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Abstract: Humic substances (HS) are natural supramolecular systems of high- and low-molecular-
weight compounds with distinct immunomodulatory and protective properties. The key beneficial
biological activity of HS is their antioxidant activity. However, systematic studies of the antioxidant
activity of HS against biologically relevant peroxyl radicals are still scarce. The main objective of
this work was to estimate the antioxidant capacity (AOC) of a broad set of HS widely differing in
structure using an oxygen radical absorption capacity (ORAC) assay. For this purpose, 25 samples
of soil, peat, coal, and aquatic HS and humic-like substances were characterized using elemental
analysis and quantitative 13C solution-state NMR. The Folin–Ciocalteu method was used to quantify
total phenol (TP) content in HS. The determined AOC values varied in the range of 0.31–2.56 µmol
Trolox eqv. mg−1, which is close to the values for ascorbic acid and vitamin E. Forward stepwise
regression was used to reveal the four main factors contributing to the AOC value of HS: atomic C/N
ratio, content of O-substituted methine and methoxyl groups, and TP. The results obtained clearly
demonstrate the dependence of the AOC of HS on both phenolic and non-phenolic moieties in their
structure, including carbohydrate fragments.

Keywords: ORAC; humic acids; fulvic acids; carbohydrate; Trametes maxiama; 13C NMR solution-state
spectroscopy; total phenol content

1. Introduction

Humic substances (HS) are ubiquitous in natural and human-made environments,
such as organic rocks, soil, compost, and natural water [1,2]. Consolidated resources
of humic materials are deposited mostly in peat, coal, composts, and sapropel [3]. HS
are produced in situ due to chemical, physical, and microbial degradation, as well as
(re)polymerization of phenolic and aromatic components such as lignin, tannins, polysac-
charides, lipids, and proteins [4–6]. They have a non-stoichiometric elemental composition,
irregular structure, and heterogeneous molecular composition [7]. A single structural
formula cannot be assigned to any sample of HS. As a result, HS are still operationally
classified according to their solubility in acidic and alkaline solutions into two major classes:
humic acids (HA), which are insoluble at pH < 2, and fulvic acids (FA), which are soluble
in the whole pH range [8].

Recently, HS have attracted increasing attention from the point of view of their use in
medicine [9] due to their therapeutic potential against chronic inflammatory diseases [10–12],
antiviral activity [13–15], beneficial effect in accelerating cutaneous wound healing [16,17],
and chelating activity toward toxic metals [18,19].

Antioxidant properties of HS against reactive oxygen species (ROS) and free radicals
are generally believed to largely determine their significant potential for use in medicinal,
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pharmaceutical, and cosmetic application and food industries [9,19–22]. Piotrowska and
co-workers reported suppression of lipid peroxidation in human placenta mitochondria
in the presence of peat HS, confirmed by a decreased malondialdehyde level [23]. The
reported hepatoprotective [24–26], neuroprotective [20], renoprotective [27], and cardio-
protective [28,29] effects of HS were explained by their antioxidant activity.

ROS or high levels of free radicals cause oxidative stress, leading to degradation
of DNA, cell membranes, proteins, and other cellular constituents [30–32]. This may in-
duce a number of human diseases and conditions, such as atherosclerosis, rheumatoid
arthritis, muscular dystrophy, cataracts, neurological disorders, some types of cancers, and
aging [33]. Oxidative stress can be ameliorated by supplying effective antioxidants [34,35].
Epidemiological studies of dietary antioxidant consumption and health outcomes have
demonstrated the protective effects of various antioxidant-rich foods against chronic dis-
eases (cardiovascular disease, neurodegeneration, and cancer), myocardial infarction, and
stroke. Regular dietary antioxidant intake results in increased total antioxidant capacity in
the serum and decreased plasma levels of inflammatory cytokines (IL-6 and TNF-α), the
oxidative stress biomarker F2-isoprostane, and a nonspecific marker of inflammation in
serum, C-reactive protein (CRP) [36]. The antioxidant activity of HS has been attributed
mainly to the presence of phenolic and quinoid moieties. Similar to phenols, HS can behave
as electron donors or acceptors depending on the redox state of the system [21,37]. This
paradigm is in good agreement with the observation that phenol moieties are structural
fragments responsible for the antioxidant activity of many other naturally occurring bioac-
tive substances [9,38,39]. Still, very little is known about the non-phenolic moieties of
HS, which could also contribute to their antioxidant properties. Non-phenolic antioxi-
dants represent an important and abundant class of natural radical scavengers [34]. Over
the past decade, a variety of natural polysaccharides have attracted great interest due to
their antioxidant functions, responsible for wide-ranging beneficial therapeutic effects and
health-promoting properties [40,41]. The content of carbohydrates in HS can reach 10% [42],
which might represent their contribution to the antioxidant activity of humic materials.

More than 40 laboratory protocols for testing antioxidant capacity and their modifica-
tions are reported in the literature [43–45]. Among them, the oxygen radical absorption
capacity (ORAC) method is relevant to in vivo conditions because it uses a biologically
relevant free radical source, peroxyl radical ROO•, which is the most prevalent free radical
in human biology [36,46]. Peroxyl radicals are characterized as free radicals that pre-
dominate in lipid oxidation in biological systems and in foodstuffs under physiological
conditions [46]. The ORAC method was initially based on the ability of antioxidants to
prevent the consumption of β-phycoerythrin mediated by peroxyl radicals generated dur-
ing the aerobic thermal decomposition of 2,2′-azo-bis(2-amidinopropane)dihydrochloride
(AAPH). However, the currently employed assay, based on work published by Ou and
co-workers [47], in which fluorescein is proposed as the target molecule, is believed to de-
termine the capacity of antioxidants to trap AAPH-derived peroxyl and/or AAPH-derived
alkoxyl radicals [48]. Along with peroxyl radicals, alkoxyl radicals are also abundant,
damaging free radicals in the human body [49].

