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Abstract: The transient elongational data set obtained by filament-stretching rheometry of four
commercial high-density polyethylene (HDPE) melts with different molecular characteristics was
reported by Morelly and Alvarez [Rheologica Acta 59, 797–807 (2020)]. We use the Hierarchical
Multi-mode Molecular Stress Function (HMMSF) model of Narimissa and Wagner [Rheol. Acta
54, 779–791 (2015), and J. Rheology 60, 625–636 (2016)] for linear and long-chain branched (LCB)
polymer melts to analyze the extensional rheological behavior of the four HDPEs with different
polydispersity and long-chain branching content. Model predictions based solely on the linear-
viscoelastic spectrum and a single nonlinear parameter, the dilution modulus GD for extensional
flows reveals good agreement with elongational stress growth data. The relationship of dilution
modulus GD to molecular characteristics (e.g., polydispersity index (PDI), long-chain branching
index (LCBI), disengagement time τd) of the high-density polyethylene melts are presented in this
paper. A new measure of the maximum strain hardening factor (MSHF) is proposed, which allows
separation of the effects of orientation and chain stretching.

Keywords: high density polyethylene; HMMSF model; viscoelastic flows

1. Introduction

Polyethylene is the most broadly used polymer, with applications ranging from
plastics packaging found in daily lives to engineering plastics. Processability of commercial
thermoplastics has always been a key area of research as we continue to work towards
more efficient and greener manufacturing. During polymer processing, polymers are
subjected to shear and extensional flow [1,2] simultaneously with extensional flow playing
a dominant role in processes such as blow molding [3], fiber spinning [4], film blowing [5]
and film casting [6,7]. With processing behaviors of polymers being influenced by their
molar mass (Mw), polydispersity (PDI), and long-chain branching (LCB) [8], studying
the effects of molecular characteristics and chain architecture on shear and extensional
rheological behavior of polyethylene is important in optimizing its processability.

It is has been known that low concentrations of LCB can be beneficial to the processing
characteristics of linear polyethylene [9]. However, conventional LCB detection methods
that use size exclusion chromatography (SEC) and nuclear magnetic resonance (NMR)
may face a challenge in detecting low levels of LCB [10–12]. Therefore, over the decades,
various methods have been put forth to detect and determine low traces of LCB in linear
polyethylene. Dilution rheology [13,14] can provide quantitative signs of LCB but requires
the determination of the molecular weight distribution by SEC, and the method is restricted
to long-chain branched polymers with well-defined topography, such as metallocene
HDPE. The increase in the traces of LCB can be observed in the enhancement of zero-shear

Polymers 2021, 13, 3217. https://doi.org/10.3390/polym13193217 https://www.mdpi.com/journal/polymers

https://www.mdpi.com/journal/polymers
https://www.mdpi.com
https://orcid.org/0000-0002-5665-4412
https://orcid.org/0000-0002-1815-7060
https://doi.org/10.3390/polym13193217
https://doi.org/10.3390/polym13193217
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/polym13193217
https://www.mdpi.com/journal/polymers
http://www.mdpi.com/2073-4360/13/19/3217?type=check_update&version=2


Polymers 2021, 13, 3217 2 of 21

viscosity (η0) [8,15]. However, due to the long relaxation times of branched polymers, it
is not easy to get an accurate measurement of the zero-shear viscosity [16,17]. Moreover,
the effects of molar mass, polydispersity, and LCB need to be separated, which is hard
as the increasing contents of LCB and broadening of molecular weight distribution have
similar effects on the shear rheological behavior [16–18]. The van Gurp-Palmen plot [19]
has been used to determine molecular information of a given polymer in terms of its
molecular weight, polydispersity and LCB [20–23]. Shroff and Mavridis [24] proposed a
long chain branching index (LCBI) based on the ratio between the zero-shear viscosity
and the intrinsic viscosity of linear polyethylene. Using similar principles, Garcia-Franco
et al. [21] showed that there was a linear relationship between the LCBI to the loss angle
calculated from the van Gurp-Palman plots at complex modulus of |G∗| = 10 kPa for
truly linear polyethylenes (hydrogenated anionically synthesized polybutadienes). Using
the rule-of-thumb relation proposed by Garcia-Franco et al. [21], Morelly and Alvarez [23]
proposed a simple qualitative index for LCB.

