
polymers

Article

Simulation of Light Distribution in Gamma Irradiated
UHMWPE Using Monte Carlo Model for Light (MCML)
Transport in Turbid Media: Analysis for Industrial Scale
Biomaterial Modifications

Ali Rizwan 1 , Muhammad Saleem 2 , Suhail H. Serbaya 1 , Hemaid Alsulami 1, Aqsa Ghazal 3

and Malik Sajjad Mehmood 3,*

����������
�������

Citation: Rizwan, A.; Saleem, M.;

Serbaya, S.H.; Alsulami, H.; Ghazal,

A.; Mehmood, M.S. Simulation of

Light Distribution in Gamma

Irradiated UHMWPE Using Monte

Carlo Model for Light (MCML)

Transport in Turbid Media: Analysis

for Industrial Scale Biomaterial

Modifications. Polymers 2021, 13, 3039.

https://doi.org/10.3390/

polym13183039

Academic Editors: Amor

M. Abdelkader and Ilaria Armentano

Received: 14 August 2021

Accepted: 6 September 2021

Published: 9 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Industrial Engineering, Faculty of Engineering, King Abdulaziz University,
Jeddah 21589, Saudi Arabia; arkhan71@kau.edu.sa (A.R.); sserbaya@kau.edu.sa (S.H.S.);
healsulami@kau.edu.sa (H.A.)

2 Department of Industrial Engineering, Faculty of Engineering-Rabigh, King Abdulaziz University,
Jeddah 21589, Saudi Arabia; msaleim1@kau.edu.sa

3 Department of Basic Sciences, University of Engineering and Technology, Taxila 47050, Pakistan;
aqsaghazal06@gmail.com

* Correspondence: msajjad.82@gmail.com

Abstract: (1) Background: This study investigated the miscibility of carbon-based fillers within
industrial scale polymers for the preparation of superior quality polymer composites. It focuses
on finding the light distribution in gamma irradiated ultra-high molecular weight polyethylene
(UHMWPE). (2) Methods: The Kubleka–Munk model (KMM) was used to extract the optical proper-
ties, i.e., absorption coefficients (µa) and scattering coefficients (µs). Samples amounting to 30 kGy
and 100 kGy of irradiated (in the open air) UHMWPE from 630 nm to 800 nm were used for this
purpose. Moreover, theoretical validation of experimental results was performed while using ex-
tracted optical properties as inputs for the Monte Carlo model of light transport (MCML) code.
(3) Conclusions: The investigations revealed that there was a significant decrease in absorption and
scattering coefficient (µa & µs) values with irradiation, and 30 kGy irradiated samples suffered more
compared to 100 kGy irradiated samples. Furthermore, the simulation of light transport for 800 nm
showed an increase in penetration depth for UHMWPE after gamma irradiation. The decrease in
dimensionless transport albedo µs

(µa+µs)
from 0.95 to 0.93 was considered responsible for this increase

in photon absorption per unit area with irradiation. The report results are of particular importance
when considering the light radiation (from 600 nm to 899 nm) for polyethylene modification and/or
stabilization via enhancing the polyethylene chain mobility.

Keywords: UHMWPE; chain mobility; photon distribution; Kubleka–Munk model; Monte Carlo
simulation; gamma irradiations

1. Introduction

In recent decades, industrial applications of polymers and polymer composites have
seen an exponential rise in different areas of our life, including pharmaceutical packaging,
consumer goods, medical devices, food and cosmetic packaging, etc. Nowadays, the medi-
cal devices used for implant replacement are mostly fabricated with ultra-high molecular
weight polyethylene (UHMWPE) and/or its carbon-based composites [1–3]. UHMWPE is
the material of choice for orthopedic industrial applications and medical devices that are
made of this industrial scale polymeric biomaterial are usually treated with high energy
radiation such as gamma, e-beams, or X-rays for sterilization [4–11]. However, treating
UHMWPE with high energy radiation also generates free radicals that are responsible
for its degradation, thus limiting the service life of the UHMWPE-based medical devices.
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To quench these free radicals, different methodologies including post-irradiation melting,
post-irradiation annealing and the inclusion of biocompatible antioxidants are in practice.
Although the aforementioned methodologies work well to some extent, serious constraints
exist for each method. Therefore, continuous efforts are in progress to figure out the best
alternative for sterilization and stabilizing UHMWPE. In this regard, the concept of treating
UHMWPE with light [12,13] of suitable wavelength and/or energy seems to be appealing
as it has the potential to address the harms associated with the aforementioned methods.
Moreover, the non-ionizing nature of light also reduces the health risk for workers associ-
ated with the radiation sterilization industry of medical products. However, when using
light to modify, sterilize and/or stabilize UHMWPE [13–15], an investigation of optical
properties (i.e., absorption coefficient µa, scattering coefficients µs in pristine and irradiated
UHMWPE [10,16] and light distribution in pristine and irradiated UHMWPE [17–21])
needs to be conducted.

