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Abstract: In this study, we developed a new chemi-resistive, flexible and selective ammonia (NH3)
gas sensor. The sensor was prepared by depositing thin film of polyaniline-cobalt ferrite (PAni-
CoFe2O4) nanocomposite on flexible polyethylene terephthalate (PET) through an in situ chemical
oxidative polymerization method. The prepared PAni-CoFe2O4 nanocomposite and flexible PET-
PAni-CoFe2O4 sensor were evaluated for their thermal stability, surface morphology and materials
composition. The response to NH3 gas of the developed sensor was examined thoroughly in the
range of 1–50 ppm at room temperature. The sensor with 50 wt% CoFe2O4 NPs content showed an
optimum selectivity to NH3 molecules, with a 118.3% response towards 50 ppm in 24.3 s response
time. Furthermore, the sensor showed good reproducibility, ultra-low detection limit (25 ppb)
and excellent flexibility. In addition, the relative humidity effect on the sensor performance was
investigated. Consequently, the flexible PET-PAni-CoFe2O4 sensor is a promising candidate for
trace-level on-site sensing of NH3 in wearable electronic or portable devices.

Keywords: polyaniline; cobalt ferrite; ammonia gas sensor; flexible; nanocomposite

1. Introduction

Ammonia (NH3) is a pungent, toxic, colorless, water-soluble and flammable gas pro-
duced worldwide in large quantities of more than 200 million tons per annul. It plays a
vital role in all life forms and is one of the major industrial raw materials in chemicals pro-
duction facilities such as agriculture, refrigeration technology, food, fertilizers and medical
facilities [1,2]. According to Occupational Safety and Health Administration (OSHA) and
the Agency for Toxic Substances and Disease Registry (ATSDR), ammonia is hazardous gas
and its presence in atmosphere even at very low concentrations of 50 ppm could irritate
the respiratory tract, skin, nose and throat of children and/or adults. It also has a bad
impact on the environment and can cause lung damage or even death at high concentration
levels beyond 500 ppm [3]. Therefore, a low-cost, sensitive, stable, ambient temperature,
and reliable ammonia detection sensor is imperative. Recently, conductive conjugated
polymers on flexible substrate are in fashion as sensing materials for trace-level detection
of ammonia owing to their lightweight, flexible, and portable nature [4]. These type of
ammonia sensors are widely reported due to their simple synthesis, ambient temperature
sensitivity and low cost processing [5–8]. In this context, polyaniline (PAni) is one of
the most significant conducting polymers used for ammonia sensing because of its high
reactivity and facile synthesis [9] along with its reversible doping/dedoping property [10],
excellent electrical properties, unique redox characteristics and adjustable sensing at ambi-
ent temperature. However, pure PAni-based sensors have certain associated caveats, such
as limited sensing efficiency in context of response, selectivity, and long response/recovery
time [11]. Recently, researchers focused more on PAni-based nanocomposites using func-
tionalized carbon-based materials and metal oxide semiconductors [12–17] that resulted in
a significant performance improvement in PAni-based ammonia sensors.
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The current tendency in producing trace-level NH3 gas sensors is to prepare flex-
ible substrate sensors based on PAni as conducting polymers due to their lightweight,
portable, and flexible properties. Y. Zhang et al. [18] prepared an NH3 sensor based on
polyaniline/SrGe4O9 nanocomposite on Polyimide (PI) substrate by in situ chemical oxida-
tion polymerization technique. The sensor revealed excellent response time (24 s), good
flexibility and reproducibility. Q. Wu et al. [4] utilized porous polyvinylidene fluoride
(PVDF) as aflexible template for PAni composed with graphene (GP) with 10% response
towards 0.1 ppm NH3 and response time (46 s). J. Ma et al. [19] modified PET fibers by
ethylenediamine (EDA) to expose amino groups and adhere to carboxyl groups of MWC-
NTs and coated by PAni, the sensor showed 117% response towards 50 ppm NH3 with
response time (47 s) and cost-effective flexible substrate modification.