It is important to be able to directly relate the effects of molecular characteristics of a
polymer to its processability, thus, to determine the extent of any improvement. This gap
can be bridged by constitutive modeling of the shear and extensional rheological behaviors.
A robust constitutive model capable of reaching quantitative agreement with the rheological
properties of polymers can be applied in polymer processing simulation for testing the
processability of polymers according to the processing conditions. This would also reduce
the time and cost in physical testing of polymers to determine the suitable molecular
structure of specific polymer processes and plastics applications. The Hierarchical Multi-
mode Molecular Stress Function (HMMSF) model of Narimissa and Wagner [25–29] is
based on the concepts of hierarchical relaxation and dynamic dilution, and takes into
account the interchain tube pressure. The model accurately predicts the uniaxial and
multiaxial extensional and shear rheological behaviors of linear and LCB polymer melts
based on their linear-viscoelastic characterization. The HMMSF model features only a
single non-linear material parameter, i.e., dilution modulus GD, for extensional flows,
and an additional constraint release (CR) parameter for shear flow. The HMMSF model
was extended by Narimissa and Wagner [27,30] to encompass monodisperse, bidisperse,
and polydisperse linear polymer melts by means of relating the relaxation times to the
Rouse stretch-relaxation times for each relaxation mode, which makes the HMMSF model
suitable for all commercial polymers. The HMMSF model is a great choice to be developed
into numerical simulations of polymer processes due to its requiring of a maximum of
two material parameters, its mathematical simplicity, and the quantitative prediction of
rheological properties of polymeric melts [29,31]. Moreover, the HMMSF model is now
available for linear and nonlinear rheological modeling in the IRIS software [32].

Morelly and Alvarez [23] studied four commercial grades of high density polyethylene
(HDPE) with different molecular weight, polydispersity and level of LCB to analyze
the effects that molecular architecture and distribution of molecular weight have on the
extensional rheology of linear polyethylene. Morelly and Alvarez [23] concluded that while
molecular weight and polydispersity affect the nonlinear rheological behavior of HDPE,
even low traces of LCB have a significant influence on the extensional rheology. In the
same study, Morelly and Alvarez proposed a simplified LCBI that is based on the loss
angle (δ) calculated from the van Gurp-Palmen plot and a maximum strain hardening
factor (MSHF), which was originally developed as the ratio between zero-shear viscosity
of long-chain branched and perfectly linear polyethylene melts [33].

The objective of this paper is to systematically analyze the aforementioned commercial
grades of HDPEs (investigated by Morelly and Alvarez [23]) by the HMMSF model. This
study will attempt to relate these molecular characteristics with the dilution modulus GD
of the HMMSF model. We also propose a new method to determine the extent of the strain
hardening in polymers using molecular modeling.
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2. Materials and Methods
2.1. Materials

Four high-density polyethylene (HDPE) samples, PE-191-8, PE-127-9, PE-124-10, and
PE-236-12 were studied by Morelly and Alvarez [23] regarding the effects of polymer
chain architecture and molar mass distribution on their elongational flow. The samples
are named in the form of PE-A-B, where A denotes the molecular weight of the polyethy-
lene (in kg/mol) and B denotes the polydispersity index (PDI). Details of the rheological
measurements of the polymers can be found in Morelly and Alvarez.

2.2. Modelling Approach

The Hierarchical Multi-mode Molecular Stress Function (HMMSF) model of Narimissa
and Wagner for linear and long-chain branched (LCB) polymer melts implements the
concepts of (i) hierarchical relaxation, (ii) dynamic dilution, (iii) interchain tube pressure,
and (iv) convective constraint release [25–28,30]. The model consists of a well-defined set
of constitutive relations based on clear and physically justified assumptions and comprises
the rheology of both linear and LCB melts.