High power lasers have been used in the recent past for surface modifications of
UHMWPE, e.g., Fernández-Pradas et al. [14] used a pulsed laser (1027 nm, 450 fs @ 1 kHz)
for surface modification of UHMWPE, and found that pulses of 6 µJ has the highest
ablation efficacy as compared to low energy pulses. Riveiro et al. [13] investigated laser
irradiated UHMWPE samples and tried to optimize the process parameters for various
pulsed lasers, i.e., 1064 nm, 532 nm, and 355 nm, to maximize the surface properties.
In another study, Hussain et al. [22] carried out laser texturing on UHMWPE surface while
using 1024 nm pulsed laser at various temperatures. More recently, Ullsperger et al. [23]
utilized a high power pulsed laser to enhance the mechanical properties of UHMWPE
while fusing the UHMWPE particles with 500 fs laser pulses of 1030 nm. In this study,
they were able to achieve better values of ultimate tensile strength by controlling the
pulse energy and repetition rate. Although above mentioned studies are important for
surface modifications/texturing of UHMWPE, the choice of laser wavelength has been
done without considering the fundamentals of light-matter interaction, i.e., the optical
properties and light distribution characteristics of UHMWPE.

A significant amount of work has been done to investigate the optical properties and
distribution of light in soft materials and various tissues [24–26]; however, UHMWPE’s
optical behavior has seldom been investigated. In research, Hamna et al. [20] highlighted
the effects of radiation on spectroscopic properties, direct/indirect transition, and absorp-
tion behavior for e-beam irradiated UHMWPE. In another study, Asif et al. [27] concluded
the anisotropic nature of UHMWPE in the UV-VIS region and confirmed the forwarded
scattering nature of UHMWPE for UV-VIS light. Furthermore, the literature reveals a linear
dependence between direct Urbach energy (Eu) band gaps and absorbed dose [28]. More
recently, Noor Us Saba et al. [29] studied the light distribution in UHMWPE for 300 nm
and 800 nm and found that photons with low energy/higher wavelengths penetrate by a
greater distance. The results reported in this study confirmed the fact that light of longer
wavelength was suitable for UHMWPE bulk modification and/or treatment. Although the
results reported by [29] were hopeful, unfortunately these were only for pristine UHMWPE.

The main objective of this study is to figure out the distribution of light so that it can be
used to modfiy and/or stablize the irradiated UHMWPE. It is well established that radiation
induces free radicals that are trapped within the UHMWPE matrix and can be eliminated
via enhancing polyethylene long chain moblity and treating the irradiated components
of UHMWPE with light of suitable wavelength and energy. However, knowledge about
the distribution of light within the matrix of UHMWPE is required in order to achieve
the aformentioned objetive. Therefore, this particular study is aimed at investigating the
effect of radiation treatment on the measured values of diffuse reflectance, transmittance,
and absorption of light from UHWMPE from 600 nm to 800 nm. The choice of light
wavelengths is because of the proposed study theme where utilization of light is required
for bulk treatment of UHMWPE. The optical properties, including the absorption coefficient
(µa), scattering coefficients (µs), total attenuation coefficients (µt), and effective attenuation
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coefficients (µeff), were measured and then simulated to explore the effect of radiation on
the light distribution.