Cobalt ferrite (CoFe2O4) is an n-type semiconductor with band gap of 1.76 eV [20]. This
material showed promising magnetization properties [21,22], including high remanence
magnetization and coercivity. It also has shown high chemical stability, cost-effectiveness,
and shape versatility when produced at high temperatures. Cobalt ferrites have been
applied in many technological fields, such as ferrofluids, catalysis, electronics, cancer
treatment [23] and chemi-resistive sensors [24]. It has an inverse spinel structure in which,
Fe3+ ions are distributed between octahedral and tetrahedral sites and Co2+ ions are in
octahedral sites. In oxidation reactions, CoFe2O4 has significant catalytic properties due to
the high mobility of oxygen ion at the film surface and thus is highly preferred for the gas
sensing applications [25].

Herein, we report a thin film of PAni-CoFe2O4 nanocomposites with different concen-
trations of CoFe2O4 NPs deposited on a flexible PET substrate by using in situ chemical
oxidative polymerization technique. The prepared sensor is subsequently applied for room
temperature detection NH3 gas. Several gas sensing parameters, such as selectivity, re-
sponse at different gas concentrations, reproducibility, response/recovery times, flexibility,
and low detection limit were studied.

2. Experimental
2.1. Materials

Cobalt (II) nitratehexahydrate [Co(NO3)2·6H2O, ≥99% Fluka, Germany], Iron(III)
nitratenonahydrate (Fe(NO3)3·9H2O, ≥98%, from Sigma-Aldrich), citric acid as fuel (99.6%,
Acros), Aniline monomer (C6H7N, Merck, Germany, 99.5%), ammonium persulfate, APS
((NH4)2S2O8, Acros, Belgium, 98%) as an oxidant, hydrochloric acid (37%) and ammonia
solution (35%) (Fisher Scientific, Belgium) were used as received. Polyethylene tereph-
thalate (PET) film with dimensions of 7 cm × 3 cm with ±80 µm thickness was used
without any further treatment. DI water was used for the synthesis of CoFe2O4 NPs and
the polyaniline nanocomposites.

2.2. Fabrication of Flexible PET-PAni-CoFe2O4 Sensor Films

CoFe2O4 nanoparticles (NPs) were prepared by sol–gel combustion technique as
reported by L. E. Caldeira et al. [26] as following; (Co(NO3)2·6H2O), (Fe(NO3)3·9H2O) and
citric acid were dissolved in 20 mL DI with 1:2:3 molar ratio. The mixture was stirred
and heated at 85 ◦C for 1 h. The gel was dried for 24 h at 110 ◦C to remove the water.
The xerogel was sintered in muffle furnace for 6 h at 750 ◦C. In situ chemical oxidative
polymerization technique was used to prepare PAni-CoFe2O4 nanocomposite films on
flexible PET substrates by polymerization of C6H7N monomer in dilute hydrochloric acid
using (NH4)2S2O8 as an oxidant. The method leads to the deposition of PAni-CoFe2O4 thin
film on flexible substrate (in this work, PET). Before use, the PET films were cleaned by
immersing in boiling acetone and then in isopropyl alcohol followed by drying for 1 h at
70 ◦C. The experimental procedure is as follows: PET films were immersed vertically in
solution of 0.2 M C6H7N monomer dissolved in 1 M HCl at 0–5 ◦C. The mixture was stirred
using a mechanical stirrer supplied with Teflon rod to avoid any agglomeration. After ~1 h,
0.1 M (NH4)2S2O8 was drop-wise added to the above mixture with continuous stirring
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and kept at these conditions for further 14 h. Finally, a green emeraldine salt precipitate of
PAni was formed. The as-synthesized CoFe2O4 NPs (10, 30 and 50 wt%) were sonicated
and added to the C6H7N for the preparation of hybrid nanocomposite on the PET film.
The flexible film was filched from the PAni solution, washed with DI water and finally
placed in an oven at 60 ◦C for 1 h. The screen-printing technique was used to print the
silver-integrated electrode onto the surface of the film to obtain the flexible gas sensor film.
The scheme of film formation is depicted in Figure 1.
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Figure 1. Flexible PET-PAni-CoFe2O4 nanocomposite film formation.