The ORAC test is usually classified as a method that involves hydrogen atom transfer
(HAT) reactions [36,46,48,50]. For non-phenolic antioxidant reactions, donation from
other than H atoms can also occur with peroxyl radicals [34]. The presence of alkoxyl
radicals complicates the situation, and they can be scavenged by reactions involving
proton-coupled electron transfer (PCET), electron transfer–proton transfer (ET-PT), and
second sequential proton loss electron transfer (SPLET) mechanisms [49,51]. Despite some
uncertainty in our understanding of the mechanisms underlying the ORAC assay [48],
this approach provides a direct measure of the hydrophilic and lipophilic chain-breaking
antioxidant capacity [36] of both phenolic [50] and non-phenolic antioxidants, such as
carbohydrates [52]. However, studies devoted to assessing the antioxidant activity of HS
mainly use assays with the 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS)
cation radical [37,53], superoxide radical O2

• [54], reduction of the complex of ferric ions
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(Fe3+)− [55], or Cu (II) reduction to Cu (I) [56], or they initiate oxidation of 1,4-dioxane as
a model reaction [57]. The only study of the antioxidant activity of HS against peroxyl
radical induced by α,α-azobisizobutyronytril (AIBN) was performed for a single sample of
coal-derived HA [58].

The main objective of this work was to characterize HS antioxidant capacity (AOC)
using the ORAC assay as a function of HS structure, which can be responsible for the type
of activity of humic materials. To this end, we quantified total phenol content using the
Folin–Ciocalteu method and carbon distribution among the structural fragments using
quantitative 13C solution-state NMR of 25 samples of soil, peat, coal, and aquatic HS and
humic-like substances (HLS) produced by basidiomycete fungi. To obtain insight into the
antioxidant activity of HS, we developed a forward stepwise multiple linear regression. To
visualize HS clustering based on physical–chemical properties responsible for antioxidant
activity, we applied principal component analysis (PCA).

2. Materials and Methods

Ultrapure deionized water (Milli-Q®, 18 MΩ cm, Millipore, Burlington, MA, USA) was
used to prepare all solutions. All chemicals used were of at least analytical grade. Inorganic
compounds (NaOH, HCl, KCl, KH2PO4, K2HPO4) were obtained from Chimmed (Russia).
Folin and Ciocalteu’s phenol reagent, 2,2′-azobis (2-amidino-propane) dihydrochloride
(AAPH), fluorescein, 6-hydroxy-2,5,7,8-tetra-methylchroman-2-carboxylic acid (Trolox),
hydroxybenzoic acid (HBA), vanillic acid, syringic acid, gallic acid, fumaric acid, ferulic
acid, sinapic acid, ascorbic acid, and vitamin E were procured from Sigma-Aldrich (Burling-
ton, MA, USA). Standard samples of HS, including Suwannee River humic acid (SRHA)
and fulvic acid (SRFA) and dissolved organic matter (SRDOM), were kindly provided
by I.V. Perminova, coordinator of the Russian chapter of the International Humic Sub-
stances Society (IHSS, St. Paul, MN, USA). Commercially available coal humic materials
CHA-AGK and CHA-ALD were purchased from Biotechnology Ltd. (Moscow, Russia) and
Sigma-Aldrich (Burlington, MA, USA), respectively.

2.1. Isolation of Humic Substances

Humic materials were isolated from natural sources including soil (9 samples), peat
(9 samples), coal (2 samples), and natural water (3 samples). They were either fractionated
into humic acid (HA) and fulvic acid (FA) or used as a non-fractionated mixture of HA
and FA (HF). Additionally, humic-like substances (HLS) were used, synthesized during
solid-phase cultivation of the basidiomycete Trametes maxima 0275 (2 samples). Overall,
25 samples of humic materials were used in the study. A list of the HS and their sources is
presented in Table 1.

Soil HA and FA (SHA and SFA) were isolated from Albic Retisol (Moscow region,
Russia) and Gleyic and Endocalcic Chernozems (Voronezh region, Russia), as described
in [59]. In brief, the SHA and SFA from Albic Retisol were obtained by alkali extraction
with 0.1 M NaOH. For Chernozems, before alkali extraction the sample was pretreated
with 10% HCl. The alkali extract was treated with 0.3 M KCl and centrifuged to remove
organomineral colloidal particles. The SHA and SFA were obtained by acidification of
the supernatant to pH 1–2. The precipitated HA were desalted by dialysis. To isolate
FA, the acidic supernatant was passed through XAD-2 resin. The sorbed fraction of SFA
was recovered by back elution with 0.1 M NaOH, desalted on cation-exchange resin,
and freeze-dried.

Peat HF (PHF) was isolated from samples of highland and lowland peat located in
the Tver region (Russia). The highland peat type was sedge (T6), the lowland peat types
were sedge (T3) and woody (T7). The isolation procedure was described elsewhere [60]
and included preliminary treatment with an ethanol–benzene mixture (1:1) followed by
alkaline extraction (0.1 M NaOH). The SHA and SFA were obtained by acidification as
described for soil HA and FA.
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Table 1. Humic substances used in the study and their sources.

HS Index HA Type Source

Soil
SHA-PG96 HA Albic Retisol
SHA-PW96 HA Albic Retisol
SHA-PG94 HA Albic Retisol
SHA-CM94 HA Gleyic Chernozem
SHA-PW94 HA Albic Retisol
SHA-CTV94 HA Endocalcic Chernozem

SFA-PP96 FA Albic Retisol
SFA-PW96 FA Albic Retisol
SFA-PG96 FA Albic Retisol

Peat
PHA-T398 HA Lowland peat, sedge type
PHA-T798 HA Lowland peat, woody type
PHA-T698 HA Highland peat, sedge type
PFA-T398 FA Lowland peat, sedge type
PFA-T698 FA Highland peat, sedge type
PFA-T798 FA Lowland peat, woody type
PHF-T398 HA+FA Lowland peat, sedge type
PHF-T698 HA+FA Highland peat, sedge type
PHF-T798 HA+FA Lowland peat, woody type

Natural water
SRHA HA Suwannee River (IHSS standard)
SRFA FA Suwannee River (IHSS standard)

SRDOM DOM Suwannee River (IHSS standard)
Coal

CHA-AGK HA Biotechnology Ltd. (RF)
CHA-ALD HA Aldrich (Germany)

Humic-like substances
HLS-45 HA Oat straw solubilized by Trametes maxima 0275
HLS-70 HA Oat straw solubilized by Trametes maxima 0275

Coal HA (CHA) was obtained from two commercial preparations, ALD (Aldrich HA)
and AGK (Biotechnology Ltd., Moscow, Russia). They were desalted on a cation-exchange
resin and freeze-dried.

