Investigating the Potential Plasticizing Effect of Di-Carboxylic Acids for the Manufacturing of Solid Oral Forms with Copovidone and Ibuprofen by Selective Laser Sintering
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Mixtures
2.3. Printing of Solid Oral Forms
2.4. Differential Scanning Calorimetry (DSC)
2.5. Thermogravimetric Analysis (TGA)
2.6. Fourier-Transform Infrared Spectroscopy (FTIR)
2.7. X-ray Powder Diffraction (XRPD)
2.8. Weight, Hardness and Disintegration Time of the Sintered SOFs
2.9. Drug Release of the Sintered SOFs
2.10. Drug Content of the Sintered SOFs
2.11. Statistical Analysis
3. Results and Discussion
3.1. Thermal Analysis
3.2. FTIR Analysis
3.3. Solid State Analysis
3.4. Characterisation of the Sintered SOFs
3.5. Drug Degradation Evaluation
3.6. Mechanisms of Plasticization in SLS
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Elkasabgy, N.A.; Mahmoud, A.A.; Maged, A. 3D Printing: An Appealing Route for Customized Drug Delivery Systems. Int. J. Pharm. 2020, 588, 119732. [Google Scholar] [CrossRef]
- Vaz, V.M.; Kumar, L. 3D Printing as a Promising Tool in Personalized Medicine. AAPS PharmSciTech 2021, 22, 49. [Google Scholar] [CrossRef]
- Beg, S.; Almalki, W.H.; Malik, A.; Farhan, M.; Aatif, M.; Rahman, Z.; Alruwaili, N.K.; Alrobaian, M.; Tarique, M.; Rahman, M. 3D Printing for Drug Delivery and Biomedical Applications. Drug Discov. Today 2020, 25, 1668–1681. [Google Scholar] [CrossRef]
- Trenfield, S.J.; Awad, A.; Madla, C.M.; Hatton, G.B.; Firth, J.; Goyanes, A.; Gaisford, S.; Basit, A.W. Shaping the Future: Recent Advances of 3D Printing in Drug Delivery and Healthcare. Expert Opin. Drug Deliv. 2019, 16, 1081–1094. [Google Scholar] [CrossRef] [PubMed]
- Apprecia Pharmaceuticals What Is SPRITAM? Available online: https://www.spritam.com/#/patient/about-spritam/what-is-spritam (accessed on 7 October 2019).
- Awad, A.; Fina, F.; Goyanes, A.; Gaisford, S.; Basit, A.W. 3D Printing: Principles and Pharmaceutical Applications of Selective Laser Sintering. Int. J. Pharm. 2020, 586, 119594. [Google Scholar] [CrossRef] [PubMed]
- Charoo, N.A.; Barakh Ali, S.F.; Mohamed, E.M.; Kuttolamadom, M.A.; Ozkan, T.; Khan, M.A.; Rahman, Z. Selective Laser Sintering 3D Printing – an Overview of the Technology and Pharmaceutical Applications. Drug Dev. Ind. Pharm. 2020, 46, 869–877. [Google Scholar] [CrossRef] [PubMed]
- Fina, F.; Madla, C.M.; Goyanes, A.; Zhang, J.; Gaisford, S.; Basit, A.W. Fabricating 3D Printed Orally Disintegrating Printlets Using Selective Laser Sintering. Int. J. Pharm. 2018, 541, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Allahham, N.; Fina, F.; Marcuta, C.; Kraschew, L.; Mohr, W.; Gaisford, S.; Basit, A.W.; Goyanes, A. Selective Laser Sintering 3D Printing of Orally Disintegrating Printlets Containing Ondansetron. Pharmaceutics 2020, 12, 110. [Google Scholar] [CrossRef] [Green Version]