The extra stress tensor of the Hierarchical Multi-mode MSF (HMMSF) model is given as,

σ(t) = ∑
i

t∫
−∞

∂Gi(t− t′)
∂t′

f 2
i (t, t′)SIA

DE(t, t′)dt′ (1)

SIA
DE is the Doi and Edwards orientation tensor which is based on the assumption of

independent alignment (IA) of tube segments [34], and which is five times the second order
orientation tensor S,

SIA
DE(t, t′) ≡ 5

〈
u
′
u′

u′2

〉
= 5S(t, t′) (2)

u′ represents the length of the deformed unit vector u′ at time t, and the bracket
denotes an average over an isotropic distribution of unit vectors at time t′, u(t′), which
can be expressed as a surface integral over the unit sphere. The molecular stress functions
fi = fi(t, t′) in Equation (1) are defined as the inverse of the relative tube diameters ai of
each mode i,

fi(t, t′) = ai0/ai(t, t′) (3)

In the same way as the orientation tensor S, the molecular stress functions are functions
of both the observation time t and the past time time t′, when tube segments are created by
reptation. The relaxation modulus G(t) of the melt can be expressed as a sum of discrete
Maxwell modes with partial relaxation moduli gi and relaxation times τi,

G(t) =
n

∑
j = 1

Gi(t) =
n

∑
j = 1

gj exp(−t/τj) (4)

By considering the ratio of the relaxation modulus at time t = τi to the dilution
modulus GD = G(t = τD), we determine the mass fractions wi of dynamically diluted
linear or LCB polymer segments with relaxation time τi > τD,

w2
i = G(t = τi)

GD
= 1

GD

n
∑

j = 1
gj exp(−τi/τj) for τi > τD

w2
i = 1 for τi ≤ τD

(5)

We assume that the value of wi obtained at t = τi can be attributed to the chain
segments with relaxation time τi, and we consider segments with τi < τD to be permanently
diluted, i.e., we fix their weight fractions at wi = 1. Although this may seem to be a very
rough estimate, we could demonstrate that this is a sufficiently robust assumption to model
the rheology of broadly distributed polymers, and that the modeling results are largely
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independent of the number of discrete Maxwell modes used to represent the relaxation
modulus G(t) [25]. The evolution equation for the molecular stress functions fi = fi(t, t′)
of each mode can be expressed as [25],

∂ fi
∂t

= fi(K : S)− 1
α
(

1
τi

+ βCR)
[
( fi − 1)(1− 2

3
w2

i ) +
2
9

f 2
i ( f 3

i − 1)w2
i

]
(6)

with the initial conditions fi(t = t′, t) = 1. The first term on the right hand side expresses
affine deformation by stretch rate K : S with K being the velocity gradient tensor, the
second term takes into account Rouse relaxation in the longitudinal direction of the tube,
and the third term limits molecular stretch due to the interchain tube pressure in the
lateral direction of a tube segment [35]. The topological parameter α depends on the chain
architecture of the melt, and is given by,

α = 1 for LCB Melts
α = 1/3 for polydisperse linear melts

(7)

CR represents a dissipative Constraint Release (CR) term in shear flow which is zero
in extensional flow. For more details about the HMMSF model, we refer to the review
article [29].

The HMMSF model has also shown promising results in predicting the crystallization
rate and morphology of HDPE [36] as well as extensional and shear rheology of low-
viscosity polymer melts [37].

3. Comparison between Model Predictions and Data

All the shear and extensional data presented in this section are digitized from figures
1, 3b and 4 of the study by Morelly and Alvarez [23], and shall henceforth be referred
to as M&A. The extraction of shear and extensional data was manually done using the
WebPlotDigitizer [38] due to overlapping data points. The gaps seen in the presented
data are due to obstruction from other data sets. The extracted extensional stress growth
coefficient data are validated by comparisons between data digitized from figure 3b,c with
figure 4 of [23]. The comparisons showed no change in data trend and strain hardening
behavior, but a time offset was observed between the extracted data which will be further
discussed in Section 3.2 of this paper.

