The Collagen Origin Influences the Degradation Kinetics of Guided Bone Regeneration Membranes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Membranes Description
2.2. Degradation Assays
2.3. Statistical Analysis
2.4. Light Microscopy Analysis
3. Results
3.1. Thickness Evaluation after PBS Degradation Assay
3.2. Thickness Evaluation after Trypsin Degradation Assay
3.3. Thickness Evaluation after C. histolyticum Collagenase Degradation Assay
3.4. Weight Evaluation after PBS Degradation Assay
3.5. Weight Evaluation after Trypsin Degradation Assay
3.6. Weight Evaluation after C. histolyticum Collagenase Degradation Assay
3.7. Matrices Morphological Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kozlovsky, A.; Aboodi, G.; Moses, O.; Tal, H.; Artzi, Z.; Weinreb, M.; Nemcovsky, C.E. Bio-Degradation of a Resorbable Collagen Membrane (Bio-Gide) Applied in a Double-Layer Technique in Rats. Clin. Oral Implants Res. 2009, 20, 1116–1123. [Google Scholar] [CrossRef] [PubMed]
- Dahlin, C.; Linde, A.; Gottlow, J.; Nyman, S. Healing of Bone Defects by Guided Tissue Regeneration. Plast Reconstr. Surg. 1988, 81, 672–676. [Google Scholar] [CrossRef]
- Omar, O.; Elgali, I.; Dahlin, C.; Thomsen, P. Barrier Membranes: More than the Barrier Effect? J. Clin. Periodontol. 2019, 46 Suppl. 21, 103–123. [Google Scholar] [CrossRef] [Green Version]
- Wessing, B.; Lettner, S.; Zechner, W. Guided Bone Regeneration with Collagen Membranes and Particulate Graft Materials: A Systematic Review and Meta-Analysis. Int. J. Oral Maxillofac. Implants 2018, 33, 87–100. [Google Scholar] [CrossRef]
- Sbricoli, L.; Guazzo, R.; Annunziata, M.; Gobbato, L.; Bressan, E.; Nastri, L. Selection of Collagen Membranes for Bone Regeneration: A Literature Review. Materials 2020, 13, 786. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- An, Y.-Z.; Kim, Y.-K.; Lim, S.-M.; Heo, Y.-K.; Kwon, M.-K.; Cha, J.-K.; Lee, J.-S.; Jung, U.-W.; Choi, S.-H. Physiochemical Properties and Resorption Progress of Porcine Skin-Derived Collagen Membranes: In Vitro and in Vivo Analysis. Dent. Mater. J. 2018, 37, 332–340. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, X.; Shi, B.; Miron, R. Membranes for Guided Tissue and Bone Regeneration. Ann. Oral Maxillofac. Surg. 2013, 1. [Google Scholar] [CrossRef] [Green Version]
- Elgali, I.; Turri, A.; Xia, W.; Norlindh, B.; Johansson, A.; Dahlin, C.; Thomsen, P.; Omar, O. Guided Bone Regeneration Using Resorbable Membrane and Different Bone Substitutes: Early Histological and Molecular Events. Acta Biomater. 2016, 29, 409–423. [Google Scholar] [CrossRef]
- Toledano-Osorio, M.; Manzano-Moreno, F.J.; Ruiz, C.; Toledano, M.; Osorio, R. Testing Active Membranes for Bone Regeneration: A Review. J. Dent. 2021, 105, 103580. [Google Scholar] [CrossRef] [PubMed]
