CrossRef] [PubMed]
- Saha, N.R.; Sarkar, G.; Roy, I.; Bhattacharyya, A.; Rana, D.; Dhanarajan, G.; Banerjee, R.; Sen, R.; Mishra, R.; Chattopadhyay, D. Nanocomposite films based on cellulose acetate/polyethylene glycol/modified montmorillonite as nontoxic active packaging material. RSC Adv. 2016, 6, 92569–92578. [Google Scholar] [CrossRef]
- Felgueiras, C.; Azoia, N.G.; Gonçalves, C.; Gama, M.; Dourado, F. Trends on the Cellulose-Based Textiles: Raw Materials and Technologies. Front. Bioeng. Biotechnol. 2021, 9, 202. [Google Scholar] [CrossRef] [PubMed]
- Bifari, E.N.; Bahadar Khan, S.; Alamry, K.A.; Asiri, A.M.; Akhtar, K. Cellulose Acetate Based Nanocomposites for Biomedical Applications: A Review. Curr. Pharm. Des. 2016, 22, 3007–3019. [Google Scholar] [CrossRef] [PubMed]
- Najafi, M.; Sadeghi, M.; Bolverdi, A.; Pourafshari Chenar, M.; Pakizeh, M. Gas permeation properties of cellulose acetate/silica nanocomposite membrane. Adv. Polym. Technol. 2018, 37, 2043–2052. [Google Scholar] [CrossRef]
- Wsoo, M.A.; Shahir, S.; Mohd Bohari, S.P.; Nayan, N.H.M.; Razak, S.I.A. A review on the properties of electrospun cellulose acetate and its application in drug delivery systems: A new perspective. Carbohydr. Res. 2020, 491, 107978. [Google Scholar] [CrossRef]
- Charvet, A.; Vergelati, C.; Long, D.R. Mechanical and ultimate properties of injection molded cellulose acetate/plasticizer materials. Carbohydr. Polym. 2019, 204, 182–189. [Google Scholar] [CrossRef] [PubMed]
- Phuong, V.T.; Lazzeri, A. “green” biocomposites based on cellulose diacetate and regenerated cellulose microfibers: Effect of plasticizer content on morphology and mechanical properties. Compos. Part A Appl. Sci. Manuf. 2012, 43, 2256–2268. [Google Scholar] [CrossRef]
- Dreux, X.; Majesté, J.C.; Carrot, C.; Argoud, A.; Vergelati, C. Viscoelastic behaviour of cellulose acetate/triacetin blends by rheology in the melt state. Carbohydr. Polym. 2019, 222, 114973. [Google Scholar] [CrossRef]
- El-Rehim, H.A.; Kamal, H.; Hegazy, E.S.A.; Soliman, E.S.; Sayed, A. Use of gamma rays to improve the mechanical and barrier properties of biodegradable cellulose acetate nanocomposite films. Radiat. Phys. Chem. 2018, 153, 180–187. [Google Scholar] [CrossRef]
- Teixeira, S.C.; Silva, R.R.A.; de Oliveira, T.V.; Stringheta, P.C.; Pinto, M.R.M.R.; Soares, N.d.F.F. Glycerol and triethyl citrate plasticizer effects on molecular, thermal, mechanical, and barrier properties of cellulose acetate films. Food Biosci. 2021, 42, 101202. [Google Scholar] [CrossRef]
- Bao, C. Cellulose Acetate/Plasticizer Systems: Structure, Morphology and Dynamics. Ph.D. Thesis, Universite Claude Bernard-Lyon I, Villeurbanne, France, 2015; pp. 1–197. [Google Scholar]
- Lee, S.H.; Shiraishi, N. Plasticization of cellulose diacetate by reaction with maleic anhydride, glycerol, and citrate esters during melt processing. J. Appl. Polym. Sci. 2001, 81, 243–250. [Google Scholar] [CrossRef]
- Phuong, V.T.; Verstichel, S.; Cinelli, P.; Anguillesi, I.; Coltelli, M.B.; Lazzeri, A. Cellulose acetate blends -effect of plasticizers on properties and biodegradability. J. Renew. Mater. 2014, 2, 35–41. [Google Scholar] [CrossRef] [Green Version]