3.1. Linear-Viscoelastic Characterization

The linear viscoelastic data (storage G′ and loss modulus G′′) of four HDPEs were
digitized from figure 1 of [23]. Figure 1 shows the best fit (green lines) of G′ and G′′

(symbols) of PE-191-8, PE-127-9, PE-124-10 and PE-236-12 at T = 160 ◦C using the IRIS
software [32]. We used the IRIS software [32] to extract the relaxation spectrum from the
data and to predict the linear viscoelastic behavior. From the relaxation spectrum, we
also calculated the zero-shear viscosity η0 = ∑

i
giτi of the HDPEs (Table 1), which is

representative of the experimental frequency window, but we note that the true zero-shear
viscosity may be significantly larger. We also note that the extracted relaxation spectrum
using IRIS software has longer relaxation modes than the spectrum reported by M&A,
and the underestimation of the weight of long relaxation modes in M&A results in poor
prediction of the elongational viscosity at low strain rates [25]. From the linear viscoelastic
data (storage modulus G′ and loss modulus G′′), we used the IRIS software [32] to construct
van Gurp-Palman plots (vGP), i.e., loss angle δ as a function of complex modulus G*, of
the samples (Figure 2). The converging vGP plots show that neither polydispersity nor
the molar mass plays a significant role in the rheological behaviours of the samples as
δ→ 0 (or G∗ → G0

N ). Bear in mind that as the HDPE samples are semi-crystalline, their
plateau moduli cannot be easily determined. As shown by Trinckle and Friedrich [20],
polydispersity has an inverse relationship with the magnitude of the complex viscosity at
δ = 60◦ (chosen as somewhere between the terminal flow plateau, δ = 90◦, and the minima
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of the curves). Here, this inverse relationship is evident for all HDPE samples except PE-
236-12 (Figure 2). Furthermore, vGP curves can correlate the slope of G* to the molar mass
of the polymer in the low loss angle region [20,23]. The long-chain branching index (LCBI)
is another parameter that can be determined from the vGP curves at G∗ = 104Pa [21].
This will be explained in Section 4.1.

Table 1. Discrete relaxation spectrum and zero-shear viscosity of PE 191-8, PE 127-9, PE 124-10 and PE 236-12 (at T = 160 ◦C)
by us using the IRIS software (green lines), and by Morelly and Alvarez [23], respectively.

PE 191-8 (IRIS). PE 127-9 (IRIS) PE 124-10 (IRIS) PE 236-12 (IRIS)

gi [Pa] τi [s] gi [Pa] τi [s] gi [Pa] τi [s] gi [Pa] τi [s]

3.161 × 105 6.605 × 10−3 3.435 × 104 1.724 × 10−2 3.593 × 105 1.432 × 10−3 2.895 × 105 4.577 × 10−3

6.551 × 104 4.203 × 10−2 1.382 × 105 6.802 × 10−3 5.105 × 104 1.783 × 10−2 6.273 × 104 2.720 × 10−2

2.153 × 104 1.856 × 10−1 2.855 × 104 8.031 × 10−2 2.203 × 104 8.784 × 10−2 2.630 × 104 1.060 × 10−1

5.755 × 103 8.070 × 10−1 9.711 × 103 4.811 × 10−1 9.028 × 103 4.148 × 10−1 9.387 × 103 4.105 × 10−1

1.274 × 103 3.638 × 100 2.932 × 103 2.859 × 100 3.559 × 103 1.953 × 100 2.944 × 103 1.616 × 100

2.290 × 102 1.695 × 101 7.638 × 102 1.719 × 101 1.258 × 103 9.099 × 100 8.109 × 102 6.347 × 100

4.692 × 101 9.925 × 101 2.257 × 102 1.288 × 102 4.431 × 102 4.527 × 101 1.946 × 102 2.611 × 101

- - - - 1.581 × 102 4.298 × 102 5.934 × 101 1.449 × 102

η0@160◦C = 26,650 Pas η0@160◦C = 59,090 Pas η0@160◦C = 113,500 Pas η0@160◦C = 33,250 Pas

Figure 1. Cont.
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Figure 1. Cont.
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Figure 1. Storage (G′) and loss (G′′) moduli of (a) PE 191-8, (b) PE 127-9, (c) PE 124-10 and (d) PE
236-12 at 160 ◦C (symbols) digitized from Morelly and Alvarez [23]. Continuous green lines represent
fit by discrete relaxation spectrum (Equation (1) and Table 1) using the IRIS software [32].