- Thoma, D.S.; Zeltner, M.; Hilbe, M.; Hämmerle, C.H.F.; Hüsler, J.; Jung, R.E. Randomized Controlled Clinical Study Evaluating Effectiveness and Safety of a Volume-Stable Collagen Matrix Compared to Autogenous Connective Tissue Grafts for Soft Tissue Augmentation at Implant Sites. J. Clin. Periodontol. 2016, 43, 874–885. [Google Scholar] [CrossRef] [PubMed]
- Toledano, M.; Asady, S.; Toledano-Osorio, M.; García-Godoy, F.; Serrera-Figallo, M.-A.; Benítez-García, J.A.; Osorio, R. Differential Biodegradation Kinetics of Collagen Membranes for Bone Regeneration. Polymers 2020, 12, 1290. [Google Scholar] [CrossRef]
- Tal, H.; Kozlovsky, A.; Artzi, Z.; Nemcovsky, C.E.; Moses, O. Long-Term Bio-Degradation of Cross-Linked and Non-Cross-Linked Collagen Barriers in Human Guided Bone Regeneration. Clin. Oral Implants Res. 2008, 19, 295–302. [Google Scholar] [CrossRef] [PubMed]
- Soldatos, N.K.; Stylianou, P.; Koidou, V.P.; Angelov, N.; Yukna, R.; Romanos, G.E. Limitations and Options Using Resorbable versus Nonresorbable Membranes for Successful Guided Bone Regeneration. Quintessence Int. 2017, 48, 131–147. [Google Scholar] [CrossRef]
- Calciolari, E.; Ravanetti, F.; Strange, A.; Mardas, N.; Bozec, L.; Cacchioli, A.; Kostomitsopoulos, N.; Donos, N. Degradation Pattern of a Porcine Collagen Membrane in an in Vivo Model of Guided Bone Regeneration. J. Periodontal Res. 2018, 53, 430–439. [Google Scholar] [CrossRef]
- Von Arx, T.; Broggini, N.; Jensen, S.S.; Bornstein, M.M.; Schenk, R.K.; Buser, D. Membrane Durability and Tissue Response of Different Bioresorbable Barrier Membranes: A Histologic Study in the Rabbit Calvarium. Int. J. Oral Maxillofac. Implants 2005, 20, 843–853. [Google Scholar]
- Rothamel, D.; Schwarz, F.; Fienitz, T.; Smeets, R.; Dreiseidler, T.; Ritter, L.; Happe, A.; Zöller, J. Biocompatibility and Biodegradation of a Native Porcine Pericardium Membrane: Results of in Vitro and in Vivo Examinations. Int. J. Oral Maxillofac. Implants 2012, 27, 146–154. [Google Scholar] [PubMed]
- Meyer, M. Processing of Collagen Based Biomaterials and the Resulting Materials Properties. Biomed. Eng. Online 2019, 18, 24. [Google Scholar] [CrossRef] [Green Version]
- Gallo, N.; Natali, M.L.; Sannino, A.; Salvatore, L. An Overview of the Use of Equine Collagen as Emerging Material for Biomedical Applications. J. Funct. Biomater. 2020, 11, 79. [Google Scholar] [CrossRef] [PubMed]
- Caballé-Serrano, J.; Munar-Frau, A.; Delgado, L.; Pérez, R.; Hernández-Alfaro, F. Physicochemical Characterization of Barrier Membranes for Bone Regeneration. J. Mech. Behav. Biomed. Mater. 2019, 97, 13–20. [Google Scholar] [CrossRef]
- Zhang, H.Y.; Jiang, H.B.; Ryu, J.-H.; Kang, H.; Kim, K.-M.; Kwon, J.-S. Comparing Properties of Variable Pore-Sized 3D-Printed PLA Membrane with Conventional PLA Membrane for Guided Bone/Tissue Regeneration. Materials 2019, 12, 1718. [Google Scholar] [CrossRef] [Green Version]