2.3. Characterization and Gas Detection Measurements

As-prepared samples were investigated for their chemical structure by Fourier trans-
form infrared spectroscopy (FT-IR) (Thermo Nicolet Avatar 370). Structural study was
conducted by XRD (ARL X’TRA Powder Diffractometer, Thermo Scientific) at a speed of
5◦ per min, 2θ scan range 5–80◦ with λ 1.5406 Å. Surface topography and surface roughness
average (Ra) for flexible sensors were measured by a profilometer with contact stylus trac-
ing (KLA Tencor™ P-7, Milpitas, California, USA). The diameter of the diamond tip was
2.4 mm with accuracy 1 mm/s. Measurements were performed in three different positions
of each film, Ra Mean values were calculated for each sample. The surface morphology
was carried out by FE-SEM (Quanta FEG 250, Waltham, MA, USA). CoFe2O4 particle size
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was investigated using HR-TEM (JEOL-2100, Tokyo, Japan). The glass transitions (Tg) of
the flexible sensors were carried out using a (TA Instruments DSC Q4000, New Castle, DE,
USA). The thermal stability of samples was monitored by TGA using a (TA Instrument TGA
Q500, New Castle, DE, USA) with nitrogen purge flow 50 mL per min at 25–900 ◦C with a
ramp rate of 10 ◦C per min. PAni-CoFe2O4 (50%) nanocomposite elemental composition
was evaluated by XPS (K-ALPHA, Themo Fisher Scientific, Waltham, MA, USA). CoFe2O4
NPs hysteresis loop parameters were evaluated by a Vibrating Sample Magnetometer
(VSM) (Lakeshore-7410, Westerville, OH, USA). The gas sensing properties of the sensors
were evaluated at 40% relative humidity and room temperature by a homemade chamber
as shown in Figure 2. The chamber is attached with a real-time acquisition system to
measure the resistance. Prior to introducing NH3 gas in to the test chamber, the sensor film
was stabilized for 20 min to obtain the stable baseline in dry air, then a gas stream in the
ambient temperature with various concentrations in the range of 1–50 ppm was injected
to evaluate the sensors responses NH3 and selectivity test of interfering gas molecules
(CO2, C2H5OH and CH3OH) at 50 ppm. A mass flow controller (MFC 300) (was utilized
to expose a constant flux of 50 cm3 min−1 from dry air to various injected target gas). To
desorb NH3 after each test, the sensor was flushed with dry air. The % response of the
sensor is expressed by the following equation:

Response (%) =
Rg − Ro

Ro
× 100 (1)

where Ro and Rg are the measured resistances of air and tested gas, respectively [27,28].
The recovery time (Trec) and response time (Tres) were measured as the times taken by the
film sensor to reach 90% of the resistance change [29,30]. The humidity effect on PET-PAni-
CoFe2O4 sensor was detected using humidity chamber (Cincinnati Sub Zero—CSZ) by
replacing the test gas chamber in the environmental chamber and adjusting the desired
value of RH for 20 min till equilibrium before testing.
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3. Results and Discussion
3.1. Magnetic Properties of CoFe2O4 NPs

The calcination temperature effect on the magnetic parameters of the precursor was
recorded by VSM at room temperature, Figure 3 displays the M-H hysteresis loop for the
CoFe2O4 NPs. The hysteresis curve shows ferrimagnetic performance of spinel CoFe2O4
nanocrystals. The coercive field (Hc), saturation magnetization (Ms), remanence mag-
netization (Mr), and the squareness (R) value (Mr/Ms), were 1523 (Oe), 68.5 (emu/g),
29.5 (emu/g), and 0.43, respectively. The value of Ms is lower than the observed bulk
(74.08 emu/g) [31]; this may be attributed to the modified cationic distribution and the
disorder of the nanoparticle’s surface. This is an indication of the excellent magnetic
properties of CoFe2O4.
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3.2. FT-IR Analysis