- Fina, F.; Goyanes, A.; Madla, C.M.; Awad, A.; Trenfield, S.J.; Kuek, J.M.; Patel, P.; Gaisford, S.; Basit, A.W. 3D Printing of Drug-Loaded Gyroid Lattices Using Selective Laser Sintering. Int. J. Pharm. 2018, 547, 44–52. [Google Scholar] [CrossRef]
- Barakh Ali, S.F.; Mohamed, E.M.; Ozkan, T.; Kuttolamadom, M.A.; Khan, M.A.; Asadi, A.; Rahman, Z. Understanding the Effects of Formulation and Process Variables on the Printlets Quality Manufactured by Selective Laser Sintering 3D Printing. Int. J. Pharm. 2019, 570, 118651. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, E.M.; Barakh Ali, S.F.; Rahman, Z.; Dharani, S.; Ozkan, T.; Kuttolamadom, M.A.; Khan, M.A. Formulation Optimization of Selective Laser Sintering 3D-Printed Tablets of Clindamycin Palmitate Hydrochloride by Response Surface Methodology. AAPS PharmSciTech 2020, 21, 232. [Google Scholar] [CrossRef]
- Aho, J.; Bøtker, J.P.; Genina, N.; Edinger, M.; Arnfast, L.; Rantanen, J. Roadmap to 3D-Printed Oral Pharmaceutical Dosage Forms: Feedstock Filament Properties and Characterization for Fused Deposition Modeling. J. Pharm. Sci. 2019, 108, 26–35. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Xu, Y.; Wei, S.; Shan, W. Oral Preparations with Tunable Dissolution Behavior Based on Selective Laser Sintering Technique. Int. J. Pharm. 2020, 120127. [Google Scholar] [CrossRef]
- Goodridge, R.D.; Tuck, C.J.; Hague, R.J.M. Laser Sintering of Polyamides and Other Polymers. Prog. Mater. Sci. 2012, 57, 229–267. [Google Scholar] [CrossRef]
- Chatham, C.A.; Long, T.E.; Williams, C.B. A Review of the Process Physics and Material Screening Methods for Polymer Powder Bed Fusion Additive Manufacturing. Prog. Polym. Sci. 2019, 93, 68–95. [Google Scholar] [CrossRef]
- Gueche, Y.A.; Sanchez-Ballester, N.M.; Bataille, B.; Aubert, A.; Leclercq, L.; Rossi, J.-C.; Soulairol, I. Selective Laser Sintering of Solid Oral Dosage Forms with Copovidone and Paracetamol Using a CO2 Laser. Pharmaceutics 2021, 13, 160. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Xie, X.; Zhao, Y.; Gao, Y.; Cai, C.; Zhang, Q.; Ding, Z.; Fan, Z.; Zhang, H.; Liu, M.; et al. Effect of Plasticizers on Manufacturing Ritonavir/Copovidone Solid Dispersions via Hot-Melt Extrusion: Preformulation, Physicochemical Characterization, and Pharmacokinetics in Rats. Eur. J. Pharm. Sci. 2019, 127, 60–70. [Google Scholar] [CrossRef] [PubMed]
- Cailleaux, S.; Sanchez-Ballester, N.M.; Gueche, Y.A.; Bataille, B.; Soulairol, I. Fused Deposition Modeling (FDM), the New Asset for the Production of Tailored Medicines. J. Contro. Release 2020, S0168365920306374. [Google Scholar] [CrossRef]