- Sunandhakumari, V.J.; Vidhyadharan, A.K.; Alim, A.; Kumar, D.; Ravindran, J.; Krishna, A.; Prasad, M. Fabrication and In Vitro Characterization of Bioactive Glass/Nano Hydroxyapatite Reinforced Electrospun Poly(ε-Caprolactone) Composite Membranes for Guided Tissue Regeneration. Bioengineering 2018, 5, 54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sela, M.N.; Kohavi, D.; Krausz, E.; Steinberg, D.; Rosen, G. Enzymatic Degradation of Collagen-Guided Tissue Regeneration Membranes by Periodontal Bacteria. Clin. Oral Implants Res. 2003, 14, 263–268. [Google Scholar] [CrossRef] [PubMed]
- Bozkurt, A.; Apel, C.; Sellhaus, B.; van Neerven, S.; Wessing, B.; Hilgers, R.-D.; Pallua, N. Differences in Degradation Behavior of Two Non-Cross-Linked Collagen Barrier Membranes: An in Vitro and in Vivo Study. Clin. Oral Implants Res. 2014, 25, 1403–1411. [Google Scholar] [CrossRef] [PubMed]
- Wong, C.; Yoganarasimha, S.; Carrico, C.; Madurantakam, P. Incorporation of Fibrin Matrix into Electrospun Membranes for Periodontal Wound Healing. Bioengineering 2019, 6, 57. [Google Scholar] [CrossRef] [Green Version]
- Zhao, S.; Pinholt, E.M.; Madsen, J.E.; Donath, K. Histological Evaluation of Different Biodegradable and Non-Biodegradable Membranes Implanted Subcutaneously in Rats. J. Craniomaxillofac. Surg. 2000, 28, 116–122. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, M.; Tay, F.C.M.; Ohno, H.; Sano, H.; Kaga, M.; Yiu, C.; Kumagai, H.; Kudou, Y.; Kubota, M.; Oguchi, H. SEM and TEM Analysis of Water Degradation of Human Dentinal Collagen. J. Biomed. Mater. Res. 2003, 66, 287–298. [Google Scholar] [CrossRef]
- Cavalu, S.; Roiu, G.; Pop, O.; Heredea, D.A.P.; Costea, T.O.; Costea, C.F. Nano-Scale Modifications of Amniotic Membrane Induced by UV and Antibiotic Treatment: Histological, AFM and FTIR Spectroscopy Evidence. Materials 2021, 14, 863. [Google Scholar] [CrossRef]
- Ratiu, C.; Brocks, M.; Costea, T.; Moldovan, L.; Cavalu, S. PRGF-Modified Collagen Membranes for Guided Bone Regeneration: Spectroscopic, Microscopic and Nano-Mechanical Investigations. Appl. Sci. 2019, 9, 1035. [Google Scholar] [CrossRef] [Green Version]
- Silva, M.J.; Gonçalves, C.P.; Galvão, K.M.; D’Alpino, P.H.P.; Nascimento, F.D. Synthesis and Characterizations of a Collagen-Rich Biomembrane with Potential for Tissue-Guided Regeneration. Eur. J. Dent. 2019, 13, 295–302. [Google Scholar] [CrossRef] [Green Version]
- Caballé-Serrano, J.; Abdeslam-Mohamed, Y.; Munar-Frau, A.; Fujioka-Kobayashi, M.; Hernández-Alfaro, F.; Miron, R. Adsorption and Release Kinetics of Growth Factors on Barrier Membranes for Guided Tissue/Bone Regeneration: A Systematic Review. Arch. Oral Biol. 2019, 100, 57–68. [Google Scholar] [CrossRef]
- Bornert, F.; Herber, V.; Sandgren, R.; Witek, L.; Coelho, P.G.; Pippenger, B.E.; Shahdad, S. Comparative Barrier Membrane Degradation over Time: Pericardium versus Dermal Membranes. Clin. Exp. Dent. Res. 2021. [Google Scholar] [CrossRef]