FT-IR spectra of PAni, CoFe2O4 NPs, and PAni-CoFe2O4 (50%) nanocomposite are
presented in Figure 4. The spectrum of PAni have a peak at 797 cm−1 due to C—H bending
of aromatic ring (out of plane) [32]. The absorption peaks at 1131 cm−1 and 1293 cm−1 are
attributed to the C—N stretching of quinoid and benzenoid ring, respectively [33]. The
peaks at 1479 cm−1 and 1563 cm−1 represent thestretching vibration C=C of benzenoid and
quinoid structure, respectively [34]. The peak observed at 2411 cm−1 is due to C=NH+ [35].
The PAni spectrum has a prominent peak at 3417 cm−1 for aromatic amine —N-H stretching
while the peaks at 2919 and 2850 cm−1 are attributed to —C-H stretching. The above-
mentioned typical peaks confirm the synthesis of PAni in protonated state. CoFe2O4 have
strong peaks at 580 and 493 cm−1 which represent the vibrations (ν) of M-O (Metal (M)=Fe,
Co) symmetric stretching in tetrahedral and octahedral sites of CoFe2O4 [36,37]. The peak
at 1633 cm−1 corresponds to bending vibration of H-O-H [23]. The peak at 3432 cm−1

can be inferred to stretching vibration of O-H group at the surface of NPs due to surface
water [38]. It is important to note that that the peak of CoFe2O4 in the spectrum of PAni-
CoFe2O4 (50%) nanocomposite shifted to higher wavenumbers of 584 cm−1 that indicates
the strong interaction between metal ions of CoFe2O4 and nitrogen atoms of PAni due to
hydrogen bonding.
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3.3. XRD Analysis

The XRD pattern of CoFe2O4 NPs, PAni and PAni-CoFe2O4 (50%) nanocomposite
powder is presented in Figure 5. CoFe2O4 NPs showed reflection planes namely (220), (311),
(222), (400), (422), (511) and (440). The observed peaks matched with (JCPDS 00-002-1045,
space group Fd3m, space group number no 227) for reflections of cubic spinel structure.
The the average crystallite size as obtained by the Scherrer formula was found to be 41 nm.
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For PAni, two broad peaks at 20 and 25◦ are related to the amorphous structure of
PAni [39]. In PAni-CoFe2O4 (50%), no diffraction peak for PAni was noticed in the pattern,
which confirms the amorphous nature of PAni in its composites with metal oxides [40].
In the composite synthesis, the ammonium persulfate as an oxidative initiator proceeded
on the CoFe2O4 NPs surface and encapsulated in PAni shell leading to the resistive effect
of nanoparticles that hamper the crystallinity of PAni. The crystal form of CoFe2O4 NPs
in PAni-CoFe2O4 composite pattern showed low crystallinity compared to CoFe2O4; the
phenomenon is attributed to the coating effect and intermolecular interaction between
surface of CoFe2O4 and conducting PAni [41].

3.4. Morphological Analysis (FE-SEM)

FE-SEM analysis was performed to visualize the morphology of the as-synthesized
CoFe2O4 NPs, PET-PAni and PET-PAni-CoFe2O4 (50%) sensors, Figure 6. According to
the results of FE-SEMSEM, the CoFe2O4 NPs, Figure 6a, have a tendency to agglomerate
that is attributed to their ferrimagnetic properties [42] and sponge-like structure with
porous morphology, which may have a great impact on the sensing properties. Despite
the agglomeration and the blurred edges of CoFe2O4, the NPs are still uniform spheres
with particle sizes of 70–80 nm. The larger grain size might be attributed to crystallites
magnetic properties.

A quantitative elemental EDS spectrum in Figure 6b is used to calculate the CoFe2O4
NPs composition, the molar ratio of Co, Fe, and O was found to be 1:1.96:3.94 that is
fairly close to the theoretical values of 1:2:4, indicating the nominal composition and the
stoichiometric proportion is maintained. It is clear from Figure 6c that PAni behaves in a
similar way to a well-developed interconnected fiber with porous morphology in PET-PAni
film. The surface morphology of PET-PAni-CoFe2O4 (50%) film was found in clusters,
porous and rough surface, Figure 6d. Moreover, the agglomeration of CoFe2O4 NPs on the
PAni surface was observed, which endorses literature reports showing that an increase in
NPs loading in the matrix leads to coagulation [43].