Aquatic HS consisted of standard samples of HS produced by the International Humic
Substances Society (IHSS, St. Paul, MN, USA), including Suwannee River HA (SRHA), FA
(SRFA), and dissolved organic matter (SRDOM).

Two samples of HLS, HLS-45, and HLS-70 were produced in our laboratory by the
basidiomycete Trametes maxima 0275 cultivated on oat straw. HLS-45 and HLS-70 were
isolated after 45 and 70 days of solid-phase cultivation, as described previously [61]. In brief,
after 45 and 70 days of cultivation, the flasks containing fungal cultures were supplemented
with warm distilled water (60 ◦C) and left for 6 h under constant stirring. Then the liquid
was filtered through a paper filter to separate the straw with mycelium. The filtrate was
supplemented with concentrated HCl drop-by-drop to adjust the pH to 2.0. The solution
was left for 24 h; as a result, a grayish-brown flocculent precipitate was formed. The
precipitate was collected by centrifugation, washed with distilled water, centrifuged again,
and dialyzed against distilled water.

2.2. Characterization of Humic Substances

The CHN content was determined using a model 1106 elemental analyzer (Carlo Erba
Strumentazione, Milan, Italy). The oxygen content was calculated as the difference between
the dry ash-free weight of the sample and the total CHN content.

Quantitative 13C solution-state NMR spectra were recorded on a Bruker Advance
400 spectrometer (Bruker BioSpin, Germany) operating at 100 MHz according to Hertkorn
and co-authors [62]. To quantify the spectra obtained, the following assignments were
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made (in ppm): 220–189, C atoms of quinone and ketone groups (CC=O); 189–168, C
atoms of carboxylic and esteric groups (CCOO); 168–145, aromatic O-substituted C atoms
(CAr-O); 145–108, aromatic H- and C-substituted atoms (CAr); 108–91, anomeric double
substituted aliphatic C atoms (COCO); 91–66, О-substituted methine groups (CCHO), 66–59,
O-substituted methylene groups (CCH2O); 59–48, methoxyl C atoms (CCH3O), 48–0, and
aliphatic H- and C substituted C atoms (CCHn). In addition to the integrals of the given
ranges, the sum of O-substituted aliphatic C ΣCAlk-O and carbohydrate carbon ΣCCarb
and the ΣCAr/ΣCAlk ratio were calculated. The value of ΣCAlk-O was the sum of COCHO +
CCHO + CCH2O + CCH3O, ΣCCarb was the sum of COCO, CCHO, and CCH2O, and ΣCAr and
ΣCAlk were the sum of CAr + CAr–O and ΣCAlk-O + CCHn, respectively.

The total phenolic (TP) content of the HS and HLS samples was determined according
to the Folin–Ciocalteu method [63].

2.3. Estimation of Oxygen Radical Absorbance Capacity (ORAC) of Humic Substances

ORAC of HS was determined as described by Ou and co-authors [47]. For this purpose,
2,2′-azobis (2-amidino-propane) dihydrochloride (AAPH), fluorescein, and 6-hydroxy-
2,5,7,8-tetra-methylchroman-2-carboxylic acid (Trolox) were prepared in 75 mM phosphate
buffer with a pH of 7.4. For measurements, AAPH was prepared at a concentration of
600 mM and made fresh daily. A sodium fluorescein stock solution (4 µM) was stored
wrapped in foil at 5 ◦C. Immediately prior to use, the stock solution was diluted with
phosphate buffer to a final concentration 0.08 µM. Trolox concentration was 25 µM.

To perform the measurements, a Synergy HT Multi-Detection Microplate Reader
(BioTek Instruments Inc., Winooski, VT, USA) was used, with 115 µL of working sodium
fluorescein solution added to all experimental wells. Control wells received 15 µL of
phosphate buffer, while standards received 15 µL of Trolox dilution and samples received
15 µL of HS solution at a concentration 10 mg L−1. The plate was then allowed to equilibrate
by incubating for 30 min at 37 ◦C. Reactions were initiated by the addition of 15 µL of
AAPH solution [64]. Fluorescence was then monitored kinetically with data taken every
minute for 1 h. An excitation wavelength of 485 nm and an emission wavelength of 528 nm
were used in the assay. The AOC value referred to the net protective area under the
quenching curve of fluorescein in the presence of an antioxidant. The net area under the
curve (AUC) of the standard (Trolox) and HS was calculated. The AOC related to Trolox
was calculated as follows:

AOC =
AUCHS −AUCcontrol

AUCTrolox −AUCcontrol
× [Trolox], (1)

where [Trolox] is the concentration of Trolox in micromoles.
The results were evaluated using Origin 8.0 software (OriginLab Corp., Northampton,

MA, USA) and expressed as µmol of Trolox equivalent (TE) per milligram of sample. The
measurements were performed in fourfold repetition. To compare antioxidant properties
of HS with other antioxidants, the AOC of several individual compounds was estimated
using the ORAC approach including hydroxybenzoic acid (HBA), vanillic acid, syringic
acid, gallic acid, fumaric acid, ferulic acid, sinapic acid, ascorbic acid, and vitamin E.

2.4. Statistical Data Treatment

Data on the AOC of HS are presented as the mean ± standard deviation (SD). To
analyze differences among means, analysis of variance (ANOVA) was applied, followed by
Tukey’s HSD test at p < 0.05. To reveal the relationship between the structural characteristics
and antioxidant properties of HS, a correlation analysis, principal component analysis
(PCA), was applied and a forward stepwise regression model was developed. All statistical
data treatments were carried out using the Statistica 8.0 software package (StatSoft, Dell
Inc., Round Rock, TX, USA).
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3. Results
3.1. Structural Characteristics of HS

A set of the analyzed humic materials included HS samples isolated from different
natural environments and HLS produced by the basidiomycete fungus. In addition, the HS
samples were of different fractional composition, including HA, FA, and non-fractionated
HA and FA. This enabled substantial variation of structural characteristics within the test
set (Table 2).