- Lexow, M.M.; Drexler, M.; Drummer, D. Fundamental Investigation of Part Properties at Accelerated Beam Speeds in the Selective Laser Sintering Process. RPJ 2017, 23, 1099–1106. [Google Scholar] [CrossRef]
- Schmid, M.; Amado, A.; Wegener, K. Materials Perspective of Polymers for Additive Manufacturing with Selective Laser Sintering. J. Mater. Res. 2014, 29, 1824–1832. [Google Scholar] [CrossRef] [Green Version]
- Braun, D. Polymer Synthesis: Theory and Practice: Fundamentals, Methods, Experiments, 5th ed.; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2013; ISBN 978-3-642-28979-8. [Google Scholar]
- Mohsin, M.; Hossin, A.; Haik, Y. Thermomechanical Properties of Poly(Vinyl Alcohol) Plasticized with Varying Ratios of Sorbitol. Mater. Sci. Eng. A 2011, 528, 925–930. [Google Scholar] [CrossRef]
- Jamarani, R.; Erythropel, H.; Nicell, J.; Leask, R.; Marić, M. How Green Is Your Plasticizer? Polymers 2018, 10, 834. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mayer, F.L.; Stalling, D.L.; Johnson, J.L. Phthalate Esters as Environmental Contaminants. Nature 1972, 238, 411–413. [Google Scholar] [CrossRef]
- Fan, J.; Traore, K.; Li, W.; Amri, H.; Huang, H.; Wu, C.; Chen, H.; Zirkin, B.; Papadopoulos, V. Molecular Mechanisms Mediating the Effect of Mono-(2-Ethylhexyl) Phthalate on Hormone-Stimulated Steroidogenesis in MA-10 Mouse Tumor Leydig Cells. Endocrinology 2010, 151, 3348–3362. [Google Scholar] [CrossRef] [Green Version]
- Debabov, V.G. Prospects for Biosuccinic Acid Production. Appl. Biochem. Microbiol. 2015, 51, 787–791. [Google Scholar] [CrossRef]
- Sebastian, J.; Hegde, K.; Kumar, P.; Rouissi, T.; Brar, S.K. Bioproduction of Fumaric Acid: An Insight into Microbial Strain Improvement Strategies. Crit. Rev. Biotechnol. 2019, 39, 817–834. [Google Scholar] [CrossRef] [PubMed]
- Howell, B.A.; Sun, W. Biobased Plasticizers from Tartaric Acid, an Abundantly Available, Renewable Material. Ind. Eng. Chem. Res. 2018, acs.iecr.8b03486. [Google Scholar] [CrossRef]
- Llanes, L.C. Mechanical and Thermal Properties of Poly(Lactic Acid) Plasticized with Dibutyl Maleate and Fumarate Isomers: Promising Alternatives as Biodegradable Plasticizers. Eur. Polym. J. 2021, 142, 110112. [Google Scholar] [CrossRef]
- Stuart, A.; McCallum, M.M.; Fan, D.; LeCaptain, D.J.; Lee, C.Y.; Mohanty, D.K. Poly(Vinyl Chloride) Plasticized with Succinate Esters: Synthesis and Characterization. Polym. Bull. 2010, 65, 589–598. [Google Scholar] [CrossRef]
- Ahmed, I.; Niazi, M.B.K.; Hussain, A.; Jahan, Z. Influence of Amphiphilic Plasticizer on Properties of Thermoplastic Starch Films. Polym.-Plast. Technol. Eng. 2018, 57, 17–27. [Google Scholar] [CrossRef]
- Daniels, P.H. A Brief Overview of Theories of PVC Plasticization and Methods Used to Evaluate PVC-Plasticizer Interaction. J. Vinyl. Addit. Technol. 2009, 15, 219–223. [Google Scholar] [CrossRef]
