Fabrication and Characterization of Paclitaxel and Resveratrol Loaded Soluplus Polymeric Nanoparticles for Improved BBB Penetration for Glioma Management
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Reversed Phase-High-Performance Liquid Chromatography (RP-HPLC)
2.2.1. Mobile Phase Selection of PAX
2.2.2. Mobile Phase Selection of RESV
2.3. Experimental Design
2.3.1. Formulation and Optimization
2.3.2. Preparation of Functionalized Polymeric Nanoparticles
2.4. Characterization of Prepared PNPs
2.4.1. Particle Size, PDI and Zeta Potential (ζ)
2.4.2. Percentage Entrapment Efficiency (%EE)
2.4.3. Scanning Electron Microscopy (SEM)
2.4.4. Fourier Transform Infrared (FT-IR) Spectroscopy
2.4.5. Powder X-Ray Diffraction (PXRD) Analysis
2.4.6. In Vitro Release Studies
2.4.7. In Vitro Cytotoxicity Studies
2.4.8. In Vivo Pharmacokinetic and Brain Distribution Studies
2.5. Statistical Analysis
3. Results and Discussion
3.1. Formulation and Optimization of PAX and RESV PNPs
3.2. Response Analysis of Prepared Formulations
3.2.1. Particle Size of PAX-RESV PNPs
3.2.2. PDI of PAX-RESV PNPs
3.2.3. %EE of PAX-RESV PNPs
3.2.4. Particle Size, PDI, Zeta Potential, and %EE
3.3. Scanning Electron Microscopy (SEM)
3.4. Fourier Transform Infrared (FT-IR) Spectroscopy
3.5. Powder X-ray Diffraction (PXRD) Analysis
3.6. In Vitro Release Study
3.7. Cell Cytotoxicity Study
Combination Effect
3.8. Pharmacokinetic Studies
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Caffo, M.; Caruso, G.; La Fata, G.; Barresi, V.; Visalli, M.; Venza, M.; Venza, I. Heavy Metals and Epigenetic Alterations in Brain Tumors. Curr. Genom. 2015, 15, 457–463. [Google Scholar] [CrossRef] [PubMed]
- McLendon, R.E.; Halperin, E.C. Is the long-term survival of patients with intracranial glioblastoma multiforme overstated? Cancer 2003, 98, 1745–1748. [Google Scholar] [CrossRef] [PubMed]
- Sharom, F.J. ABC multidrug transporters: Structure, function and role in chemoresistance. Pharmacogenomics 2008, 9, 105–127. [Google Scholar] [CrossRef] [PubMed]
- Bi, W.L.; Beroukhim, R. Beating the odds: Extreme long-term survival with glioblastoma. Neuro Oncol. 2014, 16, 1159–1160. [Google Scholar] [CrossRef] [Green Version]
- Barbuti, A.M.; Chen, Z.S. Paclitaxel through the ages of anticancer therapy: Exploring its role in chemoresistance and radiation therapy. Cancers 2015, 7, 2360–2371. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.F.; Chen, C.Y.; Chung, S.F.; Chiou, Y.H.; Lo, H.R. Involvement of oxidative stress and caspase activation in paclitaxel-induced apoptosis of primary effusion lymphoma cells. Cancer Chemother. Pharmacol. 2004, 54, 322–330. [Google Scholar] [CrossRef] [PubMed]
- Öztürk, Y.; Günaydın, C.; Yalçın, F.; Nazıroğlu, M.; Braidy, N. Resveratrol enhances apoptotic and oxidant effects of paclitaxel through TRPM2 channel activation in DBTRG glioblastoma cells. Oxid. Med. Cell. Longev. 2019, 2019. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Cai, C.; Liu, M.; Zhao, Y.; Wu, Y.; Fan, Z.; Ding, Z.; Zhang, H.; Wang, Z.; Han, J. Drug-binding albumins forming stabilized nanoparticles for co-delivery of paclitaxel and resveratrol: In vitro/in vivo evaluation and binding properties investigation. Int. J. Biol. Macromol. 2020, 153, 873–882. [Google Scholar] [CrossRef]