The data on elemental composition show that the highest amount of nitrogen was
characteristic of soil humic acids and fulvic acids: the C/N ratio values varied between
11 and 20, whereas for peat HA and HF they varied from 26 to 50, reaching absolute
maximum for peat FA above 100. This is indicative of the minimal content of nitrogen
in peat FA. These humic materials were characterized with maximum values of the O/C
ratio and the content of aliphatic units, for both carbohydrates and non-oxidized alkyl
chains. They had minimum ΣCAr/ΣCAlk values (around 0.5), which is indicative of the
highly aliphatic nature of these humic materials. The most aromatic humic materials with
the lowest H/C ratio (0.6–0.8) and the highest CAr values were humic acids from Mollisol
and coal.

The magnitude of the H/C ratio, which indicates the degree of aromaticity or unsatura-
tion [65], varied from 0.62 (prevalence of aromatic fragments) to 1.22 (prevalence of aliphatic
fragments). On average, aromaticity increased in the following order: HLS < freshwater
HS < peat HS < soil HS < coal HS. The same trend could be observed when using the
ΣCAr/ΣCAlk ratio as an indicator of aromaticity (the higher this ratio, the higher the aro-
maticity). A statistically significant correlation (r = −0.64) between H/C and ΣCAr/ΣCAlk
was calculated (Table S1).

The relative content of oxygen-bearing moieties, which can be indicated by the O/C
ratio, or oxidation degree, was in the range of 0.31–0.66. The oxidation degree varied in the
following descending order: freshwater HS > peat HS > soil HS > HLS > coal HS. Recently,
polysaccharides as a source of novel potential antioxidants were reported [31,66–70]. Al-
though carbohydrates do not possess strong antioxidant activity due to low numbers of
aldehyde and ketone groups in their structure, a detailed study of the antioxidant activity
of monosaccharides, oligosaccharides, and complex carbohydrates yielded non-zero AOC
values for sugars from 0.001 to 0.022 µmol TE mg−1 [52]. That is why it was of interest to
compare the content of oxygen-bearing fragments in HS from various sources (Figure 1).

Aquatic HS demonstrated the highest content of carboxylic groups, and coal HS had
the lowest. Coal HS was characterized by its minimal content of carbohydrate fragments. In
contrast, peat HS and HLS had the highest content of ΣCCarb. HLS showed the maximum
content of methoxyl carbon, showing a high contribution of lignin fragments in the structure
of these humic materials.

The obtained data on the elemental composition and carbon content of the structural
fragments are in good agreement with those reported in the literature [65,71]. For instance,
in a statistical evaluation of the elemental composition of HS by Rice and MacCarthy [65],
the reported values for O/C and H/C of HA were 0.08–1.20 and 0.08–1.85, respectively,
which coincide with the values of 0.31–0.60 and 0.62–1.10 found in our study (Table 2). For
FA, O/C and H/C varied from 0.17 to 1.19 and from 0.77 to 2.13, while in our work the
analogous values were 0.51–0.66 and 0.76–1.10. The distribution of carbon among major
structural fragments of HS as measured by 13C NMR spectroscopy corroborated well with
the reported data for soil HS [59,72], peat HS [73], freshwater HS [74], and coal humic
materials [75].
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Table 2. Structural characteristics of humic materials used in this study.

HS Index
Atomic Ratio 1 Content of Carbon in Structural Fragments Determined by 13CNMR Spectroscopy as Integral Intensity (%) 2

TP 3, µmol TE mg−1
O/C H/C C/N CC=O CCOO CArO CAr COCO CCHO CCH2O CCH3O CCHn ∑CAr ∑CCarb ∑CAlk ∑CAlk-O ∑CAr/∑CAlk

Soil
SHA-PG96 0.48 0.93 15.9 2.0 17.0 11.0 31.0 2.0 10.0 2.0 4.0 22.0 42.0 14.0 40.0 18.0 1.05 1.378 ± 0.001
SHA-PW96 0.46 1.10 14.0 4.0 19.0 9.0 25.0 2.0 8.0 2.0 4.0 26.0 34.0 12.0 42.0 16.0 0.81 1.230 ± 0.005
SHA-PG94 0.45 1.00 13.6 1.1 15.2 12.8 32.8 3.0 10.0 2.1 5.8 17.5 45.6 15.1 38.4 20.9 1.19 1.392 ± 0.001
SHA-CM94 0.34 0.66 13.8 1.5 14.3 8.7 48.1 2.0 6.0 0.8 4.6 14.2 56.8 8.8 27.6 13.4 2.06 1.760 ± 0.001
SHA-PW94 0.46 0.92 11.5 1.0 17.0 13.0 33.0 2.0 8.0 2.5 5.5 17.0 46.0 12.5 35.0 18.0 1.31 1.753 ± 0.001
SHA-CTV94 0.42 0.62 15.9 3.0 15.0 11.0 43.0 3.0 7.0 2.0 3.0 13.0 54.0 12.0 28.0 15.0 1.93 0.510 ± 0.001

SFA-PP96 0.54 0.91 11.3 2.0 23.0 7.0 19.0 3.0 15.0 3.0 4.0 22.0 26.0 21.0 47.0 25.0 0.55 1.167 ± 0.001
SFA-PW96 0.58 0.94 17.2 4.0 19.5 9.8 23.5 2.0 10.0 2.5 3.5 25.1 33.3 14.5 43.1 18.0 0.77 1.523 ± 0.001
SFA-PG96 0.61 0.88 19.4 3.1 18.0 13.1 28.2 2.0 11.0 2.4 4.2 17.6 41.3 15.4 37.2 19.6 1.11 1.176 ± 0.001