- Kirkpatrick, A. Some Relations Between Molecular Structure and Plasticizing Effect. J. Appl. Phys. 1940, 11, 255–261. [Google Scholar] [CrossRef]
- Aiken, W.; Alfrey, T.; Janssen, A.; Mark, H. Creep Behavior of Plasticized Vinylite VYNW. J. Polym. Sci. 1947, 2, 178–198. [Google Scholar] [CrossRef]
- Spurlin, H.M. The Technology of Solvents and Plasticizers. J. Polym. Sci. 1955, 18, 444–445. [Google Scholar] [CrossRef]
- Williams, M.L.; Landel, R.F.; Ferry, J.D. The Temperature Dependence of Relaxation Mechanisms in Amorphous Polymers and Other Glass-Forming Liquids. J. Am. Chem. Soc. 1955, 77, 3701–3707. [Google Scholar] [CrossRef]
- Kolter, L.; Karl, M.; Gryczke, A. Hot-Melt Extrusion with BASF Pharma Polymers. Extrusion Compendium, 2nd ed.; BASF: Ludwigshafen, Germany, 2012. [Google Scholar]
- Wu, C.; McGinity, J.W. Non-Traditional Plasticization of Polymeric Films. Int. J. Pharm. 1999, 177, 15–27. [Google Scholar] [CrossRef]
- Caviglioli, G.; Valeria, P.; Brunella, P.; Sergio, C.; Attilia, A.; Gaetano, B. Identification of Degradation Products of Ibuprofen Arising from Oxidative and Thermal Treatments. J. Pharm. Biomed. Anal. 2002, 30, 499–509. [Google Scholar] [CrossRef]
- European Directorate for the Quality of Medicines & Healthcare. Council of Europe Disintegration of tablets and capsules (monograph 2.9.1). In European Pharmacopeia; Council of Europe: Strasbourg, France, 2019; pp. 323–325. [Google Scholar]
- European Directorate for the Quality of Medicines & Healthcare. Council of Europe Dissolution test for solid dosage forms (monograph 2.9.3). In European Pharmacopeia; Council of Europe: Strasbourg, France, 2019; pp. 326–333. [Google Scholar]
- Surana, R.; Randall, L.; Pyne, A.; Vemuri, N.M.; Suryanarayanan, R. Determination of Glass Transition Temperature and in Situ Study of the Plasticizing Effect of Water by Inverse Gas Chromatography. Pharm. Res. 2003, 20, 1647–1654. [Google Scholar] [CrossRef]
- Özeren, H.D.; Guivier, M.; Olsson, R.T.; Nilsson, F.; Hedenqvist, M.S. Ranking Plasticizers for Polymers with Atomistic Simulations: PVT, Mechanical Properties, and the Role of Hydrogen Bonding in Thermoplastic Starch. ACS Appl. Polym. Mater. 2020, 2, 2016–2026. [Google Scholar] [CrossRef] [Green Version]
- Dickens, E.D.; Lee, B.L.; Taylor, G.A.; Magistro, A.J.; Ng, H.; McAlea, K.; Forderhase, P.F. Sinterable Semi-Crystalline Powder and near Fully Dense Article Formed Therewith 2000. U.S. Patent US5527877A, 18 June 1996. [Google Scholar]
- Aydın, A.A.; Ilberg, V. Effect of Different Polyol-Based Plasticizers on Thermal Properties of Polyvinyl Alcohol:Starch Blends. Carbohydr. Polym. 2016, 136, 441–448. [Google Scholar] [CrossRef]