2. Materials and Methods
2.1. Material and Sample Preparation

Medical grade UHMWPE powder (having molecular weight 3–6 million g/mol)
purchased from Sigma Aldrich® Saint Louis, MO, USA (Product Number: 434264 CAS
Number: 9002-88-4 MDL: MFCD00084423 Formula: C2H4) was used in this study. Samples
were molded in the form of thin sheets by using an automated hot press. UHMWPE
powder pressing was done at 200 bars with a holding time of 12–15 min at 140 ◦C, 160 ◦C,
and 190 ◦C, respectively. During the process of molding, the cool-down and ramp-up rate
was set to 10 ◦C/min. After preparation, the thickness was measured and it was found
that each sheet has a thickness equal to 500 ± 10 µm. Before measuring the thickness, each
sheet surface was wiped off with acetone to remove the impurities.

2.2. Sample Irradiation

After the preparation of sheets, samples were divided into three groups. One was
kept on the shelf as control and the other two sheets were sent for irradiation. Irradiation
services were carried out (on payment) at Pakistan Radiation Services (PARS), Lahore while
using the Co-60 source for 30 kGy and 100 kGy of gamma dose at a constant dose-rate of
1.02 kGy/h in open air at room temperature. After radiation treatment, the sheets were
labeled P-0, P-30, and P-100. It is worth mentioning here that the dimensions of each sheet
sent for irradiation were 10 cm × 10 cm × 500 µm, which was then cut to make three or
four samples for testing. The sample codes mentioned above were used throughout the
manuscript for explaining the results. The radiation facility used is used for providing steril-
ization services to food and medical devices and is constantly monitored by the Pakistan Nu-
clear Regulatory Agency (PNRA) for its reliability, safety, and environmental homogeneity.

2.3. Measurements of Rd & Td

A diffuse reflectance spectrometer (DRS) setup (UV/VIS/NIR spectrometer Lamda
950, integrated sphere 150 mm) purchased from PerkinElmer Life and Analytical Sciences
(710 Bridgeport Avenue Shelton, CT 06484-4794, Waltham, MA, USA), equipped with an
integrated sphere 150 mm with the spectral range from 250 nm to 1000 nm, was used for
testing the samples. The reflectance and transmittance measurements were carried out at
room temperature, i.e., 25 ◦C. Three or four readings were taken for each measurement and
the average for each sample was then plotted as a function of wavelength and absorbed
dose. The standard deviation for each measured data was negligible, i.e., ≤3%.

3. Results and Discussion
3.1. Effect of Radiation on Measurable

This research is aimed at investigating the light distribution in pristine and gamma-
irradiated UHMWPE. To investigate this, diffuse reflectance and transmittance from 600 nm
to 800 nm were measured, and the Kubleka–Munk model (KMM) was employed to extract
the optical properties. The efficacy of the method for extracting the optical parameters,
i.e., scattering coefficients (µs) and absorption coefficient (µa) in cm−1 was then validated
theoretically with the Monte Carlo simulation. After validation, the obtained parameters
were then used as inputs for obtaining the detailed picture of light distribution in pristine
and irradiated UHMWPE.

Shown in Figure 1 are the variations of diffuse reflectance as a function of wavelengths
for pristine, 30 kGy, and 100 kGy irradiated samples, respectively. The following trends are
evident from the figure:

• Diffuse reflectance decreases as a function of incident wavelength for all samples,
whether it is irradiated or un-irradiated.

• The amount of reflectance is higher in the visible range and lower in the near-infrared region.
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• The amount of diffused reflected light is significantly reduced for 30 kGy and 100 kGy
irradiated samples.

Polymers 2021, 13, x FOR PEER REVIEW 4 of 12 
 

 

Shown in Figure 1 are the variations of diffuse reflectance as a function of wave-
lengths for pristine, 30 kGy, and 100 kGy irradiated samples, respectively. The following 
trends are evident from the figure: 
• Diffuse reflectance decreases as a function of incident wavelength for all samples, 

whether it is irradiated or un-irradiated. 
• The amount of reflectance is higher in the visible range and lower in the near-infrared 

region. 
• The amount of diffused reflected light is significantly reduced for 30 kGy and 100 

kGy irradiated samples. 
The factors responsible for reflectance of incident light from highly scattering mate-

rials like UHMWPE are:  
• Surface roughness of the sample 
• Refractive index mismatch 
• Sample thickness 