Peat
PHA-T398 0.44 0.87 25.9 8.7 15.5 7.4 32.4 7.4 4.4 2.0 4.1 18.2 39.7 13.8 36.1 17.9 1.10 2.743 ± 0.001
PHA-T798 0.49 0.87 46.2 4.1 11.0 9.4 31.7 3.7 14.2 2.7 3.4 19.8 41.1 20.6 43.8 24.0 0.94 2.986 ± 0.001
PHA-T698 0.55 0.91 37.9 1.7 8.6 7.2 35.4 2.6 12.3 2.7 4.0 25.7 42.5 17.6 47.3 21.6 0.90 3.353 ± 0.001
PFA-T398 0.66 0.76 120 3.1 17.0 9.0 28.1 4.9 11.8 2.3 3.8 20.0 37.1 19.0 42.8 22.8 0.87 1.239 ± 0.001
PFA-T698 0.51 1.03 101 1.6 10.9 6.9 24.4 6.9 26.1 3.1 1.8 18.3 31.3 36.1 56.2 37.9 0.56 2.368 ± 0.001
PFA-T798 0.60 1.00 74.1 2.2 11.8 10.9 24.0 9.6 24.1 3.5 2 11.9 34.9 37.2 51.1 39.2 0.68 1.602 ± 0.001
PHF-T398 0.49 1.10 35.5 3.4 10.6 9.8 32.9 6.7 11.0 3.0 5.6 16.9 42.7 20.7 43.2 26.3 0.99 2.398 ± 0.001
PHF-T698 0.54 0.91 48.5 3.7 10.9 8.4 24.4 7.7 19.8 4.8 4.2 16.2 32.8 32.3 52.7 36.5 0.62 2.275 ± 0.001
PHF-T798 048 0.87 53.0 3.5 10.4 8.7 28.1 8.8 15.2 3.5 4.4 17.4 36.8 27.5 49.3 31.9 0.75 2.275 ± 0.001

Natural water
SRHA 0.60 0.97 52.5 8.5 18.1 10.7 26.6 6.3 8.9 1.9 3.4 15.6 37.3 17.1 36.1 20.5 1.03 2.504 ± 0.001
SRFA 0.62 0.99 91.1 7.4 19.6 10.9 22.3 4.4 10.0 1.8 4.0 19.6 33.2 16.2 39.8 20.2 0.83 1.537 ± 0.001

SRDOM 0.61 0.95 55.6 6.9 19.9 8.0 23.7 5.2 11.3 2.0 4.0 19.0 31.8 18.5 41.5 22.5 0.76 1.791 ± 0.001
Coal

CHA-AGK 0.32 0.79 112 0.5 16.9 10.0 47.8 0 0 1.0 3.0 20.8 57.8 1.0 24.8 4.0 2.33 2.348 ± 0.001
CHA-ALD 0.31 0.81 77.0 1.0 15.0 13.0 43.0 0 0 1.0 6.0 21.0 56.0 1.0 28.0 7.0 2.00 1.521 ± 0.001

Humic-like substances
HLS-45 0.37 1.22 16.1 3.8 10.9 11.2 25.6 6.8 13.7 4.4 8.4 15.1 36.8 24.9 48.4 33.3 0.76 1.481 ± 0.003
HLS-70 0.55 1.03 23.7 4.0 15.1 10.9 26.8 4.8 12.7 4.2 9.0 12.5 37.6 21.7 43.2 30.7 0.87 1.381 ± 0.001

1 H/C, O/C and N/C ratios were calculated on an ash- and water-free basis. 2 Content of carbon in structural fragments was determined by 13C NMR spectroscopy as integral intensity (%) of the following
spectral regions (ppm): 220–189 (CC=O), 189–168 (CCOO), 168–145 (CAr-O), 145–108 (CAr), 108–91 (COCHO), 91–66 (CCHO), 66–59 (CCH2O), 59–48 (CCH3O), 48–0 (CCHn). 3 Values are means ± SD (n = 3).
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Figure 1. Percentage of O-containing structural fragments in humic materials used in this study as
measured by 13C NMR spectroscopy.

In general, the obtained data demonstrate trends that are generally reported for HS
derived from different natural resources. Coal-derived HA had the minimum O/C ratio;
they were enriched with aromatic fragments ΣCAr [65,76]. HS extracted from freshwater
were characterized by their maximal content of CCOO carboxylic groups due of high
microbiological activity, resulting in oxidation of humic materials [74]. HS from peat had a
high content of ΣCCarb carbohydrates [73] due to low intense biological turnover in peat,
resulting in incomplete microbiological decomposition of hydrocarbon residues. So, it can
be concluded that the HS samples used in this study were typical representatives of humic
materials isolated from the corresponding environments.

Phenolic moieties are supposed to be the most important scavengers of peroxyl
radicals in different antioxidant compounds, including HS [37,38,77,78]. They convert
peroxyl radicals into hydroperoxides and are themselves converted into phenoxyl rad-
icals. A direct estimation of TP in HS demonstrated a phenol content in the range of
0.51–3.53 µmol TE mg−1 (Table 2). The maximum was observed for peat HA (PHA-T698)
and the minimum for soil HA (SHA-CTV94). In general, peat HS were characterized by
higher phenol content than other preparations. For peat HS, the TP values were in the range
of 1.239–3.353 µmol TE mg−1, while for soil, coal, and freshwater HS, they did not exceed
1.760, 2.348, and 2.504 µmol TE mg−1, respectively. For the HLS samples, the TP values were
1.381–1.481 µmol TE mg−1, close to those observed for soil HS (0.510–1.760 µmol TE mg−1).
As a rule, the humic acid fractions were characterized by a higher content of phenols com-
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pared to the corresponding fulvic acids. In general, the values of this parameter for HS
from different sources strongly overlap.

Thus, the analysis of structural characteristics showed that the studied HS had a wide
variation in parameters that might determine their antioxidant activity.

3.2. Antioxidant Capacity of HS

The AOC values of the HS samples isolated from different environments used in this
study are shown in Table 3.

Table 3. AOC values of HS samples from different environments used in this study as measured by
the ORAC method.