- Sun, S.; Song, Y.; Zheng, Q. Thermo-Molded Wheat Gluten Plastics Plasticized with Glycerol: Effect of Molding Temperature. Food Hydrocoll. 2008, 22, 1006–1013. [Google Scholar] [CrossRef]
- Ligon, S.C.; Liska, R.; Stampfl, J.; Gurr, M.; Mülhaupt, R. Polymers for 3D Printing and Customized Additive Manufacturing. Chem. Rev. 2017, 117, 10212–10290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Censi, R.; Martena, V.; Hoti, E.; Malaj, L.; Di Martino, P. Sodium Ibuprofen Dihydrate and Anhydrous: Study of the Dehydration and Hydration Mechanisms. J. Anal. Calorim. 2013, 111, 2009–2018. [Google Scholar] [CrossRef]
- Ma, X.; Qiao, C.; Wang, X.; Yao, J.; Xu, J. Structural Characterization and Properties of Polyols Plasticized Chitosan Films. Int. J. Biol. Macromol. 2019, 135, 240–245. [Google Scholar] [CrossRef] [PubMed]
- Pereira, B.C.; Isreb, A.; Forbes, R.T.; Dores, F.; Habashy, R.; Petit, J.-B.; Alhnan, M.A.; Oga, E.F. ‘Temporary Plasticiser’: A Novel Solution to Fabricate 3D Printed Patient-Centred Cardiovascular ‘Polypill’ Architectures. Eur. J. Pharm. Biopharm. 2019, 135, 94–103. [Google Scholar] [CrossRef]
- Hurley, D.; Carter, D.; Foong Ng, L.Y.; Davis, M.; Walker, G.M.; Lyons, J.G.; Higginbotham, C.L. An Investigation of the Inter-Molecular Interaction, Solid-State Properties and Dissolution Properties of Mixed Copovidone Hot-Melt Extruded Solid Dispersions. J. Drug Deliv. Sci. Technol. 2019, 53, 101132. [Google Scholar] [CrossRef]
- Yuan, X.; Xiang, T.-X.; Anderson, B.D.; Munson, E.J. Hydrogen Bonding Interactions in Amorphous Indomethacin and Its Amorphous Solid Dispersions with Poly(Vinylpyrrolidone) and Poly(Vinylpyrrolidone-Co-Vinyl Acetate) Studied Using 13C Solid-State NMR. Mol. Pharm. 2015, 12, 4518–4528. [Google Scholar] [CrossRef]
- Zhang, Y.; Grant, D.J.W. Similarity in Structures of Racemic and Enantiomeric Ibuprofen Sodium Dihydrates. Acta Cryst. C Cryst. Struct. Commun. 2005, 61, m435–m438. [Google Scholar] [CrossRef]
- Matet, M.; Heuzey, M.-C.; Pollet, E.; Ajji, A.; Avérous, L. Innovative Thermoplastic Chitosan Obtained by Thermo-Mechanical Mixing with Polyol Plasticizers. Carbohydr. Polym. 2013, 95, 241–251. [Google Scholar] [CrossRef]
- Maddineni, S.; Battu, S.K.; Morott, J.; Majumdar, S.; Murthy, S.N.; Repka, M.A. Influence of Process and Formulation Parameters on Dissolution and Stability Characteristics of Kollidon® VA 64 Hot-Melt Extrudates. AAPS PharmSciTech 2015, 16, 444–454. [Google Scholar] [CrossRef] [Green Version]
- Schramm, C. High Temperature ATR-FTIR Characterization of the Interaction of Polycarboxylic Acids and Organotrialkoxysilanes with Cellulosic Material. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 243, 118815. [Google Scholar] [CrossRef]