The diffusively reflected light is a combination of numerous refractions, reflections, 
and diffractions before being detected as diffuse reflectance. Furthermore, it also includes 
specular reflectance [29] in addition to the abovementioned contributions [30]. It is well 
established that irradiating UHMWPE in the open air results in an increase in polyeth-
ylene crystallinity [31–34]. Moreover, results reported in the literature [35] have shown 
that an increase in the crystallinity of the polymer composites leads to an increase in op-
tical absorption, which is the main reason for the increase in absorption and lower value 
of diffuse reflectance for irradiated samples at each wavelength of interest during this 
study. The scattering of incident light from radiation-induced trapped free radicals within 
the UHMWPE matrix might be responsible for slightly higher values of Rd for the 100 kGy 
sample as the concentration of trapped free radicals is higher [36]. The higher values of Rd 
(as shown in Figure 1), larger penetration depth at longer wavelength, and larger concen-
tration of free radicals for 100 kGy samples also support this argument [37–39]. 

 
Figure 1. Experimental values of diffuse reflectance over the spectral range of wavelength from 600 
nm to 800 nm. 

The Td trends differ from the Rd trends reported above in two respects: (1) Td increases 
as a function of incident wavelength for all samples, whether irradiated or not; and (2) Td 
values for 100 kGy irradiated sample is higher when compared with 30 kGy irradiated 
samples (see Figure 2). The measured values of diffuse transmittance depends on light 
photons that are scattered in the forward direction and the forward-directed scattering 
nature (in the optical window) of UHMWPE has been well documented in recent years 
[27]. Therefore, the increase in Td as a function of incident wavelength is quite understand-
able; however, the behavior Td for 100 kGy irradiated (highlighted above) is because of 

Figure 1. Experimental values of diffuse reflectance over the spectral range of wavelength from
600 nm to 800 nm.

The factors responsible for reflectance of incident light from highly scattering materials
like UHMWPE are:

• Surface roughness of the sample
• Refractive index mismatch
• Sample thickness

The diffusively reflected light is a combination of numerous refractions, reflections,
and diffractions before being detected as diffuse reflectance. Furthermore, it also includes
specular reflectance [29] in addition to the abovementioned contributions [30]. It is well
established that irradiating UHMWPE in the open air results in an increase in polyethylene
crystallinity [31–34]. Moreover, results reported in the literature [35] have shown that
an increase in the crystallinity of the polymer composites leads to an increase in optical
absorption, which is the main reason for the increase in absorption and lower value of
diffuse reflectance for irradiated samples at each wavelength of interest during this study.
The scattering of incident light from radiation-induced trapped free radicals within the
UHMWPE matrix might be responsible for slightly higher values of Rd for the 100 kGy
sample as the concentration of trapped free radicals is higher [36]. The higher values
of Rd (as shown in Figure 1), larger penetration depth at longer wavelength, and larger
concentration of free radicals for 100 kGy samples also support this argument [37–39].

The Td trends differ from the Rd trends reported above in two respects: (1) Td increases
as a function of incident wavelength for all samples, whether irradiated or not; and (2) Td
values for 100 kGy irradiated sample is higher when compared with 30 kGy irradiated
samples (see Figure 2). The measured values of diffuse transmittance depends on light
photons that are scattered in the forward direction and the forward-directed scattering
nature (in the optical window) of UHMWPE has been well documented in recent years [27].
Therefore, the increase in Td as a function of incident wavelength is quite understandable;
however, the behavior Td for 100 kGy irradiated (highlighted above) is because of higher
values of cross-linking networks for the 100 kGy irradiated samples [40]. It is well docu-
mented that the cross-linking networks within the UHMWPE matrix are responsible for
aligning the randomly distributed crystalline lamellae in the amorphous slough of CH2
units [17,41–44]. Therefore, the 100 kGy irradiated sample is more oriented and transparent
as compared to the 30 kGy one, which is observed experimentally (see Figure 2).
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Figure 2. Variation in diffuse transmittance by increasing the wavelength from 600 nm to 800 nm
with radiation dosage 0, 30 kGy, and 100 kGy.