HS Index AOC, µmol TE mg−1

Soil
SHA-PG96 0.87 ± 0.08 bc

SHA-PW96 0.74 ± 0.04 bc

SHA-PG94 0.75 ± 0.03 bc

SHA-CM94 0.97 ± 0.05 d

SHA-PW94 1.04 ± 0.05 de

SHA-CTV94 0.31 ± 0.02 a

SFA-PP96 1.08 ± 0.06 def

SFA-PW96 1.20 ± 0.06 efg

SFA-PG96 1.39 ± 0.06 hi

Peat
PHA-T398 1.55 ± 0.03 hij

PHA-T798 1.63 ± 0.05 jk

PHA-T698 1.75 ± 0.03 kl

PFA-T398 1.56 ± 0.08 hij

PFA-T698 2.56 ± 0.06 m

PFA-T798 2.25 ± 0.13 m

PHF-T398 1.38 ± 0.03 gh

PHF-T698 1.44 ± 0.05 hi

PHF-T798 1.56 ± 0.08 ij

Natural water
SRHA 2.07 ± 0.09 m

SRFA 1.22 ± 0.04 fg

SRDOM 1.41 ± 0.05 hi

Coal
CHA-AGK 1.84 ± 0.07 l

CHA-ALD 1.07 ± 0.06 def

Humic-like substances
HLS-45 0.70 ± 0.05 b

HLS-70 0.91 ± 0.08 cd

Values are means ± SD (n = 4). Values denoted with different letters within a column are significantly different at
p < 0.05 according to Tukey’s HSD test.

The obtained data indicate that for terrestrial sources (peat, soil), fulvic acids were
characterized by much higher AOC values compared to humic acid isolated from the same
source. For example, for soil humic materials, the AOC value (µmol TE mg−1) was 0.75
for SHA-PW96 and 1.2 for SFA-PW96; for peat HS, the corresponding values were 1.63
for PHA-T798 and 2.25 for PFA-T798. The AOC value of the non-fractionated sample of
PHF-T798 was 1.56 µmol TE mg−1, which is very close to that of PHA-T798. This might
be connected to the prevalence of humic acid fractions in the non-fractionated samples of
peat HS.

Since phenolic moieties are generally believed to be responsible for the antioxidant
activity of HS [39,79,80], one would expect that among the studied samples, the maximum
antioxidant capacity would be observed for peat HS. Indeed, the data in Table 3 show
that the highest AOC values were measured for peat HS. However, ANOVA followed by
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Tukey’s HSD test demonstrated that some samples of soil FA, coal HA, and freshwater HA
also fell within the homogeneous groups of peat HS formed according to AOC (Table S2),
indicating the proximity of their values.

AOC values of HS (0.31–2.56 µmol TE mg−1) were close to those of ascorbic acid
(2.32 µmol TE mg−1) and vitamin E (2.95 µmol TE mg−1), but much lower than those of
the other antioxidants used in the study (Table 4).

Table 4. AOC of individual antioxidants estimated by the ORAC method.

Compound AOC, µmol TE mg−1

Ascorbic acid 2.32 ± 0.21
Vitamin E 2.95 ± 0.16
Gallic acid 6.35 ± 0.25

Syringic acid 7.67 ± 0.39
Hydroxybenzoic acid 13.11 ± 0.63

Sinapic acid 15.71 ± 1.01
Vanillic acid 20.46 ± 1.14
Ferulic acid 23.64 ± 1.18

Coumaric acid 30.58 ± 1.32
Values are means ± SD (n = 4).

The obtained ORAC values for HS were slightly lower compared to those determined
with the Trolox equivalent antioxidant capacity (TEAC) approach [53]. For HLS-45 and
HLS-70, the TEAC AOC values were 3.3 and 2.9 µmol mg−1, respectively, which are
3–5 times larger than the corresponding ORAC AOC values (Table 3). For water HS
samples, IHSS standards SRHA, SFRA, and SRDOM, the TEAC AOC values were 3.0,
2.4, and 2.5 µmol mg−1, respectively, which is 1.5–2.0 times larger than the ORAC values
(Table 3). Of importance is that the described inconsistency between the TEAC and ORAC
values for the analyzed humic materials, with the former substantially exceeding the latter,
was not observed with the individual antioxidants [52,81]. Hu and co-authors reported that
monosaccharides, oligosaccharides, and complex carbohydrates showed ORAC values, but
not TEAC values [52]. A similar trend of lower TEAC values compared to ORAC values
was reported for the phenolic antioxidants oxyresveratrol, resveratrol, pinosylvin, and
pterostilbene [81]. This inconsistency might be related to the more complex antioxidant
behavior of HS than individual antioxidant compounds.

Several significant correlations were found between the AOC values and structural
characteristics of HS (Table S1), including TP (r = 0.64), C/N (r = 0.65), CCH3O (r = −0.56),
ΣCCarb (r = 0.46), CCHO (r = 0.46), and COCO (r = 0.39). All significant correlations between
the AOC values and structural parameters of HS are shown in Figure 2.

As can be seen from the correlation dependencies presented in Figure 2, the antioxidant
activity of humic materials against peroxyl radicals depended on the content of both
phenolic and non-phenolic fragments in the structure of HS.
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Figure 2. Correlation fields between AOC values of HS and their physical–chemical properties: (a) TP; (b) C/N ratio;
(c) CCH3O; (d) ΣCCarb; (e) CCHO; (f) COCO.
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4. Discussion

The AOC values of HS against peroxyl radicals found in this study varied from
0.31 to 2.56 µmol TE mg−1. The high-end values are close to those of ascorbic acid
(2.32 µmol TE mg−1) and vitamin E (2.95 µmol TE mg−1). This is in line with other studies
on the antioxidant activity of HS and their comparison with other antioxidants [82–84].
Similar effects of ascorbic acid and HA were reported for wheat growth and attributed to
their antioxidant activity [83]. Sakr and co-authors demonstrated a similar capability of
ascorbic acid and HA to mitigate biotic stress in wheat plants induced by a pathogenic
fungus, Fusarium graminearum [85]. Peat HS were shown to possess antioxidant activity
close to that of vitamin E [23,84,86].