- Park, H.M.; Misra, M.; Drzal, L.T.; Mohanty, A.K. “Green” nanocomposites from cellulose acetate bioplastic and clay: Effect of eco-friendly triethyl citrate plasticizer. Biomacromolecules 2004, 5, 2281–2288. [Google Scholar] [CrossRef]
- Iryani, D.A.; Wulandari, N.F.; Cindradewi, A.W.; Ginting, S.B.; Ernawati, E.; Hasanudin, U. Lampung natural zeolite filled cellulose acetate membrane for pervaporation of ethanol-water mixtures. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2018; Volume 141, p. 012013. [Google Scholar]
- Xia, Z.; Li, J.; Zhang, J.; Zhang, X.; Zheng, X.; Zhang, J. Processing and valorization of cellulose, lignin and lignocellulose using ionic liquids. J. Bioresour. Bioprod. 2020, 5, 79–95. [Google Scholar] [CrossRef]
- Lee, S.-H.; Kim, H.-J.; Kim, J.-C. Nanocellulose Applications for Drug Delivery: A Review. J. For. Environ. Sci. 2019, 35, 141–149. [Google Scholar]
- Zou, Y.; Zhao, J.; Zhu, J.; Guo, X.; Chen, P.; Duan, G.; Liu, X.; Li, Y. A Mussel-Inspired Polydopamine-Filled Cellulose Aerogel for Solar-Enabled Water Remediation. ACS Appl. Mater. Interfaces 2021, 13, 7617–7624. [Google Scholar] [CrossRef] [PubMed]
- Joseph, B.; Sagarika, V.K.; Sabu, C.; Kalarikkal, N.; Thomas, S. Cellulose nanocomposites: Fabrication and biomedical applications. J. Bioresour. Bioprod. 2020, 5, 223–237. [Google Scholar] [CrossRef]
- Oksman, K.; Aitomäki, Y.; Mathew, A.P.; Siqueira, G.; Zhou, Q.; Butylina, S.; Tanpichai, S.; Zhou, X.; Hooshmand, S. Review of the recent developments in cellulose nanocomposite processing. Compos. Part A Appl. Sci. Manuf. 2016, 83, 2–18. [Google Scholar] [CrossRef] [Green Version]
- van der Berg, O.; Capadona, J.R.; Weder, C. Preparation of homogeneous dispersions of tunicate cellulose whiskers in organic solvents. Biomacromolecules 2007, 8, 1353–1357. [Google Scholar] [CrossRef]
- Viet, D.; Beck-Candanedo, S.; Gray, D.G. Dispersion of cellulose nanocrystals in polar organic solvents. Cellulose 2007, 14, 109–113. [Google Scholar] [CrossRef]
- Astm ASTM D638: Standard Test Method for Tensile Properties of Plastics; American Society for Testing and Materials: West Conshohocken, PA, USA, 2004; pp. 1–15.
- ASTM International ASTM D570—Standard Test for Water Absorption of Plastics; American Society for Testing and Materials: West Conshohocken, PA, USA, 2010; Volume 98, pp. 1–4.
- Kormin, S.; Kormin, F.; Beg, M.D.H. Effect of plasticizer on physical and mechanical properties of ldpe/sago starch blend. In Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2019; Volume 1150, p. 012032. [Google Scholar]
- Leite, L.S.F.; Battirola, L.C.; da Silva, L.C.E.; Gonçalves, M.d.C. Morphological investigation of cellulose acetate/cellulose nanocrystal composites obtained by melt extrusion. J. Appl. Polym. Sci. 2016, 133, 44201. [Google Scholar] [CrossRef]
- Azeredo, H.M.C.; Mattoso, L.H.C.; Avena-Bustillos, R.J.; Filho, G.C.; Munford, M.L.; Wood, D.; McHugh, T.H. Nanocellulose reinforced chitosan composite films as affected by nanofiller loading and plasticizer content. J. Food Sci. 2010, 75, N1–N7. [Google Scholar] [CrossRef]
- Introduction to Bioplastics Engineering; Elsevier: Amsterdam, The Netherlands, 2016.