The trends for absorption obtained from the values of transmittance and reflectance
are shown in Figure 3. The absorption values at lower wavelengths are higher as compared
to higher wavelengths, and there is a significant increase in absorption values at each
wavelength after irradiation. The increase in absorption is higher for the 30 kGy samples
compared to the 100 kGy samples. This increase in absorption due to radiation-induced
treatment is responsible for the reorganization of the chain by scission due to irradiation
because of higher oxidative damage in the 30 kGy sample [28,31] is one of the major
factors responsible for the observed higher values of absorption for the 30 kGy sample.
Furthermore, the role of higher crosslinking yield in the 100 kGy irradiated sample (which
is responsible for aligning and making the polymer matrix more oriented and transparent
in a given wavelength range of interest) cannot be ruled out here.
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range of interest, i.e., 600 nm to 800 nm.

3.2. Extraction of Optical Properties

In the study, the DRS approach was implemented for the extraction of optical prop-
erties from measurements because of its simplicity and feasibility for the aforementioned
purpose. DRS has the potential to quantify scattering and absorption properties related
to highly scattering materials like UHMWPE [29]. To extract UHMWPE optical charac-
teristics, i.e., absorption coefficient µa and µs for each sample used in this study, the two
flux Kubleka–Munk model (KMM) is utilized, which utilizes the measured values of Rd
and Td and sample thickness. The following equations are used to figure out the optical
characteristics of pristine and irradiated UHMWPE

S =
1
yt
[
1− Rd(x− y)

Td
] (1)
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µa =
K
2

, µs =
(4S + µa)

3(1− g)
, K = S(x− 1) (2)

x =

[
1− Td

2 + Rd
2]

2Rd
, y =

√
x2 − 1 (3)

where

• K is the flux loss per absorption per unit length
• S is the scattering per unit length
• Rd is the measured value of diffuse reflectance
• Td is the measured value of diffuse transmittance
• t is the sample thickness
• g is the anisotropy factor and its value is taken as 0.9 due to the forwarded directed

scattering nature of UHMWPE [27,28]

3.3. Effect of Radiations on Extracted Optical Properties

The extracted optical properties for pristine, 30 kGy, and 100 kGy samples correspond-
ing to each incident wavelength are tabulated in Table 1. The following trends of absorption
coefficients (µa) and scattering coefficients (µs) are obvious as a function of the increase in
incident wavelength and absorbed dose.

Table 1. Optical properties of UHMWPE samples at particular wavelengths.

λ (nm)

Absorption
Coefficient µa (cm−1)

Scattering Coefficient
µs (cm−1)

Attenuation Coefficient
µt (cm−1)