- Murphy, J.; Spencer, D.; Cheng, Y.; Lesniak, M.S. Gold Nanoparticles for the Treatment of Malignant Gliomas. In The World Scientific Encyclopedia of Nanomedicine and Bioengineering I; Worls Scientific: London, UK, 2016; pp. 151–176. [Google Scholar]
- Prakash, O.; Kumar, A.; Kumar, P.; Ajeet, A. Anticancer Potential of Plants and Natural Products: A Review. Am. J. Pharmacol. Sci. 2013, 1, 104–115. [Google Scholar] [CrossRef] [Green Version]
- Paranthaman, S.; Shivananjegowda, M.G.; Mahadev, M.; Moin, A.; Nanjappa, S.H.; Nanjaiyah, N.; Chidambaram, S.B.; Gowda, D.V. Nanodelivery systems targeting epidermal growth factor receptors for glioma management. Pharmaceutics 2020, 12, 1198. [Google Scholar] [CrossRef]
- Ju, R.J.; Mu, L.M.; Li, X.T.; Li, C.Q.; Cheng, Z.J.; Lu, W.L. Development of functional docetaxel nanomicelles for treatment of brain glioma. Artif. Cells Nanomed. Biotechnol. 2018, 46, 1180–1190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meng, J.; Guo, F.; Xu, H.; Liang, W.; Wang, C.; Yang, X.-D. Combination Therapy using Co-encapsulated Resveratrol and Paclitaxel in Liposomes for Drug Resistance Reversal in Breast Cancer Cells in vivo. Sci. Rep. 2016, 6. [Google Scholar] [CrossRef] [PubMed]
- Qu, J.; Zhang, L.; Chen, Z.; Mao, G.; Gao, Z.; Lai, X.; Zhu, X.; Zhu, J. Nanostructured lipid carriers, solid lipid nanoparticles, and polymeric nanoparticles: Which kind of drug delivery system is better for glioblastoma chemotherapy? Drug Deliv. 2016, 23, 3408–3416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mora-Gutierrez, A.; Attaie, R.; Núñez de González, M.T.; Jung, Y.; Marquez, S.A. Interface Compositions as Determinants of Resveratrol Stability in Nanoemulsion Delivery Systems. Foods 2020, 9, 1394. [Google Scholar] [CrossRef] [PubMed]
- Adibkia, K.; Javadzadeh, Y.; Dastmalchi, S.; Mohammadi, G.; Niri, F.K.; Alaei-Beirami, M. Naproxen-eudragit® RS100 nanoparticles: Preparation and physicochemical characterization. Colloids Surf. B Biointerfaces 2011, 83, 155–159. [Google Scholar] [CrossRef] [PubMed]
- Chand, P.; Kumar, H.; Badduri, N.; Gupta, N.V.; Bettada, V.G.; Madhunapantula, S.V.; Kesharwani, S.S.; Dey, S.; Jain, V. Design and evaluation of cabazitaxel loaded NLCs against breast cancer cell lines. Colloids Surf. B Biointerfaces 2021, 199, 111535. [Google Scholar] [CrossRef]
- Malagurski, I.; Levic, S.; Nesic, A.; Mitric, M.; Pavlovic, V.; Dimitrijevic-Brankovic, S. Mineralized agar-based nanocomposite films: Potential food packaging materials with antimicrobial properties. Carbohydr. Polym. 2017, 175, 55–62. [Google Scholar] [CrossRef]
- Mobika, J.; Rajkumar, M.; Nithya Priya, V.; Linto Sibi, S.P. Substantial effect of silk fibroin reinforcement on properties of hydroxyapatite/silk fibroin nanocomposite for bone tissue engineering application. J. Mol. Struct. 2020, 1206, 127739. [Google Scholar] [CrossRef]
- Moharamzadeh, K.; Van Noort, R.; Brook, I.M.; Scutt, A.M. Cytotoxicity of resin monomers on human gingival fibroblasts and HaCaT keratinocytes. Dent. Mater. 2007, 23, 40–44. [Google Scholar] [CrossRef]