- Gwon, J.G.; Lee, D.B.; Cho, H.J.; Lee, S.Y. Preparation and characteristics of cellulose acetate based nanocomposites reinforced with cellulose nanocrystals (CNCs). J. Korean Wood Sci. Technol. 2018, 46, 565–576. [Google Scholar]
- Kahavita, K.D.H.N.; Samarasekara, A.M.P.B.; Amarasinghe, D.A.S.; Karunanayake, L. Influence of Surface Modification of Cellulose Nanofibers (CNF) as the Reinforcement of Polypropylene Based Composite. In Proceedings of the MERCon 2019—Proceedings, 5th International Multidisciplinary Moratuwa Engineering Research Conference, Moratuwa, Sri Lanka, 3–5 July 2019; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2019; pp. 99–104. [Google Scholar]
- Amri, M.R.; Guan, C.T.; Osman Al-Edrus, S.S.; Yasin, F.M.; Mohamad, S.F. Effect of cellulose nanofibrils on the properties of jatropha oil-basedwaterborne polyurethane nanocomposite film. Polymers 2021, 13, 1460. [Google Scholar] [CrossRef] [PubMed]
- Park, J.S.; Park, C.W.; Han, S.Y.; Lee, E.A.; Cindradewi, A.W.; Kim, J.K.; Kwon, G.J.; Seo, Y.H.; Yoo, W.J.; Gwon, J.Y.; et al. Preparation and properties of wet-spun microcomposite filaments from various cnfs and alginate. Polymers 2021, 13, 1709. [Google Scholar] [CrossRef]
- Marquez-Bravo, S.; Doench, I.; Molina, P.; Bentley, F.E.; Tamo, A.K.; Passieux, R.; Lossada, F.; David, L.; Osorio-Madrazo, A. Functional bionanocomposite fibers of chitosan filled with cellulose nanofibers obtained by gel spinning. Polymers 2021, 13, 1563. [Google Scholar] [CrossRef]
- Lu, J.; Drzal, L.T. Microfibrillated cellulose/cellulose acetate composites: Effect of surface treatment. J. Polym. Sci. Part B Polym. Phys. 2010, 48, 153–161. [Google Scholar] [CrossRef]
Sample Name | Compositions (wt%) Weight | CNF (phr) | ||
---|---|---|---|---|
CA | TA | TC | ||
CA | 100 | - | - | - |
CA/TA | 80 | 20 | - | - |
70 | 30 | - | - | |
60 | 40 | - | - | |
CA/TC | 80 | - | 20 | - |
70 | - | 30 | - | |
60 | - | 40 | - | |
CA/TA/CNF3 | 70 | 30 | - | 3 |
CA/TA/CNF5 | 70 | 30 | - | 5 |
CA/TA/CNF10 | 70 | 30 | - | 10 |
CA/TC/CNF3 | 70 | - | 30 | 3 |
CA/TC/CNF5 | 70 | - | 30 | 5 |
CA/TC/CNF10 | 70 | - | 30 | 10 |
Sample Name | CNF Content (phr) | Viscosity (mPa.s) | ||
---|---|---|---|---|
SR 0.79 s−1 | SR 1.32 s−1 | SR 1.98 s−1 | ||
CA/TC | 0 | N/A | 516 | 511 |
CA/TC/CNF3 | 3 | 1245 | 996 | 935 |
CA/TC/CNF5 | 5 | 1771 | 1314 | 1226 |
CA/TC/CNF10 | 10 | 3185 | 2463 | N/A |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cindradewi, A.W.; Bandi, R.; Park, C.-W.; Park, J.-S.; Lee, E.-A.; Kim, J.-K.; Kwon, G.-J.; Han, S.-Y.; Lee, S.-H. Preparation and Characterization of Cellulose Acetate Film Reinforced with Cellulose Nanofibril. Polymers 2021, 13, 2990. https://doi.org/10.3390/polym13172990
Cindradewi AW, Bandi R, Park C-W, Park J-S, Lee E-A, Kim J-K, Kwon G-J, Han S-Y, Lee S-H. Preparation and Characterization of Cellulose Acetate Film Reinforced with Cellulose Nanofibril. Polymers. 2021; 13(17):2990. https://doi.org/10.3390/polym13172990
Chicago/Turabian StyleCindradewi, Azelia Wulan, Rajkumar Bandi, Chan-Woo Park, Ji-Soo Park, Eun-Ah Lee, Jeong-Ki Kim, Gu-Joong Kwon, Song-Yi Han, and Seung-Hwan Lee. 2021. "Preparation and Characterization of Cellulose Acetate Film Reinforced with Cellulose Nanofibril" Polymers 13, no. 17: 2990. https://doi.org/10.3390/polym13172990
APA StyleCindradewi, A. W., Bandi, R., Park, C. -W., Park, J. -S., Lee, E. -A., Kim, J. -K., Kwon, G. -J., Han, S. -Y., & Lee, S. -H. (2021). Preparation and Characterization of Cellulose Acetate Film Reinforced with Cellulose Nanofibril. Polymers, 13(17), 2990. https://doi.org/10.3390/polym13172990