P-0 P-30 P-100 P-0 P-30 P-100 P-0 P-30 P-100

630 5.34 1.67 3.69 120.06 29.72 66.35 125.39 31.39 70.04

640 5.44 1.84 4.48 121.17 32.28 79.63 126.61 34.12 84.11

650 5.53 3.59 4.98 122.29 61.83 87.58 127.82 65.43 92.57

660 5.62 4.50 5.30 122.92 76.30 92.61 128.54 80.81 97.92

670 5.68 5.01 5.54 123.54 83.97 96.01 129.22 88.99 101.55

680 5.74 5.32 5.73 124.04 88.71 98.45 129.79 94.03 104.18

690 5.77 5.60 5.86 124.78 92.26 100.30 130.55 97.86 106.16

700 5.80 5.80 5.95 125.38 94.93 102.11 131.19 100.74 108.07

710 5.87 5.97 6.03 125.42 96.73 103.41 131.29 102.70 109.45

720 5.88 6.07 6.11 126.03 98.11 104.23 131.91 104.18 110.34

730 5.91 6.18 6.19 126.84 99.92 105.72 132.75 106.11 111.92

740 5.95 6.29 6.25 126.85 100.57 106.35 132.81 106.86 112.60

750 5.99 6.37 6.32 127.01 101.36 106.89 133.00 107.73 113.21

760 6.04 6.46 6.38 126.73 101.62 107.24 132.77 108.09 113.63

770 6.04 6.49 6.41 127.27 102.19 107.65 133.32 108.68 114.06

780 6.06 6.55 6.44 127.60 102.48 108.08 133.66 109.038 114.53

790 6.07 6.59 6.46 127.86 102.71 108.47 133.94 109.31 114.94

800 6.09 6.65 6.47 128.02 102.78 109.11 134.12 109.43 115.59

• For an un-irradiated sample, µa increases from 5.34 cm−1 to 6.09 cm−1, and µs in-
creases from 120.06 cm−1 to 128.02 cm−1 over the wavelength of interest, i.e., 630 nm
to 800 nm. The higher the incident wavelength, the longer the mean free path is
before each interaction, so the abovementioned increase in µa and µs (as a function of
wavelength) for the pristine sample is quite understandable.
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• There is a significant decrease in the coefficient (µa & µs) values from 630 nm to 700 nm
for irradiated samples. Furthermore, it can be seen from the table that the decrease
in coefficients for a 30 kGy irradiated sample is higher as compared to a 100 kGy
irradiated one, which is due to greater oxidation damage [17,37,38,40] for the 30 kGy
samples, as mentioned above.

• There is a slight increase in the values of µa on moving from 700 nm to 800 nm
for irradiated samples, which is attributed to the dominant scattering and small
absorption of polyethylene on near IR and IR absorption [27,30]. The decrease in per
unit scattering length, i.e., µs from 700–800 nm and the significant increase in Td for
irradiated samples (see Table 1 and Figure 2) also supports this argument.

The decrease in absorption coefficient is dominant in the lower wavelength region for
30 kGy irradiated samples (see Table 1). Similarly, there is a notable decrease in scattering
coefficients, which is evidence of the fact that irradiating the samples is responsible for
decreasing the absorption and scattering coefficients of the samples. However, an increase
in the aforementioned light impeding events is higher for 30 kGy samples as compared to
the 100 kGy one because of radiation induced free radical oxidation degradation [21,34].

The effective penetration depth (δ in mm) is a measure of how deep light or any
electromagnetic radiation can penetrate. It is defined as the depth at which the intensity of
the radiation inside the material falls to 1/e (about 37%) of its original value at (or more
properly, just beneath) the surface. The penetration depth is calculated as follows:

δ = 1/µeff (4)

where:
µe f f =

√
µa + µs(1− g) (5)

Figure 4 represents the variation of δ as a function of incident wavelength and absorbed
dose. The values for pristine UHMWPE are constant over the wavelength of interest;
however, increases up to approximately 0.9 mm for the 100 kGy irradiated sample and
up to 2 mm for the 30 kGy sample. As the attenuation coefficient ‘µt’ (sum of absorption
and scattering coefficients) is the major responsible factor in reducing the intensity of the
incident beam. Therefore, the increase in the values of penetration depth δ for irradiated
samples (more specifically for the 30 kGy sample) (see Figure 4) is quite justified and
understandable.
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Figure 4 represents the variation of δ as a function of incident wavelength and ab-
sorbed dose. The values for pristine UHMWPE are constant over the wavelength of inter-
est; however, increases up to approximately 0.9 mm for the 100 kGy irradiated sample 
and up to 2 mm for the 30 kGy sample. As the attenuation coefficient ‘μt’ (sum of absorp-
tion and scattering coefficients) is the major responsible factor in reducing the intensity of 
the incident beam. Therefore, the increase in the values of penetration depth δ for irradi-
ated samples (more specifically for the 30 kGy sample) (see Figure 4) is quite justified and 
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Figure 4. Penetration depth for the sample UHMWPE over the wavelength of interest from 600 nm
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3.4. Theoretical Validation of Extracted Optical Properties

Theoretical validation of the extracted optical properties is performed by using
the output of the KMM model as an input of the MCML model, which is the general-
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purpose Monte Carlo-based code to simulate the light propagation through turbid media.
The Monte Carlo-based simulation program, MCML, for the infinitely narrow beam is avail-
able at the website https://omlc.org/software/mc/ (assessed on 23 November 2019) [45].
This code is used in this study to simulate the light by getting experimental results from the
KMM model. The code simulates the light transport in the xyz-planes while considering
the sample surfaces the x- and y-axes, and depth z-axis [46,47].