- Tonglairoum, P.; Ngawhirunpat, T.; Rojanarata, T.; Kaomongkolgit, R.; Opanasopit, P. Fabrication and Evaluation of Nanostructured Herbal Oil/Hydroxypropyl-β-Cyclodextrin/Polyvinylpyrrolidone Mats for Denture Stomatitis Prevention and Treatment. AAPS Pharm. Sci. Technol. 2016, 17, 1441–1449. [Google Scholar] [CrossRef] [Green Version]
- Anupama, S.; Laha, P.; Sharma, M.; Pathak, K.; Bane, S.; Ingle, A.D.; Gota, V.; Kalraiya, R.D.; Yu, L.G.; Rhodes, J.M.; et al. Pharmacokinetics, biodistribution and antitumour effects of Sclerotium rolfsii lectin in mice. Oncol. Rep. 2017, 37, 2803–2810. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruttala, H.B.; Ko, Y.T. Liposome encapsulated albumin-paclitaxel nanoparticle for enhanced antitumor efficacy. Pharm. Res. 2015, 32, 1002–1016. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Zhao, Y.; Wang, T.; Li, R.; Han, M.; Dong, Z.; Zhu, C.; Wang, X. Hydroxycamptothecin Nanorods Prepared by Fluorescently Labeled Oligoethylene Glycols (OEG) Codendrimer: Antitumor Efficacy in Vitro and in Vivo. Bioconjug. Chem. 2017, 28, 390–399. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Jiang, L.; Lin, Y.; Gerhard, E.M.; Jiang, X.; Li, L.; Yang, J.; Gu, Z. Enhanced anticancer efficacy of paclitaxel through multistage tumor-targeting liposomes modified with RGD and KLA peptides. Int. J. Nanomed. 2017, 12, 1517–1537. [Google Scholar] [CrossRef] [Green Version]
- Rahman, H.S.; Rasedee, A.; How, C.W.; Abdul, A.B.; Zeenathul, N.A.; Othman, H.H.; Saeed, M.I.; Yeap, S.K. Zerumbone-loaded nanostructured lipid carriers: Preparation, characterization, and antileukemic effect. Int. J. Nanomed. 2013, 8, 2769–2781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.; Zhao, X.; Yang, F.; Wu, W.; Wu, M.; Li, Y.; Zhang, X. Loading paclitaxel into porous starch in the form of nanoparticles to improve its dissolution and bioavailability. Int. J. Biol. Macromol. 2019, 138, 207–214. [Google Scholar] [CrossRef] [PubMed]
- Wang, A.T.; Liang, D.S.; Liu, Y.J.; Qi, X.R. Roles of ligand and TPGS of micelles in regulating internalization, penetration and accumulation against sensitive or resistant tumor and therapy for multidrug resistant tumors. Biomaterials 2015, 53, 160–172. [Google Scholar] [CrossRef]
Factors | Levels | |
---|---|---|
Independent variable | Low | High |
X1 = Soluplus (mg·mL−1) | 10 | 30 |
X2 = PAX-RESV (mg·mL−1) | 1 | 2.0 |
X3 = TPGS1000 (% w/v) | 0.1 | 0.5 |
Dependent variable | Goals | |
Y1 = Particle size (nm) | Decrease | |
Y2 = PDI | Decrease | |
Y3 = Entrapment Efficiency (%) | Increase |
Std | Run | X1 | X2 | X3 | Y1 | Y2 | Y3 |
---|---|---|---|---|---|---|---|
9 | 1 | 20 | 1 | 0.1 | 441.3 | 0.864 | 31.7 |
1 | 2 | 10 | 1 | 0.3 | 627.1 | 0.663 | 22.4 |
7 | 3 | 10 | 1.5 | 0.5 | 841.2 | 0.751 | 18.4 |
11 | 4 | 20 | 1 | 0.5 | 383.1 | 0.334 | 35.5 |
6 | 5 | 30 | 1 | 0.1 | 102.9 | 0.192 | 62.7 |
12 | 6 | 20 | 2 | 0.5 | 537.6 | 0.384 | 42.1 |
3 | 7 | 10 | 2 | 0.3 | 945.5 | 1 | 12.4 |
2 | 8 | 30 | 1 | 0.3 | 197.2 | 0.254 | 59.2 |
8 | 9 | 30 | 1.5 | 0.5 | 228.3 | 0.253 | 60.4 |