- Franchi, M.; Trirè, A.; Quaranta, M.; Orsini, E.; Ottani, V. Collagen Structure of Tendon Relates to Function. Sci. World J. 2007, 7, 404–420. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Xu, H.; Huang, Y.; Gu, S.; Jiang, J.X. Coupling Effect of Water and Proteoglycans on the In Situ Toughness of Bone. J. Bone Miner. Res. 2016, 31, 1026–1029. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vallecillo, C.; Toledano-Osorio, M.; Vallecillo-Rivas, M.; Toledano, M.; Osorio, R. In Vitro Biodegradation Pattern of Collagen Matrices for Soft Tissue Augmentation. Polymers 2021, 13, 2633. [Google Scholar] [CrossRef] [PubMed]
- Toledano-Osorio, M.; Manzano-Moreno, F.J.; Toledano, M.; Medina-Castillo, A.L.; Costela-Ruiz, V.J.; Ruiz, C.; Osorio, R. Doxycycline-Doped Polymeric Membranes Induced Growth, Differentiation and Expression of Antigenic Phenotype Markers of Osteoblasts. Polymers 2021, 13, 1063. [Google Scholar] [CrossRef]
Membrane Comercial Name | Collagen Type | Origin | Cross-Link | Estimated Barrier Effect Duration |
---|---|---|---|---|
Biocollagen | Collagen type I | Equine tendon | No | 4–6 weeks |
Heart | NR | Equine pericardium | No | 12–16 weeks |
Evolution X-fine | Collagen fibers | Porcine pericardium | No | 8 weeks |
CopiOs | Collagen type I | Bovine pericardium | No | 16–24 weeks |
Parasorb Resodont | Collagen fibers | Equine | Natural | NR |
(a) | |||||||||||||||
Biocollagen | Heart | Evolution X-Fine | CopiOs | Parasorb Resodont | |||||||||||
Tryp. | CH | PBS | Tryp. | CH | PBS | Tryp. | CH | PBS | Tryp. | CH | PBS | Tryp. | CH | PBS | |
t0 | 0.17 (0.01) | 0.17 (0.01) | 0.17 (0.01) | 0.25 (0.07) | 0.3 (0.17) | 0.53 (0.11) | 0.17 (0.06) | 0.18 (0.05) | 0.2 (0.05) | 0.32 (0.09) | 0.4 (0.06) | 0.26 (0.07) | 0.17 (0.01) | 0.15 (0.01) | 0.18 (0.01) |
1 h | 0.25 (0.06) | 0.23 (0.02) | 0.31 (0.16) | 0.17 (0.08) | 0.16 (0.08) | 0.33 (0.09) | 0.09 (0.04) | 0.08 (0.02) | 0.1 (0.03) | 0.39 (0.11) | 0.14 (0.03) | 0.1 (0.01) | 0.07 (0.02) | 0.05 (0.01) | 0.05 (0.01) |
6 h | 0.15 (0.05) | 0.19 (0.04) | 0.26 (0.11) | 0.13 (0.02) | 0.2 (0.07) | 0.26 (0.11) | 0.11 (0.04) | 0.09 (0.03) | 0.11 (0.04) | 0.37 (0.06) | 0.12 (0.02) | 0.1 (0.01) | 0.05 (0.02) | 0.04 (0.01) | 0.05 (0.01) |
24 h | 0.07 (0.05) | 0.02 (0.03) | 0.23 (0.12) | 0.14 (0.04) | 0.09 (0.03) | 0.29 (0.04) | 0.11 (0.05) | 0.07 (0.02) | 0.14 (0.06) | 0.31 (0.11) | 0.11 (0.02) | 0.1 (0.01) | 0.05 (0.02) | 0.02 (0.03) | 0.05 (0.02) |
48 h | 0.06 (0.04) | 0 (0) | 0.1 (0.06) | 0.09 (0.03) | 0.07 (0.02) | 0.29 (0.06) | 0.1 (0.05) | 0.11 (0.02) | 0.13 (0.06) | 0.12 (0.02) | 0.09 (0.02) | 0.1 (0.01) | 0.08 (0.02) | 0 (0) | 0.04 (0.01) |
7 d | 0.08 (0.06) | 0 (0) | 0.04 (0.06) | 0.08 (0.03) | 0 (0) | 0.14 (0.03) | 0.08 (0.04) | 0.07 (0.06) | 0,1 (0,04) | 0.09 (0.02) | 0 (0) | 0.09 (0.02) | 0.05 (0.03) | 0 (0) | 0.06 (0.01) |