3.5. TEM Analysis

TEM and SAED patterns were recorded for detailed insight into the microstructure of
CoFe2O4 NPs (Figure 7). The particles have a spherical shape with particle size in the range
of 40–80 nm (Figure 7a). Segregated as well as agglomerated particles are clearly visible
which endorse FE-SEM data. Selected area electron diffraction (SAED) pattern shows white
spot rings indicating the polycrystalline structure of CoFe2O4 NPs, Figure 7b. SAED results
matched well with the XRD patterns.

3.6. Roughness Measurements

Profilometer is one of the most commonly used devices for measuring the roughness
(Ra) and 3D images for the nanocomposite. Generally, the roughness of the nanocomposite
surface depends on the structure of the organic matrix and the content of the inorganic filler.
The surface topography of PET-PAni shows a relatively uniform and smooth structure
compared to PET-PAni-CoFe2O4 (50%) in Figure 8. The mean surface roughness of the PET-
PAni and PET-PAni-CoFe2O4 (50%) samples were found to be 1.15 and 5.3 µm, respectively.
This increase in Ra value lead to augmented polarity and surface area that results in extra
growth sites and buildup of adhesion between PAni and CoFe2O4 NPs.
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Figure 6. FE-SEM of (a) CoFe2O4, (b) EDS of CoFe2O4, (c) PET-PAni and (d) PET-PAni-CoFe2O4 (50%) sensor and its
elemental mapping images of the Co (red), Fe (yellow) and O (brown) signals.
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3.7. Thermal Analyses
3.7.1. Thermogravimetric Analysis (TGA)

TG and DTG thermograms of CoFe2O4, PAni, PAni-CoFe2O4 (50%), PET, PET-PAni
and PET-PAni-CoFe2O4 (50%) are shown in Figure 9a,b. The degradation of CoFe2O4
occurred in two stages having an insignificant loss: the first step was up to 600 ◦C that is
attributed to the loss of moisture, decarbonation and removal of hydroxyl group associated
with the NPs (0.21%) while the second step at higher temperature was up to 900 ◦C
(0.18%) [44]. The TGA thermogram confirms the high thermal stability of CoFe2O4 NPs.
For pure PAni, there are three main stages of pyrolysis, the first between 30 to 140 ◦C that
is attributed to loss of adsorbed water, unreacted monomer and free acid remaining after
polymerization, 8.54% [45]. The second stage is found in a range of 140 to 325 ◦C due to
the degradation of low molecular weight oligomers formed during the synthesis of PAni,
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11.49% and residue 7.73% [46]. The third and last stage was in a temperature range 350 to
900 ◦C due to the structural breakdown of PAni molecules, 69.3% degradation and residue
14.5% [47]. PAni-CoFe2O4 (50%) nanocomposite have shown the same thermal degradation
behavior as PAni, as they have a somewhat high thermal stability with a residue (33.2%).
Moreover, the thermal stability of plastic films coated with nanocomposite thin film was
also examined. The TG curves reveal that the decomposition of PET substrate occurred in
one step in a temperature range of 300–520 ◦C, related to the random degradation of ester
groups into carbonyl and vinyl ester which were subsequent converted to acetaldehyde
by tautomerization effect [48] with a weight loss of 94.86% and char residue of 5.15% at
900 ◦C. The PET-PAni film showed typical behavior of PET but with more weight loss of
96.4% and residue of 3.6%, which may be attributed to the catalytic effect of PAni during
the decomposition of PET film. The PET film coated with PAni-CoFe2O4 (50%) showed
higher thermal stability compared to all other films with weight loss of 92.7% and residue
of 7.3% due to the high thermal stability of CoFe2O4 embedded in the PET film.
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3.7.2. Differential Scanning Calorimetry (DSC)

The interactions of PET film with PAni and CoFe2O4 during the in situ polymerization
reaction were monitored, which were responsible for the nanocomposite phase transitions
(see Figure 10). One-step DSC scanning is performed from ambient conditions to 300 ◦C.
The glass transition (Tg) of pristine PET, PET-PAni, and PET-PAni-CoFe2O4 (50%) were
found to be 81 ◦C, 81.3 ◦C, and 82.7 ◦C, respectively. The slight increase in Tg may be
attributed to the interaction between the PET substrate and nano-fillers that resulted in
a reduction in the polymer segmental motion. To understand the effect of the coated
nano-fillers on polymer structural characteristics, the polymer crystallinity was studied
using the heat of fusion obtained from DSC thermograms and the degree of crystallinity,
Xc%, was determined by using Equation (2) [49].