16 | 10 | 20 | 1.5 | 0.3 | 421.7 | 0.548 | 28.7 |
5 | 11 | 10 | 1.5 | 0.1 | 895.5 | 0.872 | 17.7 |
10 | 12 | 20 | 2 | 0.1 | 447.4 | 0.542 | 22.5 |
15 | 13 | 20 | 1.5 | 0.3 | 411.2 | 0.457 | 25.4 |
13 | 14 | 20 | 1.5 | 0.3 | 472.7 | 0.474 | 30.4 |
17 | 15 | 20 | 1.5 | 0.3 | 398.7 | 0.458 | 34.7 |
4 | 16 | 30 | 2 | 0.3 | 294.7 | 0.315 | 48.7 |
14 | 17 | 20 | 1.5 | 0.3 | 421.7 | 0.548 | 28.7 |
Peak Position | |||||
---|---|---|---|---|---|
PAX | PAX PNPs | RESV | RESV PNPs | PAX-RESV PNPs | Inter-Atomic Bond |
3504.77 | 3512.49 | 3602.29 | 3674.52 | 3464.27 | O-H Stretching vibration of phenol (Free) |
2945.40 | 2951.19 | 2899.68 | 3030.27 | 2883.68 | C-H Stretching (alkane) |
2359.02 | 2368.66 | 2240.52 | 2291.51 | 2393.74 | S-H Stretching |
1529.60 | 1649.19 | 1638.14 | 1695.49 | 1633.76 | N-H Bending |
1375.29 | 1230.43 | 1224.30 | 1147.68 | 1373.36 | C-O Stretching (alcohols, phenols) |
765.77 | 824.91 | 843.50 | 823.63 | 842.92 | C-H Bending (aromatic) |
1253.77 | 1253.90 | 920.08 | 979.87 | 1242.20 | C = C aromatic stretch |
- | - | 1432.54 | 1452.45 | 1438.94 | O-H bending of phenols |
1182.40 | 1034.221 | 1233.02 | 1234.48 | 1132.25 | C-CO-C stretch and bending in ketone |
Pharmacokinetic Parameters | Tissue/ Organ | PAX | PAX PNPs | RESV | RESV PNPs |
---|---|---|---|---|---|
Cmax (µg/mL) | Plasma | 88.75 ± 7.98 | 99.42 ± 5.98 | 374.5 ± 6.98 | 399.24 ± 4.18 |
Tmax (min) | 5 | 5 | 5 | 5 | |
AUC0–24 (ng/mL) | 324.1 ± 23 | 924.4 ± 79 | 352.7 ± 88 | 1241.5 ± 108 | |
AUC0–∞ (ng/mL) | 533.8 ± 56 | 1409 ± 74 | 688.7 ± 34 | 286 2 ± 73 | |
T1/2 (h) | 4.68 | 12.34 | 2.12 | 8.21 | |
KE (h−1) | 0.21 | 1.42 | 0.12 | 1.47 | |
MRT(0–t) (h) | 1.24 ± 1.31 | 8.24 ± 3.22 | 0.3 ± 1.7 | 4.8 ± 2.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hussain, T.; Paranthaman, S.; Rizvi, S.M.D.; Moin, A.; Gowda, D.V.; Subaiea, G.M.; Ansari, M.; Alanazi, A.S. Fabrication and Characterization of Paclitaxel and Resveratrol Loaded Soluplus Polymeric Nanoparticles for Improved BBB Penetration for Glioma Management. Polymers 2021, 13, 3210. https://doi.org/10.3390/polym13193210
Hussain T, Paranthaman S, Rizvi SMD, Moin A, Gowda DV, Subaiea GM, Ansari M, Alanazi AS. Fabrication and Characterization of Paclitaxel and Resveratrol Loaded Soluplus Polymeric Nanoparticles for Improved BBB Penetration for Glioma Management. Polymers. 2021; 13(19):3210. https://doi.org/10.3390/polym13193210
Chicago/Turabian StyleHussain, Talib, Sathishbabu Paranthaman, Syed Mohd Danish Rizvi, Afrasim Moin, Devegowda Vishakante Gowda, Gehad Muhammed Subaiea, Mukhtar Ansari, and Abulrahman Sattam Alanazi. 2021. "Fabrication and Characterization of Paclitaxel and Resveratrol Loaded Soluplus Polymeric Nanoparticles for Improved BBB Penetration for Glioma Management" Polymers 13, no. 19: 3210. https://doi.org/10.3390/polym13193210
APA StyleHussain, T., Paranthaman, S., Rizvi, S. M. D., Moin, A., Gowda, D. V., Subaiea, G. M., Ansari, M., & Alanazi, A. S. (2021). Fabrication and Characterization of Paclitaxel and Resveratrol Loaded Soluplus Polymeric Nanoparticles for Improved BBB Penetration for Glioma Management. Polymers, 13(19), 3210. https://doi.org/10.3390/polym13193210