Figure 2. Van Gurp-Palmen plot for PE 191-8, PE 127-9, PE 124-10 and PE 236-12 at 160 ◦C produced
in the IRIS software [32] using storage (G′) and loss (G′′) moduli data from Morelly and Alvarez [23].
Horizontal (dashed) and vertical (dashed-dotted) lines denote the complex modulus at δ = 60 (for
PDI), and loss angle at G* = 10 kPa (for LCBI, Equation (8)).
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3.2. Extensional Stress Growth Coefficient

Using the data of M&A, figure 3 of [23] shows discrepancies between the elongational
stress growth coefficient as a function of time for PE 124-10 reported by M&A (figure 3b
of [23]) on one side, and the stress growth coefficient calculated on the other side from the
extensional stress as a function of Hencky strain (data from figure 4 of [23]) by dividing with
the corresponding strain rate (

.
ε = 0.1, 0.5, 1/s). The same discrepancy between stress

growth coefficients reported and calculated from the elongational stress was also observed
for the other HDPE investigated by M&A. The discrepancy between the elongation stress
growth coefficients amounts to a time offset of approximately 0.3 s (Figure 3). The same
time offset of 0.3 s was observed in the data of the other three samples reported by M&A
and measured by a filament-stretching rheometer (VADER1000). It is important to note
that a similar time offset has also been observed in the filament-stretching rheometer
(VADER1000) in our lab. Therefore, as a result of this time offset, all the elongational stress
growth coefficient data presented in this paper will be determined from M&A’s extensional
stress as a function of Hencky strain (figure 4 of [23]).

Figure 3. Comparison between extensional stress growth coefficient data as a function of time of PE
124-10 digitized from figure 3b (red triangle symbols) and figure 4 of [23] (blue square symbols) of
Morelly and Alvarez [23].

Figure 4 compares the elongational stress growth coefficient as a function of time
of PE 191-8, PE 127-9, PE 124-10 and PE 236-12 at 160 ◦C with predictions of the Doi-
Edwards (DE) model [39] and HMMSF model (Equations (4)–(6)) using the IRIS software
with dilution modulus GD of 2200, 2000, 1700 and 1200 Pa for PE 191-8, PE 127-9, PE
124-10 and PE 236-12, respectively, and using the relaxation spectra given in Table 1.
Despite the limited linear-viscoelastic frequency window (a single SAOS measurement
at 160 ◦C), excellent agreement between HMMSF model predictions and experimental
data is achieved for elongational stress growth coefficient of PE 191-8, PE 124-10 and PE
236-12, while the observed deviation for PE 236-12 at Hencky strain rate (

.
ε = 0.1/s) is

most likely due to a measurement issue as it sits below the linear-viscoelastic envelope
(LVE) as compared to the other two Hencky strain rates (

.
ε = 0.5 and 1/s). We observe

fair quantitative agreement between the HMMSF model predictions and the experimental
data even at the lowest strain rate (

.
ε = 0.1/s), which would be most affected by the

underestimation of the weight of longest relaxation modes. Generally, it is important
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to extend the experimentally accessible frequency window by using time-temperature
superposition of multiple SAOS measurements at higher temperatures and extract the
relaxation spectra from the mastercurve. Nonetheless, the HMMSF model can provide
satisfying quantitative agreement between predictions and experimental data despite the
limited linear viscoelastic frequency window. The overshoots in several elongational stress
growth coefficients seen in Figure 4 are most likely not true maxima and they are rather
signs of inhomogeneous deformation which will be further discussed in Section 4.2.