Xc% =
∆H
∆H0

× 100 (2)

where ∆H is the PET melting enthalpy and ∆H0 is the 100% crystalline PET melting
enthalpy, considered to be 140 jg−1 [50]. The PET crystallinity degree was found to be
30.6%, which shifted to higher values for PET-PAni and PET-PAni-CoFe2O4 (50%) to 32.5%
and 35.7%, respectively. This increase in crystallinity may be attributed to the creation
of segments of small chains, which are capable of crystallization and realigning easily, as
indicated by TGA and FT-IR.
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3.8. XPS Spectra

The chemical composition and the oxidation state of PAni-CoFe2O4 (50%) nanocom-
posite was elucidated by XPS measurements (Figure 11). The XPS spectrum confirms the
presence of Co, Fe, N, O and C in the nanocomposite, Figure 11a. The core level of C1s
(Figure 11b) deconvoluted into four distinct peaks at 283.8 eV, 284.7 eV and 287.3 eV, which
belongs to —C=C, C—N, and C=O bands, respectively [51,52]. The peak at 285.7 eV is
related to C—O [53]. Figure 11c shows the N1s’ core level and they fit well into three peaks
located at 398.8 eV, 400.5 eV and 402.6 eV that can be attributed to quinoid immine (—N=),
benzenoid amine (—NH—) and (N+) of PAni chain, respectively [54]. At lower binding
energy, there are two peaks situated at 529.6 and 532 eV for O1s, Figure 11d. The peak
at 529.6 eV confirms Co—O, while the peak at 532 eV is attributed to (OH) group and
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defect sites of oxygen [55]. In Figure 11e, the main peak Fe 2p3/2, with a satellite peak at
716.8 eV, is fitted into two peaks of Fe 2p3/2 and Fe 2p1/2 at binding energies 710.5 and
712.7, respectively. These peaks indicate the presence of Fe species in two different lattice
positions, the peak at 710.3 eV from Fe3+ ions in octahedral sites while the peak at 712.7 eV
from Fe3+ ions in tetrahedral sites [56]. Figure 11f shows two major peaks which can be
attributed to Co 2p3/2 at 780 eV and Co 2p1/2 at 796.1 eV. Where Co 2p3/2 is well fitted into
two peaks, at 779.8 eV for Co2+ in octahedral sites and 781.5 eV for Co2+ in tetrahedral sites
with satellite peak at 786 eV, while Co 2p1/2 is well fitted into one peak at 796.2 eV for Co2+

in octahedral sites with satellite peak at 803.2 eV [57]. Thus, the analysis of XPS confirms
the PAni-CoFe2O4 (50%) nanocomposite formation.
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3.9. Gas Sensing Measurements
3.9.1. Selectivity of PET-PAni-CoFe2O4 Film

Gas sensing selectivity is a critical parameter for evaluation any chemi-resistive gas
sensor performance. Different gases were used to test the selectivity of PET-PAni-CoFe2O4
flexible film at 50 ppm of each gas and the bar charts of selectivity towards NH3, CO2,
methanol and ethanol are shown in Figure 12a. The study clearly demonstrates the selectiv-
ity of the PET-PAni and PET-PAni-CoFe2O4 flexible films for NH3 compared to other gases.
This selectivity may be due to the intense interactions between the sensing layers of flexible
films and the adsorbed molecules of NH3 gas. Moreover, the PET-PAni-CoFe2O4 (50%)
showed the highest value of response (118.3%) towards 50 ppm of NH3 compared to PET-
PAni (10.16%). The response using the PET-PAni-CoFe2O4 (10%) of PET-PAni-CoFe2O4
was found to be 30.12% while it was 56.6% for the PET-PAni-CoFe2O4 (30%) (Figure 12b).
The higher response value at PET-PAni-CoFe2O4 (50%) is mainly attributed to the porous
structure [58], as noticed by FE-SEM. Hence, the PET-PAni-CoFe2O4 (50%) was selected for
further analysis of its selectivity at room temperature sensing of NH3 gas.