- Choperena, A.; Painter, P. Hydrogen Bonding in Polymers: Effect of Temperature on the OH Stretching Bands of Poly(Vinylphenol). Macromolecules 2009, 42, 6159–6165. [Google Scholar] [CrossRef]
- Lee, T.; Wang, Y.W. Initial Salt Screening Procedures for Manufacturing Ibuprofen. Drug Dev. Ind. Pharm. 2009, 35, 555–567. [Google Scholar] [CrossRef] [PubMed]
- Davis, S.S.; Hardy, J.G.; Taylor, M.J.; Whalley, D.R.; Wilson, C.G. A Comparative Study of the Gastrointestinal Transit of a Pellet and Tablet Formulation. Int. J. Pharm. 1984, 21, 167–177. [Google Scholar] [CrossRef]
- Hamed, R.; Mohamed, E.M.; Rahman, Z.; Khan, M.A. 3D-Printing of Lopinavir Printlets by Selective Laser Sintering and Quantification of Crystalline Fraction by XRPD-Chemometric Models. Int. J. Pharm. 2020, 120059. [Google Scholar] [CrossRef]
- Yu, Q.; Dang, L.; Black, S.; Wei, H. Crystallization of the Polymorphs of Succinic Acid via Sublimation at Different Temperatures in the Presence or Absence of Water and Isopropanol Vapor. J. Cryst. Growth 2012, 340, 209–215. [Google Scholar] [CrossRef]
- Enumo, A.; Gross, I.P.; Saatkamp, R.H.; Pires, A.T.N.; Parize, A.L. Evaluation of Mechanical, Thermal and Morphological Properties of PLA Films Plasticized with Maleic Acid and Its Propyl Ester Derivatives. Polym. Test. 2020, 88, 106552. [Google Scholar] [CrossRef]
- Committee for Medicinal Products for Human Use. Guideline on the Investigation of Bioequivalence; European Medicines Agency: Amsterdam, The Netherlands, 2010. [Google Scholar]
- Sateesha, S.B.; Narode, M.K.; Vyas, B.D.; Rajamma, A.J. Influence of Organic Acids on Diltiazem HCl Release Kinetics from Hydroxypropyl Methyl Cellulose Matrix Tablets. J. Young Pharm. 2010, 2, 229–233. [Google Scholar] [CrossRef] [Green Version]
- Kollamaram, G.; Croker, D.M.; Walker, G.M.; Goyanes, A.; Basit, A.W.; Gaisford, S. Low Temperature Fused Deposition Modeling (FDM) 3D Printing of Thermolabile Drugs. Int. J. Pharm. 2018, 545, 144–152. [Google Scholar] [CrossRef] [Green Version]
- Bellelli, M.; Licciardello, F.; Pulvirenti, A.; Fava, P. Properties of Poly(Vinyl Alcohol) Films as Determined by Thermal Curing and Addition of Polyfunctional Organic Acids. Food Packag. Shelf Life 2018, 18, 95–100. [Google Scholar] [CrossRef] [Green Version]
- Park, H.-R.; Chough, S.-H.; Yun, Y.-H.; Yoon, S.-D. Properties of Starch/PVA Blend Films Containing Citric Acid as Additive. J. Polym. Environ. 2005, 13, 375–382. [Google Scholar] [CrossRef]
- Talja, R.A.; Helén, H.; Roos, Y.H.; Jouppila, K. Effect of Various Polyols and Polyol Contents on Physical and Mechanical Properties of Potato Starch-Based Films. Carbohydr. Polym. 2007, 67, 288–295. [Google Scholar] [CrossRef]
- Mazière, A.; Prinsen, P.; García, A.; Luque, R.; Len, C. A Review of Progress in (Bio)Catalytic Routes from/to Renewable Succinic Acid. Biofuels Bioprod. Bioref. 2017, 11, 908–931. [Google Scholar] [CrossRef]