Figure 4. Cont.
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Figure 4. Comparison between data (symbols) of the extensional stress growth coefficient as a
function of time of (a) PE 191-8, (b) PE 127-9, (c) PE 124-10 and (d) PE 236-12 at 150 ◦C with predic-
tions of the Doi-Edwards (DE) model (blue dash lines) and the HMMSF model (Equations (4)–(6))
(continuous black lines) using the IRIS software [32].

Figure 5 compares the extensional stress as a function of Hencky strain of the HDPE
samples at 160 ◦C to the predictions of the Doi-Edwards (DE) model [39] and HMMSF
model (Equations (4)–(6)) using again the IRIS software with dilution moduli GD of 2200,
2000, 1700 and 1200 Pa for PE 191-8, PE 127-9, PE 124-10 and PE 236-12, respectively,
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and using the relaxation spectra given in Table 1. Despite the mentioned limited linear-
viscoelastic frequency window, excellent agreement between HMMSF model predictions
and experimental data is achieved for the extensional stress of all four HDPEs. Once again,
the observed deviation for PE 236-12 at Hencky strain rate (

.
ε = 0.1/s) is most likely due

to a measurement issue as it seems to fit closer to the tube model of Doi-Edwards which is
for non-stretching monodisperse linear melts.

Figure 5. Cont.
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Figure 5. Comparison between data (symbols) of the extensional stress as a function of Hencky
strain of (a) PE 191-8, (b) PE 127-9, (c) PE 124-10 and (d) PE 236-12 at 160 ◦C with predictions of the
Doi-Edwards (DE) model (blue dash lines) and the HMMSF model (Equations (4)–(6)) (continuous
black lines) using the IRIS software [32].

Overall, the predictions of the HMMSF model are in quantitative agreement with the
experimental data of M&A despite the limited linear-viscoelastic frequency window.



Polymers 2021, 13, 3217 13 of 21

4. Discussions of Polydispersity, Molecular Architecture, and Strain Hardening
4.1. Relationship between Dilution Modulus, Polydispersity, and Long Chain Branching Index

The relationship between the dilution modulus of the HDPE samples obtained by
fitting the single nonlinear parameter of the HMMSF model (GD) to the experimental data,
and the polydispersity index (PDI) of the samples is illustrated in Figure 6. It is evident
that there is an inverse relation between PDI and GD, meaning that increasing PDI leads to
the increase in dynamic dilution, i.e., a decreasing dilution modulus. This is in line with
the basic assumption of the HMMSF model: A broader molecular weight distribution with
an increased concentration of short chains leads to enhanced permanent dilution, which in
turn reduces the value of the dilution modulus.

Figure 6. Relationship between dilution modulus (GD, polydispersity index (PDI), and long chain
branching index (LCBI).

M&A calculated the long chain branching index (LCBI) according to a rule-of-thumb
based on the relation reported by Garcia-Franco et al. [21],

LCBI = 1− δ(G∗ = 104Pa)/90◦ (8)

Figure 6 shows that except for the HDPE with PDI = 12 (i.e., PE-236-12), the LCBI of
the samples increases as their PDI increase. This observation may indicate the dependence
of long-chain branching (LCB) on the polydispersity. This will be investigated in more
detail in the following parts.

The maximum strain hardening factor (MSHF), as used by M&A, follows the zero-
shear viscosity enhancement factor of Stadler and Münstedt [33], and represents the ratio
between the elongational stress growth factor σE(t) of the polymer and the time-dependent
linear-viscoelastic envelope of the stress growth factor ηLVE(t) = 3η0(t),

MSHF = max

(
η+

E (t,
.
ε)

ηLVE(t)

)
(9)

Using the values of figure s3 of [23], Figure 7 shows the relation between LCBI, MSHF,
and PDI of the samples at strain rates of 0.1, and 1 s−1. Except for PE-236-12 @

.
ε = 0.1/s,

a direct relationship is seen between MSHF and LCBI which emphasizes the role of traces
of LCB in the strength of the strain hardening behavior of linear PE during elongational
flow. The mentioned exception is in line with the erroneous stress growth coefficient data
of the same sample reported in Figure 4 of Section 3.2.
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Figure 7. Relationship between MSHF and long chain branching index (LCBI). Data obtained by
digitization of figure s3 of [23].