Significant correlations were found between the AOC values and structural character-
istics of HS such as TP, C/N, CCH3O, ΣCCarb, CCHO, and COCO (Figure 2). The relationship
between AOC and TP can be explained by the fact that a formal H atom donation from weak
X–H bonds (where X = O, N, or S) is the major mechanism of peroxyl radical quenching.
This mechanism relies on the ability of certain antioxidants (chain-breaking antioxidants)
to donate H atoms to ROO• [34]. This mechanism of action occurs for phenols and antioxi-
dant compounds structurally related to phenols, such as aromatic amines, phenothiazines,
pyridinols, pyrimidinols, and thiols [34].

The C/N ratio of humic materials is supposed to reflect a depletion of amino acid
content along with a dominant accumulation of aromatic compounds with increasing HS
age [2]. As a result, more transformed HS possess an aromatic backbone enriched with
phenolic and quinonid units [87]. The calculated negative significant correlation r = −0.40
between C/N and the metoxyl carbon CCH3O content (Table S1), related to unaltered lignin
fragments in the HS structure, is in line with this idea. Thus, a positive correlation between
the AOC of HS and the C/N ratio most likely indicates a possible increase in the AOC of
humic materials in the process of aging. The content of methoxyl fragments, in their turn,
also negatively correlated (r = −0.56) with the AOC of HS (Table S1). Of particular interest
is a direct correlation between AOC values and the content of anomeric aliphatic C atoms
COCO and О-substituted methine groups CCHO, and the total content of carbohydrates
ΣCCarb. Over the past decade, a variety of natural polysaccharides from functional and
medicinal foods have attracted great interest due to their antioxidant functions, such as free
radical scavenging [41], including peroxyl radicals [39,88]. One proposed model for the
effects of free radical scavenging of carbohydrates is to subtract their anomeric hydrogen
by free radicals and combine it to form a neutral molecule; then the generated alkoxyl
radicals promote the intramolecular hydrogen abstraction reaction, which triggers the
spirocyclization reaction to terminate the reactions of radical chains [40].

Some HS samples did not obey the general trends shown in Figure 2. The most
dramatic examples can be seen for the AOC–TP and AOC–COCO pair content in soil HS,
where similar TP or COCO values were related to very different AOC values. To define the
important properties of HS that contribute the most to their antioxidant activity, a forward
stepwise multiple linear regression model was developed. The AOC value (Table 3) was the
dependent variable, while the structural parameters (Table 2) were independent variables.
Among the variables studied, only four were responsible for the antioxidant capability of
HS (Table 5).

Table 5. Parameters of a forward stepwise multiple linear regression model.

Parameter Value −95% +95%

Intercept 0.432 −0.087 0.952
C/N 0.006 0.003 0.009

CCHO, % 0.026 0.009 0.042
CCH3O, % −0.077 −0.143 −0.010

TP, µmol mg−1 0.369 0.216 0.522
Multiple determination coefficient 0.91

Adjusted multiple determination coefficient 0.80
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A high coefficient of multiple determination for the developed model is illustrated
in Figure 3.
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The four structural parameters contributing the most to the AOC values of HS were
C/N, CCHO, CCH3O, and TP. An increase in C/N, CCHO, and TP led to an increase in AOC,
whereas an increase in the CCH3O content led to a decrease in AOC.

Free radical-scavenging antioxidants react with ROO• peroxyl radicals by one of
the following three reaction mechanisms [89]: hydrogen abstraction (hydrogen atom
transfer (HAT)), radical adduct formation (RAF), or single electron transfer (SET). The
relative importance of these reactions depends on the type of radicals, antioxidants, and
microenvironment [35].

The ORAC method mostly involves the HAT reaction, where an antioxidant and
a substrate (probe) compete for free radicals [81]. Thus, the observed direct correlation
between AOC value and phenol content in HS aligns with the expected trends. Hydrogen
atom transfer from phenol ArOH to peroxyl radical ROO• is described as (2):

ArOH + ROO• → ArO• + ROOH (2)

A similar direct relationship between AOC value and phenol content in HS was
reported by numerous studies [37,53,56,90,91]. The decisive role of phenols in quenching
peroxyl radicals was demonstrated for other natural antioxidants as well [39,92,93].

Though phenols are known to play a key role as chain-breaking antioxidants, mainly
via the HAT mechanism [34,35], quenching of the radical by the SET mechanism can also
be expected. The predominant quenching of the radical by HAT or SET depends on phenol
dissociation. For neutral forms of phenols (e.g., piceatannol, resveratrol), SET is much
slower than HAT, which is not the case for phenolate ions, where the SET process becomes
preferable [37,89]:

ArO− + ROO• → ArO• + ROO− (3)

A similar relationship is observed for several radicals where phenolate has much
higher reactivity than their protonated forms [94]. Deprotonation of phenols is pronounced
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at pH > 7, at which point deprotonation of hydroxyl moieties generates semiquinone and
quinone, facilitating electron transfer and boosting antioxidant activity [37,95]. Phenolate
is 1000 or 1 million times more active than phenol because the H atom is heavier than
the electron, and more difficult to transfer [96]. As a result, for anionic forms of phenols,
the peroxyl radical scavenging activity takes place almost exclusively via the SET mech-
anism [89]. This phenomenon explains the observed negative value of the correlation
coefficient between AOC and the carbon content of methoxyl group CCH3O (Table S1). The
methoxyl group increases the pKa of the phenol group to higher values, making the phenol
group less acidic and thus decreasing the concentration of phenols in phenolate form at
a certain pH value [97]. As the methoxyl group content in HS decreases along with an
increase in C/N ratio due to microbial transformation [2,98], the opposite relationships of
AOC versus CCH3O and AOC versus C/N look rather logical.