In order to simulate a normal incident photon beam, the cosines direction are first
defined as rx = 0, ry = 0, rz = 1 along x–y emission plane with polar angle θ directed normal
to the surface. To define each photon emission, an emission cone having azimuthal angle
ϕ is used. The four-dimensional functions that are recorded in the course of this study
are absorption, transmittance, diffusion, and reflectance. The sample thickness that is
used as an input is 0.05 cm, i.e., similar to that taken in the experimental measurements.
The direction and emission position are split into 200 bins of 50 × 10−4 cm each on the
x–y plane, having 30 bins regarding θ ∈ [0, π/2] and 48 bins for φ ∈ [0, 2π]. For each
run, 5 × 108 photons (each with unit weight) are used for the calculation of absorption,
transmittance, and reflectance. For validation, the theoretical results are compared with the
experimental ones and are shown in Figure 5 as a radar plot.
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The simulated physical properties (transmittance, reflectance, and absorbance) at 800 nm
for pristine, 30 kGy, and 100 kGy irradiated samples are then plotted against the measured
ones on a radar plot as shown in Figure 5. The symmetry of the trend about the central axis
of the plot is evident (see Figure 5). This confirms the excellent correspondence between
experimental and simulated results with a relative difference of less than 5% among the
experimental and theoretical values.

3.5. Effect of Radiation on Light Distribution

After being confident that the extracted optical parameters are correct and that the
theoretical results of reflectance, transmittance, and absorbance generated (with these
extracted optical properties as input) with Monte Carlo model for light transport from
turbid media are in good agreement with the measured values, the photon distribution
within the UHMWPE is modeled. The results of photon absorption as a function of z and
r at 800 nm for pristine, 30 kGy irradiated, 100 kGy irradiated UHMWPE are shown in

https://omlc.org/software/mc/
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Figure 6. The noteworthy trends in the above figure are the increase in penetration depth
and photon absorption per unit area with irradiation. To have a clearer insight, one can
see the end of the light blue colored contour, which ends at 0.03 cm for pristine UHMWPE
samples at 0.32 cm for 30 kGy irradiated samples, and at 0.034 cm for 100 kGy irradi-
ated samples. Furthermore, the absorbed number of photons in the first contour for P-0,
P-30, and P-100 are 4.70 × 105 cm−2, 4.98 × 105 cm−2, and 5.12 × 105 cm−2, respectively.
The effect of radiation on the transport albedo, which is the ratio of scattering coefficients to
the attenuation coefficients, can be used to explain the photon distribution characteristics of
UHMWPE. The values of transport albedo vary from 0 to 1. The transport albedo = 0 means
that no light will pass through the sample while transport albedo = 1 means the incident
light passes through the sample without any absorption. It can be seen from Table 1 that
transport albedo is 0.9545 for P-0 and its value reduces to 0.9392 with irradiation, which is
evidence of the fact that photon distribution per unit area, i.e., number of photon/cm2 is
higher for irradiated samples. The photon distribution representations shown in Figure 6,
i.e., the plots of absorption as a function of wavelength and radiation, are in favor of our
argument that transport albedo is an important factor to consider when using light as an
alternative for UHMWPE modification and/or stabilization.
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4. Conclusions

In this study, the effects of gamma irradiation and absorbed dose on the optical
properties (absorption and scattering coefficients) of UHMWPE from 600 nm to 800 nm
are explored. The optical characteristics of pristine and gamma irradiated UHMWPE
sample were extracted using the KMM model in conjugation with measured values of
diffuse reflectance and transmittance. The results reveal a significant decrease in coefficient
(µa & µs) values for irradiated samples at lower wavelengths, i.e., from 630 nm to 700 nm.
This decrease in coefficients for the 30 kGy irradiated sample is higher as compared to the
100 kGy irradiated one and is attributed to the higher oxidation damage of UHMWPE at
this dose value. The slight increase in the values of scattering coefficients µa on moving
from 700 nm to 800 nm for irradiated samples is attributed to dominant scattering and small
absorption of polyethylene on near IR and IR absorption. Furthermore, light distribution
at 800 nm is modelled for pristine, 30 kGy and 100 kGy gamma-irradiated samples using
Monte Carlo methods. The extracted scattering and absorption coefficients are used as
inputs for simulating the 5 × 108 photons (each with unit weight) for each run. The results
reveal an increase in the penetration depth and photon absorption per unit area with
irradiation, which is attributed to a decrease in transport albedo, i.e., the ratio of scattering
coefficients to the attenuation coefficients with irradiation. We thus conclude that transport
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albedo is the prime and most important factor to be considered before using a suitable light
wavelength as an alternative for the modification and/or stabilization of UHMWPE.
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