14 d | 0.1 (0.1) | 0 (0) | 0.04 (0.06) | 0.05 (0.01) | 0 (0) | 0.09 (0.02) | 0.06 (0.03) | 0.06 (0.08) | 0.08 (0.03) | 0.09 (0.03) | 0 (0) | 0.08 (0.01) | 0.03 (0.03) | 0 (0) | 0.08 (0.01) |
28 d | 0.11 (0.08) | 0 (0) | 0.06 (0.09) | 0.06 (0.02) | 0 (0) | 0.08 (0.01) | 0.07 (0.02) | 0.06 (0.09) | 0.09 (0.04) | 0.09 (0.04) | 0 (0) | 0.08 (0.02) | 0.04 (0.03) | 0 (0) | 0.05 (0.02) |
50 d | 0.07 (0.07) | 0 (0) | 0.04 (0.06) | 0.05 (0.01) | 0 (0) | 0.09 (0.02) | 0.07 (0.05) | 0.02 (0.03) | 0.07 (0.02) | 0.08 (0.02) | 0 (0) | 0.08 (0.02) | 0.02 (0.03) | 0 (0) | 0.01 (0.02) |
(b) | |||||||||||||||
0–1 h | 0.001 | <0.001 | 0.025 | <0.001 | 0.002 | <0.001 | <0.001 | <0.001 | <0.001 | 0.002 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
0–6 h | 0.184 | 0.0719 | 0.027 | <0.001 | 0.114 | <0.001 | <0.001 | <0.001 | <0.001 | 0.007 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
0–24 h | <0.001 | <0.001 | 0.191 | <0.001 | 0.002 | <0.001 | <0.001 | <0.001 | <0.001 | 0.864 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
0–48 h | <0.001 | <0.001 | 0.009 | <0.001 | 0.003 | <0.001 | <0.001 | 0.005 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
0–7 d | 0.001 | <0.001 | <0.001 | <0.001 | 0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
0–14 d | 0.081 | <0.001 | <0.001 | <0.001 | 0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
0–28 d | 0.036 | <0.001 | 0.011 | <0.001 | 0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
0–50 d | 0.001 | <0.001 | <0.001 | <0.001 | 0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
(a) | |||||||||||||||
Biocollagen | Heart | Evolution X-Fine | CopiOs | Parasorb Resodont | |||||||||||
Tryp. | CH | PBS | Tryp. | CH | PBS | Tryp. | CH | PBS | Tryp. | CH | PBS | Tryp. | CH | PBS | |
t0 | 12.27 (0.33) | 11.95 (0.37) | 11.63 (0.59) | 8.91 (2.43) | 8.54 (1.04) | 10.83 (0.99) | 7.21 (1.8) | 8.34 (2.31) | 7.9 (1.39) | 12.95 (2.17) | 13.94 (0.59) | 11.55 (1.41) | 3.77 (0.3) | 3.96 (0.25) | 3.82 (0.37) |
1 h | 11.66 (0.28) | 12.43 (0.28) | 12.17 (0.52) | 8.75 (2.55) | 9.1 (0.99) | 11.55 (0.95) | 7.13 (1.93) | 8.01 (1.72) | 9.32 (1.79) | 12.63 (1.98) | 14.22 (0.83) | 11.87 (1.47) | 3.83 (0.27) | 4.29 (0.32) | 4.24 (0.33) |
6 h | 8.10 (0.19) | 3.94 (1.64) | 11.79 (0.45) | 9.07 (2.4) | 8.33 (1.18) | 11.5 (1.03) | 7.21 (1.74) | 7.41 (1.99) | 9.11 (1.73) | 12.41 (1.91) | 12.18 (0.21) | 11.77 (1.31) | 2.98 (0.41) | 2.95 (0.41) | 4.07 (0.48) |
24 h | 2.78 (0.31) | 0.25 (0.37) | 10.59 (0.48) | 8.68 (2.43) | 7.05 (1.26) | 11.16 (0.99) | 6.94 (1.72) | 6.75 (2.13) | 8.86 (1.7) | 11.13 (1.94) | 10.78 (0.59) | 11.41 (1.35) | 2.29 (0.36) | 0.31 (0.47) | 3.71 (0.38) |
48 h | 2.6 (0.25) | 0 (0) | 5.87 (2.97) | 8.16 (2.32) | 4.36 (0.46) | 10.88 (0.97) | 6.9 (1.72) | 5.91 (2.52) | 8.82 (1.57) | 8.02 (1.36) | 8.23 (0.46) | 11.42 (1.4) | 1.41 (0.91) | 0 (0) | 3.66 (0.57) |