- Streitwieser, A.; Heathcock, C.H.; Kosower, E.M. Introduction to Organic Chemistry, 4th ed.; Macmillan: New York, NY, USA; Maxwell Macmillan Canada: Toronto, ON, Canada; Maxwell Macmillan International: New York, NY, USA, 1992; ISBN 978-0-02-418170-1. [Google Scholar]
- Vrentas, J.S.; Duda, J.L.; Ling, H.C. Antiplasticization and Volumetric Behavior in Glassy Polymers. Macromolecules 1988, 21, 1470–1475. [Google Scholar] [CrossRef]
- Pudlas, M.; Kyeremateng, S.O.; Williams, L.A.M.; Kimber, J.A.; van Lishaut, H.; Kazarian, S.G.; Woehrle, G.H. Analyzing the Impact of Different Excipients on Drug Release Behavior in Hot-Melt Extrusion Formulations Using FTIR Spectroscopic Imaging. Eur. J. Pharm. Sci. 2015, 67, 21–31. [Google Scholar] [CrossRef]
- Repka, M.A.; McGinity, J.W. Influence of Vitamin E TPGS on the Properties of Hydrophilic Films Produced by Hot-Melt Extrusion. Int. J. Pharm. 2000, 202, 63–70. [Google Scholar] [CrossRef]
- Bogdanova, S.; Pajeva, I.; Nikolova, P.; Tsakovska, I.; Müller, B. Interactions of Poly(Vinylpyrrolidone) with Ibuprofen and Naproxen: Experimental and Modeling Studies. Pharm. Res. 2005, 22, 806–815. [Google Scholar] [CrossRef] [PubMed]
Mixtures | KVA64 | IbuAc | IbuNa | SA | FA | MA | MLA | TA |
---|---|---|---|---|---|---|---|---|
KVA64/IbuAc | 95% | 5% | ||||||
KVA64/IbuNa | 95% | 5% | ||||||
KVA64/SA | 95% | 5% | ||||||
KVA64/FA | 95% | 5% | ||||||
KVA64/MA | 95% | 5% | ||||||
KVA64/MLA | 95% | 5% | ||||||
KVA64/TA | 95% | 5% | ||||||
KVA64/SA10 | 90% | 10% | ||||||
KVA64/SA15 | 85% | 15% | ||||||
KVA64/SA20 | 80% | 20% | ||||||
KVA64/IbuNa/SA | 90% | 5% | 5% | |||||
KVA64/IbuNa/SA10 | 85% | 5% | 10% | |||||
KVA64/IbuNa/SA15 | 80% | 5% | 15% | |||||
KVA64/IbuNa/SA20 | 75% | 5% | 20% |
Powders | Optimal Heating Temperature (°C) |
---|---|
KVA64 | 110 |
KVA64/IbuAc | 70 |
KVA64/IbuNa | 110 |
KVA64/SA | 95 |
KVA64/FA | 105 |
KVA64/MA | 105 |
KVA64/MLA | 105 |
KVA64/TA | 110 |
KVA64/SA10 | 85 |
KVA64/SA15 | 80 |
KVA64/SA20 | 80 |
KVA64/IbuNa/SA | 95 |
KVA64/IbuNa/SA10 | 85 |
KVA64/IbuNa/SA15 | 80 |
KVA64/IbuNa/SA20 | 80 |
Powders | Tg (°C) | Tm (°C) | Td2% (°C) |
---|---|---|---|
KVA64 | 99.30 ± 1.27 | / | 302.54 |
IbuAc | / | 79.51 | 137.12 |
IbuNa | / | 164.61 | 234.09 |
SA | / | 190.42 | 166.86 |
FA | / | 299.01 | 193.77 |
MA | / | 146.65 | 142.15 |
MLA | / | 106.67 | 165.79 |
TA | / | 174.99 | 190.74 |
KVA64/IbuAc | 80.69 ± 0.47 | / | 235.97 |
KVA64/IbuNa | 93.15 ± 1.41 | / | 278.71 |
KVA64/SA | 84.59 ± 0.86 | / | 237.92 |
KVA64/FA | 84.25 ± 1.54 | / | 256.67 |
KVA64/MA | 85.68 ± 0.24 | / | 207.91 |
KVA64/MLA | 84.26 ± 1.35 | / | 239.32 |
KVA64/TA | 89.55 ± 1.27 | / | 230.65 |
KVA64/SA10 | 74.40 ± 1.18 | / | 218.57 |