The inverse relationship between AOC and the methoxyl group content at pH 7.4
obtained in this study is important, as methoxyl groups are usually reported to reduce
the bond dissociation enthalpy (BDE) of the phenolic hydroxyl group and enhance the
electron-donating ability of phenolic acids by reducing proton affinity and electron transfer
enthalpy values. Altogether, these processes result in an increase in the antioxidant activity
of methoxyl-substituted phenols, and an increase in methoxyl content brings about higher
antioxidant activity of phenolic acids. At the same time, Chen and co-workers reported an
increase in the antioxidant activity of phenolic acids along with an increase in methoxyl
group content using a ferric ion reducing antioxidant power (FRAP) assay [99]. We believe
that the observed inconsistency might result from a relatively high pH value used in the
ORAC assay (pH 7.4) compared to other methods (pH 3.6 for FRAP assay).

Another important finding of this study is the observed significant contribution of car-
bohydrate moieties to the AOC value of HS against peroxyl radicals. Nominally, statistically
significant direct correlations were obtained for AOC and the content of anomeric aliphatic
C atoms (COCO) and О-substituted methine groups (CCHO; Table S1). Moreover, CCHO was
selected as a predictive variable for AOC by forward stepwise regression (Table 5).

Although carbohydrates and polysaccharides represent an important and abundant
class of free radical scavengers [6,31,34,66–70,100], these non-phenolic antioxidants are not
considered to be strong antioxidants due to their low content of electron-donating aldehyde
or ketone groups in the structure [52]. Besides, the observed antioxidant activity in this
case is often related to impurities such as phenolic and/or protein components rather than
to the carbohydrate moieties themselves [39,40,52].

However, Hernandez-Marin and Martínez, based on a theoretical study, concluded
that direct scavenging of hydroxyl radicals OH• was by carbohydrates Cm(H2O)n via the
HAT mechanism [100]:

Cm(H2O)n + OH• → CmHO(H2O)n−1
• + H2O (4)

There was no pronounced regioselectivity for the abstraction of the hydrogen atom.
Therefore, HAT from both any C–H or O–H bond to the radical can be hypothesized. Direct
scavenging of hydroperoxyl radical OOH• by carbohydrates was considered less likely,
since according to the modelling results, hydrogen atom abstraction was possible only
from one position of a single studied carbohydrate (sucrose) [100]. Another proposed
model is based on the observed increased antioxidant ability of carbohydrate polymers
vs. monosaccharides. The authors speculated that the weak free radical scavenging
activity of monosaccharides is due to the abstraction of anomeric hydrogen. The enhanced
antioxidant activity of the polymers over the monomeric form may be due to the greater
ease of abstraction of anomeric hydrogen from an internal glucose unit rather than from
the reducing end [101]. However, further verification experiments to confirm the model
have not been conducted [40]. Additionally, it is believed that the antioxidant activity of
phenolic acids can be increased by modifying them with sugars. For instance, esterification
of ferulic acid with arabinoxylan resulted in feruloyl arabinoxylo-oligosaccharide with
much stronger antioxidant activity compared to free ferulic acid. The activity increased
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along with an increased number of sugar moieties; the glycosyl group by itself showed no
activity [102].

Regardless of the mechanism determining the antioxidant activity of sugars, the
results obtained in this study clearly demonstrate the dependence of the AOC of HS on the
content of carbohydrate fragments in their structure.

The PCA performed for the selected structural parameters of HS to determine their
antioxidant capability against peroxyl radicals resulted in a separation of all samples by
the first two factors (Figure 4).
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Figure 4 shows the PCA results, with 64.44% of the total variance explained by the
properties determining the AOC of HS against hydroxyl radicals. The samples from the
different natural sources built distinct clusters, except for aquatic HS. These HS were
isolated from HLS, soil HS, and coal HS, but formed a group with peat HS. The latter most
likely resulted from the fact that the Suwannee River, which was a source for the aquatic
samples in this work, is a blackwater river rising in the Okefenokee Swamp [103]. The
HLS were clustered and different from coal HS and aquatic HS in PC1 (41.72%) because
of the high content of methoxyl carbon CCH3O derived from lignin. Aquatic and coal
HS were clustered with negative values because of the high C/N values. Soil HS were
clustered from peat HS in PC2 (22.72%) due to the lower content of О-substituted methine
groups CCHO.

So, based on a statistical analysis of the obtained data, we believe that, apart from
phenol fragments, the presence of non-phenolic moieties such as carbohydrates impart
antioxidant activity to HS against peroxyl radicals. To verify this hypothesis, more experi-
ments are required to assess the antioxidant activity of HS using biological models.

5. Conclusions

This is the first systematic study conducted on a broad set of humic materials of
different origins and fractional compositions with respect to the quenching capability of
HS against biologically relevant peroxyl radicals with the ORAC method. The findings
demonstrate that humic materials derived from different environments possess distinct
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antioxidant activity against peroxyl radicals. The high measured AOC values reached those
for ascorbic acid and vitamin E. They were observed for the most active representatives:
peat fulvic acids enriched with both phenolic and sugar moieties. Four structural param-
eters of HS were identified as major contributors to antioxidant capacity: total phenol
content, atomic C/N ratio, and content of O-substituted methine and methoxyl groups.
The results obtained clearly demonstrate that the antioxidant activity of HS against peroxyl
radicals depends on both phenolic and non-phenolic moieties in their structure. For the
first time, the substantial contribution of sugar moieties to the AOC of humic materials is
revealed. The possible mechanisms of these phenomena are discussed. A conclusion is
made regarding the complex character of AOC dependence on HS structure due to the
very complex molecular organization of these natural systems, consisting of both high- and
low-molecular-weight compounds. Fine fractionation of HS beyond traditional separation
into humic and fulvic acids is highly recommended in order to determine more consis-
tent relationships between structure and antioxidant properties. Deeper insight into the
molecular composition of HS using high-resolution Fourier-transform ion cyclotron mass
spectrometry might also advance our understanding of the hidden relationships between
structure and properties for such chemically complex molecular systems.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/polym13193262/s1: Table S1: Pearson correlation coefficients between physical–chemical
HS properties and their AOC, Table S2: Homogeneous groups of HS used in the study according
Tukey’s HSD test; variable AOC, µmol TE mg−1; p < 0.05.
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