7 d | 1.29 (0.98) | 0 (0) | 0.73 (1.1) | 6.9 (2.23) | 0 (0) | 9.5 (1.18) | 6.06 (1.9) | 3.21 (2.8) | 8.55 (1.72) | 5.76 (0.28) | 0 (0) | 10.75 (1.49) | 0.49 (0.34) | 0 (0) | 2.52 (0.29) |
14 d | 0.92 (0.77) | 0 (0) | 0.36 (0.54) | 5.45 (1.63) | 0 (0) | 7.17 (0.98) | 5.49 (1.67) | 1.08 (1.62) | 7.78 (1.68) | 5.38 (0.31) | 0 (0) | 9.88 (1.49) | 0.32 (0.26) | 0 (0) | 0.71 (0.37) |
28 d | 0.76 (0.62) | 0 (0) | 0.15 (0.22) | 4.69 (1.44) | 0 (0) | 5.75 (1.01) | 5.39 (1.66) | 1.08 (1.62) | 7.27 (1.61) | 5.29 (0.15) | 0 (0) | 9.59 (1.25) | 0.22 (0.17) | 0 (0) | 0.36 (0.17) |
50 d | 0.61 (0.59) | 0 (0) | 0.15 (0.23) | 4.43 (1.34) | 0 (0) | 5.48 (0.97) | 5.14 (1.65) | 1 (1.5) | 6.97 (1.34) | 4.93 (0.18) | 0 (0) | 9.03 (1.04) | 0.05 (0.08) | 0 (0) | 0.32 (0.49) |
(b) | |||||||||||||||
0–1 h | <0.001 | 0.002 | <0.001 | 0.099 | <0.001 | <0.001 | 0.189 | 0.393 | 0.06 | 0.04 | 0.011 | <0.001 | 0.228 | <0.001 | <0.001 |
0–6 h | <0.001 | <0.001 | 0.146 | 0.047 | 0.062 | <0.001 | 1 | 0.072 | 0.013 | 0.001 | <0.001 | 0.002 | <0.001 | <0.001 | 0.003 |
0–24 h | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.005 | 0.047 | <0.001 | <0.001 | 0.045 | <0.001 | <0.001 | 0.008 |
0–48 h | <0.001 | <0.001 | 0.001 | <0.001 | <0.001 | 0.352 | <0.001 | <0.001 | 0.035 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.054 |
0–7 d | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.161 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
0–14 d | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.788 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
0–28 d | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.12 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
0–50 d | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.024 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vallecillo-Rivas, M.; Toledano-Osorio, M.; Vallecillo, C.; Toledano, M.; Osorio, R. The Collagen Origin Influences the Degradation Kinetics of Guided Bone Regeneration Membranes. Polymers 2021, 13, 3007. https://doi.org/10.3390/polym13173007
Vallecillo-Rivas M, Toledano-Osorio M, Vallecillo C, Toledano M, Osorio R. The Collagen Origin Influences the Degradation Kinetics of Guided Bone Regeneration Membranes. Polymers. 2021; 13(17):3007. https://doi.org/10.3390/polym13173007
Chicago/Turabian StyleVallecillo-Rivas, Marta, Manuel Toledano-Osorio, Cristina Vallecillo, Manuel Toledano, and Raquel Osorio. 2021. "The Collagen Origin Influences the Degradation Kinetics of Guided Bone Regeneration Membranes" Polymers 13, no. 17: 3007. https://doi.org/10.3390/polym13173007
APA StyleVallecillo-Rivas, M., Toledano-Osorio, M., Vallecillo, C., Toledano, M., & Osorio, R. (2021). The Collagen Origin Influences the Degradation Kinetics of Guided Bone Regeneration Membranes. Polymers, 13(17), 3007. https://doi.org/10.3390/polym13173007