The effect of LCBs, when there are only traces of LCBs and these are predominantly
of a star shape, is represented in the LVE spectrum by broadening the spectrum, but this
has no additional effect on the elongational viscosity (in addition to the effect that longer
relaxation times lead to higher stretch). Therefore, it may be of interest to calculate the
second moment of the relaxation spectrum, i.e., the disengagement (or longest) relaxation
time τd. The disengagement time (τd), and the linear-viscoelastic zero-deformation viscosity
in elongational flow (ηLVE) can be calculated from the relaxation spectrum as,

τd =
∑
i

giτ
2
i

∑
i

giτi

ηLVE = 3η0 = 3∑
i

giτi

(10)

We note again that these quantities are based on the relaxation spectra obtained from
SAOS measurements in the experimental window. Figure 8 shows the relationship between
the PDI, LCBI (Equation (8)), and τd and η0 (Equation (10)). There is a direct relation
between all those rheological parameters (except the mentioned case for the PDI of PE-236-
12). As both disengagement time and LCBI are related directly, we can confirm the validity
of Equation (8) as estimation of the amount of LCB in linear melts. Henceforth, we will use
the disengagement time as the measure of LCB.
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As already mentioned, the minor maxima observed in the extensional data (Figure 4)
are not true maxima and they are rather signs of inhomogeneous deformation (i.e., neck-
ing) at high strains as opposed to being a material property of HDPE (for more detail,
see [40–42]). Using the HMMSF model, and considering the fact that the occurrence of
stress overshoots (maxima) is unlikely in linear melt with only traces of LCB, we can
define M&A’s MSHF (Equation (9)) as the ratio between the steady-state elongational
viscosity and the LVE, ηE(

.
ε)/ηLVE, as both values are readily accessible in the IRIS software

(Figure 4). In order to determine the steady-state elongational viscosity and LVE, we can
use the corresponding values of the stress growth coefficient and LVE at Hencky strain
εH = 5 which is experimentally accessible by filament stretching rheometers,

MSHFHMMSF =
η+

E (
.
ε, εH = 5)

ηLVE(εH = 5)
(11)

Figure 9 shows the comparison between M&A’s MSHF (figure s3 of [23]) and those
obtained from the HMMSF model, both as functions of the disengagement time and
strain rate.
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Ignoring the mentioned error (PE 236-12 @
.
ε = 0.1/s), both methods show a di-

rect relationship between LCB and the MSHF independent from the PDI. In contrast to
M&A’s values, the HMMSF model (Equation (11)) shows that the MSHF is rather strain
rate insensitive. The observed rate-insensitivity of the MSHF will be discussed in more
detail next.

4.2. A New Approach for Evaluating Strain Hardening

We propose a new method for investigating the strength of the strain hardening behav-
ior in polymers based on the molecular modelling. The tube model of Doi-Edwards [39],
which was originally developed for monodisperse linear melts, assumes the tension in the
deformed chain is equal to its equilibrium value even in the nonlinear viscoelastic regime,
which is commensurate with the assumption that the tube diameter remains constant with
deformation [31]. According to the model, chains are only oriented, but not stretched.
Therefore, the segmental tube orientation SDE is the only contributor to the extra-stress
tensor σ, and if expressed as a single integral constitutive equation, it is given by,

σ(t) =

t∫
−∞

∂G(t− t′)
∂t′

SDE(t′)dt′ (12)
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Therefore, by finding the ratio between the steady-state viscosities of the HMMSF
model (ηE(

.
ε)) and the DE model (ηDE(

.
ε)) at a Hencky strain well-within the steady-state

regime (e.g., εH = 5 which is also experimentally accessible), we can define a more
robust measure of strain hardening since the effects of orientation and stretch are distinctly
separated. Hence, our proposed MSHF becomes,

MSHFHMMSF/DE =
ηE_HMMSF(

.
ε, εH = 5)

ηE_DE(
.
ε, εH = 5)

(13)

As both models are readily available in the IRIS software, calculating the MSHF is an
effortless task (see Figure 11d).