KVA64/SA15 | 66.84 ± 1.88 | / | 208.37 |
KVA64/SA20 | 57.51 ± 0.89 | / | 195.95 |
KVA64/IbuNa/SA | 75.39 ± 1.29 | / | 237.82 |
KVA64/IbuNa/SA10 | 63.90 ± 0.34 | / | 217.75 |
KVA64/IbuNa/SA15 | 58.56 ± 1.77 | / | 197.90 |
KVA64/IbuNa/SA20 | 45.07 ± 1.05 | / | 186.50 |
Powders | Weight (mg) | Hardness (N) | Disintegration Time (s) |
---|---|---|---|
KVA64 | 153.0 ± 2.5 | 38.6 ± 4.5 | 73 ± 14 |
KVA64/IbuAc | 132.2 ± 4.6 | 15.8 ± 3.8 | 24 ± 7 |
KVA64/IbuNa | 170.8 ± 7.6 | 29.8 ± 2.5 | 58 ± 8 |
KVA64/SA | 140.1 ± 2.1 | 25.6 ± 1.5 | 39 ± 4 |
KVA64/FA | 149.1 ± 4.8 | 33.0 ± 1.7 | 43 ± 8 |
KVA64/MA | 142.2 ± 1.8 | 24.2 ± 4.0 | 30 ± 8 |
KVA64/MLA | 147.4 ± 1.1 | 31.9 ± 1.7 | 57 ± 9 |
KVA64/TA | 166.0 ± 7.6 | 33.8 ± 4.2 | 43 ± 5 |
KVA64/SA10 | 138.4 ± 1.8 | 24.1 ± 2.3 | 25 ± 3 |
KVA64/SA15 | 139.2 ± 2.3 | 23.5 ± 3.0 | 21 ± 4 |
KVA64/SA20 | 138.9 ± 1.6 | 25.2 ± 2.4 | 23 ± 3 |
KVA64/IbuNa/SA | 133.9 ± 1.7 | 16.6 ± 1.8 | 24 ± 3 |
KVA64/IbuNa/SA10 | 129.9 ± 1.4 | 16.5 ± 1.2 | 25 ± 3 |
KVA64/IbuNa/SA15 | 131.3 ± 2.5 | 18.8 ± 1.8 | 34 ± 5 |
KVA64/IbuNa/SA20 | 128.9 ± 1.7 | 18.0 ± 1.0 | 30 ± 6 |
Formulation | Drug Content (%) |
---|---|
KVA64/IbuAc | 102.2 ± 2.0 |
KVA64/IbuNa | 96.5 ± 2.7 |
KVA64/IbuNa/SA | 103.0 ± 4.1 |
KVA64/IbuNa/SA10 | 102.8 ± 3.6 |
KVA64/IbuNa/SA15 | 104.1 ± 4.5 |
KVA64/IbuNa/SA20 | 103.0 ± 2.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gueche, Y.A.; Sanchez-Ballester, N.M.; Bataille, B.; Aubert, A.; Rossi, J.-C.; Soulairol, I. Investigating the Potential Plasticizing Effect of Di-Carboxylic Acids for the Manufacturing of Solid Oral Forms with Copovidone and Ibuprofen by Selective Laser Sintering. Polymers 2021, 13, 3282. https://doi.org/10.3390/polym13193282
Gueche YA, Sanchez-Ballester NM, Bataille B, Aubert A, Rossi J-C, Soulairol I. Investigating the Potential Plasticizing Effect of Di-Carboxylic Acids for the Manufacturing of Solid Oral Forms with Copovidone and Ibuprofen by Selective Laser Sintering. Polymers. 2021; 13(19):3282. https://doi.org/10.3390/polym13193282
Chicago/Turabian StyleGueche, Yanis Abdelhamid, Noelia M. Sanchez-Ballester, Bernard Bataille, Adrien Aubert, Jean-Christophe Rossi, and Ian Soulairol. 2021. "Investigating the Potential Plasticizing Effect of Di-Carboxylic Acids for the Manufacturing of Solid Oral Forms with Copovidone and Ibuprofen by Selective Laser Sintering" Polymers 13, no. 19: 3282. https://doi.org/10.3390/polym13193282
APA StyleGueche, Y. A., Sanchez-Ballester, N. M., Bataille, B., Aubert, A., Rossi, J. -C., & Soulairol, I. (2021). Investigating the Potential Plasticizing Effect of Di-Carboxylic Acids for the Manufacturing of Solid Oral Forms with Copovidone and Ibuprofen by Selective Laser Sintering. Polymers, 13(19), 3282. https://doi.org/10.3390/polym13193282