3.9.2. Response-Dependent Characteristics of PET-PAni-CoFe2O4 (50%) Film

The gas response time-dependent profile of PET-PAni-CoFe2O4 (50%) sensor towards
1–50 ppm of NH3 is shown in Figure 12c. The dynamic response profile revealed that the
flexible sensor is sensitive to 1 ppm NH3 concentration with response of (6.1%). Moreover,
the increase in NH3 gas concentration led to an increase in the sensor response that reaches
its maximum response of 118.3% at 50 ppm NH3 gas. At higher NH3 concentration, the
molecules of gas cover the sensor active sites and involved in surface interactions giving
even higher response. Additionally, the relative humidity (RH) effect on the NH3 gas
sensing of the PET-PAni-CoFe2O4 (50%) sensor was monitored for 50 ppm NH3 at different
RH, and data is plotted in Figure 12d. The PET-PAni-CoFe2O4 (50%) sensor displayed a
maximum response value of 124.8% at 20% RH, while the response decreased to 118.3%
at 40% RH. Further increase in RH leads to a decrease in the sensor response, hence, the
response is greatly affected by RH. Obviously, when the sensor film is subjected to high
concentrations of RH, the molecules of water occupy some active sites of the sensor and
overlap with the adsorbed molecules of the target gas that is probably reason of reduced
response at higher RH [59,60]. The resistance dynamic change of PET-PAni-CoFe2O4
(50%) sensor when exposed to different concentrations of NH3 gas (1–50 ppm) is shown in
Figure 12e.

3.9.3. Reproducibility, Response-Recovery Times and Flexibility of the Sensor

The reproducibility and stability of the sensor are imperative characteristics to show
its reliability. The reproducibility of PET-PAni-CoFe2O4 (50%) sensor was evaluated by
repeating the exposure cycles for four times at 10 ppm NH3 and the response values
are shown in Figure 13a. The PET-PAni-CoFe2O4 (50%) response is almost the same for
four cycles. Thus, PET-PAni-CoFe2O4 (50%) sensor has excellent reproducibility and can
be utilized repetitively for the room temperature and lower concentration detection of
NH3 gas.

Figure 13b represents the times of response and recovery, which are measured from the
dynamic response curves of PET-PAni-CoFe2O4 (50%) sensor at different gas concentrations
shown in Figure 12c. The response and recovery times were inversely changed with NH3
gas concentrations, the sensor at 50 ppm of NH3 gas showed lowest response time (24.3 s).
The effect is due to large availability of porous sites on the surface of the sensor for
adsorption of gas requiring a short response time while the recovery time increased due
to decrease in reactive species desorption rate after NH3 gas removal [58]. Furthermore,
the response of PET-PAni-CoFe2O4 (50%) sensor toward very low NH3 concentrations
(25–100 ppb) has also been evaluated and the response curve is shown in Figure 13c.
It is clear that the developed PET-PAni-CoFe2O4 (50%) sensor is very sensitive to low
concentrations and practically can detect as low as 25 ppb of NH3 gas that effectively meets
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the requirement of health and environmental issues. The flexibility of PET-PAni-CoFe2O4
(50%) sensor was evaluated after 500 bending cycles at 50 ppm NH3 and data is displayed
in Figure 13d. An insignificant change in the sensor response (from 118.3% to 114.9%)
is observed, indicating the excellent stability of PET-PAni-CoFe2O4 (50%) sensor after
repeated cycles of bending.
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There are several reports in the literature for NH3 sensors. A comparison of the
sensing performance of PET-PAni-CoFe2O4 (50%) developed in current study with the
reported method is presented in Table 1. The PET-PAni-CoFe2O4 (50%) sensor developed in
this study exhibits ultra-low detection limit, high response, and excellent flexibility, which
shows its potential to be used in the portable NH3 sensing device development.

Table 1. The sensing properties comparison of PET-PAni-CoFe2O4 (50%) with other reported works.