Figure 10 demonstrates the values of our proposed MSHF (Equation (13)) at different
rates. It is obvious that the MSHF is rather rate-insensitive for all three rates, and it becomes
rate-independent for the 2 highest elongation rates investigated (

.
ε = 0.5, 1/s). The

observed rate-insensitivity/independence indicates that the stretch part of the elongational
flow becomes saturated in the experimental window (at εH = 5). To examine this
observation, one must investigate the spectral dependence of the stretch (see figure 3c
of [25]).
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Figure 10. Proposed MSHF (Equation (13)) for PE samples at different strain rates.

To further investigate the stretch saturation observed in Figure 10, the relaxation
spectral dependence of the stretch f (obtained from evolution equation Equation (6))
for PE124-10 at

.
ε = 0.1, 0.5, 1/s is plotted in Figure 11. The spectral dependence

demonstrates the importance of the modes with longest relaxation times τi, which feature
the high dynamic dilution and, subsequently, lower mass fraction wi after dilution; hence,
these modes have a large effect on the prediction of the elongational viscosity [25].

It is evident (Figure 11a–c) that the stretch is fully saturated at Hencky strain εH = 5
for all strain rates. Moreover, it explains the minor difference observed between the values
measured by our proposed MSHF Equation (13) at

.
ε = 0.1 , 0.5, 1/s. As shown in

Figure 11a–c, only the four largest modes show fi > 1 at
.
ε = 0.1 /s while fi > 1 is seen in

five largest modes at
.
ε = 0.5, 1/s.

Figure 11d compares the predictions of the DE and HMMSF models as functions of
Hencky strain for PE 124-10 obtained from the IRIS software. The inverse relation between
the steady-state viscosity and strain rate is evident by both HMMSF and DE models.
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Overall, it can be concluded that our proposed MSHF method delivers rate-insensitive
and LCB-dependent results which are in agreement with the sheer effect of branching on
the extent of the strain hardening behavior.

Figure 11. Cont.
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Figure 11. Spectral decomposition of stretch as a function of Hencky strain for PE 124-10 at
(a)

.
ε = 0.1/s, (b)

.
ε = 0.5/s, (c)

.
ε = 1/s and (d) comparison between the predictions of the

DE and HMMSF models as functions of Hencky strain.

Figure 12 illustrates the mass fraction of dynamically diluted chains w2
i (Equation (5)

(see also figure 3 of [30]) as a function of relaxation modes and PDI of the samples. Results
show that (except for PE 236-12) the polydispersity of the HDPE samples has a direct
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relation with their w2
i ; i.e., an increase in PDI leads to the growth of the mass fraction. In

other words, polydispersity enhances the dynamic dilution through the broadening of the
relaxation spectrum. The same trend was observed for disengagement time (or LCBI) as a
function of PDI (Figure 6), and GD as a function of PDI (Figure 6).

Figure 12. Mass fraction of dynamically diluted chains w2
i as a function of polydispersity and

relaxation modes.

5. Conclusions

In this study, we showed the successful application of the HMMSF model on the
elongational data of four sets of high-density polyethylene (PE 191-8, PE 127-9, PE 124-10
and PE 236-12) with traces of LCB. The HMMSF model, with only one nonlinear material
parameter in uniaxial and multiaxial extensional flows, namely the dilution modulus GD,
shows excellent prediction of rheological properties of the tested polymers.

We propose a new method for investigating the strength of the strain hardening
behavior in polymers based on molecular modelling by determining the ratio between
the steady-state viscosities of the HMMSF model (ηE(

.
ε)) and the DE model (ηDE(

.
ε)) at a

Hencky strain well within the steady-state regime.
The polydispersity of the samples has a direct relation with the mass fraction of

dynamically diluted chains, w2
i , i.e., an increase in PDI leads to the growth of the mass

fraction. In other words, polydispersity enhances the dynamic dilution through broadening
the relaxation spectrum.
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