Material Substrate Detection
Limit Response % Response Time

(s) Flexibility Ref.

PAni PET <5 ppm 26 (100 ppm) 33 - [61]

S, N:
GQDs/PAni PET 1 ppm 42.3 (100 ppm) 115 The response at bending angle

80◦ was more than at 0◦ [14]

MWCNT-PAni PVDF 0.1 ppm 32 (1 ppm) 76 Less than 10% deviation after
500 bending cycles @ 60◦ [11]

PAni-α-Fe2O3 PET <2.5 ppm 72 (100 ppm) 50 - [62]

GP-PAni PVDF 100 ppb 60 (1 ppm) 46 The reponse decreased from 60
to 49% at 1500 bending cycles [4]

PAni-WO3 PET 1 ppm 121 (100 ppm) 32 the response decreased by
9%@60◦ bending, 900 s [58]

MWCNTs-PAni Modified PET 33 ppm 117 (50 ppm) 47 - [19]

PPy silk 1 ppm 73.25 (100 ppm) 24
The response decreased by

10.61%@30◦ after 200 bending
cycles

[63]

PAni-CoFe2O4 PET 25 ppb 118.3 (50 ppm) 24.3
Stable response after 500
bending cycle with 3.4%

decrease@60◦
This
work
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3.9.4. Proposed Mechanism of Gas Sensing

Protonation and deprotonation phenomenon resulting from NH3 gas adsorption and
desorption is responsible for the response in pure PAni sensor. When NH3 gas is introduced
to the sensor surface, the PAni emeraldine salt (ES) is converted to PAni emeraldine base
(EB). Consequently, the PAni hole density decreases which leads to an increase in the
resistance [64,65]. The gas sensing in the nanocomposite film predominantly depends on
NH3 gas trapping that leads to the change in resistance. Figure 14 shows the schematic
sensing model of PAni-CoFe2O4 flexible sensor at ambient. The n-type CoFe2O4 NPs
were wrapped in the p-type PAni emeraldine salt to obtain porous nanocomposite due to
integration of CoFe2O4 in the PAni matrix as observed in FE-SEM images which leads to
formation active centers on the film surface with donor and acceptor states. Thus, it could
be concluded that the p-n junctions are established at PAni-CoFe2O4 interface. When the
sensor film is exposed to NH3, the molecules of gas would capture holes from —NH2—
and =NH+— groups of PAni [66] and converts from emeraldine salt to emeraldine base
as shown in Figure 14a, resulting in a decrease in PAni conductivity [14]. The adsorption
of NH3 as a reducing gas leads to decrease in the concentration of PAni holes and p-n
junctions depletion regions are widened as shown in shown in Figure 14b. The interaction
between NH3 gas released free electrons, and hence neutralize the holes found on PAni
surface due to electron-hole combination. This leads to a decrease in the concentration of
hole and heterojunctions, as a result resistance of the nanocomposite sensor increases.
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4. Conclusions

In the present work, a flexible gas sensor composed of a thin film of PAni-CoFe2O4
nanocomposites on PET substrate by using simple in situ chemical oxidative polymeriza-
tion technique with different CoFe2O4 NPs concentrations is reported. The developed
sensor is subsequently applied successfully for room temperature NH3 gas sensing. The
morphological analyses reveal porous structure the PAni-CoFe2O4 flexible film. The for-
mation of PAni-CoFe2O4 nanocomposites confirmed by XPS analysis. The gas sensing
data showed that the PET-PAni and PET-PAni-CoFe2O4 sensors have highest values of
selectivity when exposed to NH3 gas at room temperature compared to other environ-
mental gases. The PET-PAni-CoFe2O4 (50%) flexible sensor demonstrated a maximum
response value of 118.3%, excellent response time of (24.3 s) at 50 ppm NH3 gas. The sensor
has good reproducibility, ultra-low detection limit (25 ppb) and excellent flexibility with
insignificant response change after repeated cycles of process and bending. Therefore, this
paper highlights that the as-fabricated flexible PET-PAni-CoFe2O4 (50%) sensor provides
a promising platform for trace-level NH3 detection of NH3 gas on chemicals production
field and environmental testing.
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