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Abstract: Both vulcanization reaction and CO2 plasticization play key roles in the temperature rise
foaming process of silicone rubber. The chosen methyl-vinyl silicone rubber system with a pre-
vulcanization degree of 36% had proper crosslinked networks, which not only could ensure enough
polymer matrix strength to avoid bubble rupture but also had enough dissolved CO2 content in
silicone rubber for induced bubble nucleation. The CO2 diffusion and further vulcanization reaction
occur simultaneously in the CO2 plasticized polymer during bubble nucleation and growth. The
dissolved CO2 in the pre-vulcanized silicone rubber caused a temperature delay to start while acceler-
ating further vulcanization reactions, but the lower viscoelasticity caused by either CO2 plasticization
or fewer crosslinking networks was still the dominating factor for larger cell formation. There was
a sudden increase in elastic modulus and complex viscosity for pre-vulcanized silicone rubbers
at higher temperature because of the occurrence of further vulcanization, but CO2 plasticization
reduced the scope of change of rheological properties, and the loss factor was close to 1 around
170 T◦C, which is corresponding to the optimum foaming temperature. The foamed silicone rubber
had a higher cell density and smaller cell size at a higher temperature rising rate, which is due to
higher CO2 supersaturation and faster vulcanization reaction. These results provide some insight
into the coupling mode and effect of CO2 plasticization and vulcanization for regulating cell structure
in foaming silicone rubber process.

Keywords: methyl-vinyl silicone rubber; temperature rise foaming process; vulcanization reaction;
CO2 plasticization; rheological property; cell morphology

1. Introduction

Silicone rubbers have excellent wide temperature range suitability, favorable weather
resistance and chemical resistance, good dielectric properties and physiological inertia, and
high gas permeability due to their unique inorganic–organic hybrid structure. Silicone rub-
ber foam materials further have interesting properties such as damping, lightweight, heat in-
sulation, and sound absorption [1,2], and they are widely used in transportation, aerospace,
electronic equipment, telecommunications, biomedicine, packaging, and home construc-
tion as elastic and soft materials. Apart from the well-known hydrosilylation/condensation
foaming technology [3,4], cellular silicone rubbers can also be produced by using conven-
tional chemical blowing agents, particle leaching, phase separation, templated foaming, 3D
printing, and gas foaming. In recent years, especially many researchers are moving toward
the supercritical carbon dioxide (CO2) foaming process due to its environmentally friendly
nature and superior capability for producing a microcellular structure. Silicones have also
good CO2 compatibility [5]. However, the CO2 physical foaming of silicone rubber can
generate microsized and even nanosized cells and a high cell density, which can result
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in high gas solubility and diffusivity for effective foaming. Generally, chemical foaming
of silicone rubber, because of H2 production, can result in low foam density but with big
cells [6].

Though supercritical CO2 is a physical blowing agent, it is inevitable for silicone
rubber to undergo a vulcanization reaction during the CO2 foaming process. Since the
crosslinking networks control the chain mobility and rheological properties of silicone
rubber, the progress of the vulcanization reaction should have a proper match with the
foaming process. It is difficult to simultaneously control the vulcanizing and CO2 foaming
process, so the strategy of separating foaming and vulcanizing has been performed, that is,
partially crosslinked silicone rubber is firstly obtained by controlling different vulcanization
conditions; then, this pre-vulcanized sample is saturated under high-pressure CO2, the
bubble nucleation happens via fast depressurization or temperature rising afterward, and
finally, the foamed sample is post-vulcanized to stabilize cell morphology and enhance
mechanical properties. Shimbo et al. [7] obtained a foamed silicone rubber with a cell size
of 100 µm by adjusting the vulcanization degree. They found that the vulcanization degree
of silicone rubber before foaming was crucial to achieving the desired cell morphology.
Insufficient vulcanization would lead to unconstrained cell growth and cell coalescence,
and the rigid crosslinking networks at a high level of vulcanization would hinder bubble
nucleation and growth. Hong and Lee [8] also disclosed that there existed a proper cure
degree for a well-defined cell structure after investigating the rheological behavior during
the crosslinking of silicone rubber. The vulcanization time was an important parameter to
control the cell morphology of the crosslinked silicone rubber [9]. Liao et al. [10] found that
the silicone rubber can be foamed at a CO2 saturation pressure of 10–14 MPa with a longer
pre-curing time of 18 min, whereas for the silicone rubber sample with a shorter pre-curing
time of 6 min, a uniform and well-defined cellular structure could be fabricated under
10 MPa, because the cell structure became unstable due to the lower viscosity and lower
modulus under higher pressures of 12 MPa and 14 MPa. Xu et al. [11] found that increasing
the pre-curing time in a short time had a greater effect on cell nucleation than cell growth
during foaming. Jia et al. [12] discovered that the plasticity of the silicone rubber matrix
plays an important role in cellular formation. The degree of retraction increased during
cell fixation when the proportion of elasticity in the silicone rubber matrix increased with a
longer pre-curing time.

There is a strong interaction between CO2 and silicone rubber [13], which can lead
to a strong CO2 plasticization effect. Yang et al. [14] found that the CO2 concentration of
around 3% and diffusivity with a magnitude of 10−5 cm2/s in high temperature vulcanized
methyl vinyl silicone rubber at a CO2 pressure of 2–5 MPa at 40 ◦C, and this diffusion
coefficient of CO2 in silicone rubber was 1000 times higher than that in polyetherimide. Yan
et al. [15] fitted the cell density with CO2 dissolution and found that the logarithm of the
cell density had a linear relationship with the square of saturation pressure. Liao et al. [10]
characterized viscoelasticity thoroughly based on rheology measurements with and with-
out CO2. Their results measured by a high-pressure rotational rheometer showed that both
the complex viscosity and storage modulus decreased due to the more CO2 permeation
into the silicone rubber under higher CO2 saturation pressure, but the effect of the CO2 sat-
uration temperature on the viscoelastic properties of silicone rubber is much more complex
because the curing agent’s decomposition and the CO2 plasticization have two opposite
effects. The in situ high-pressure rheological test during CO2 saturation in the work of
Tang et al. [16] also showed that the storage modulus and complex viscosity gradually
decreased with time to an equilibrium until the CO2 saturated in the silicone rubber matrix,
and the complex viscosity decreased faster and more at lower crosslinking density.

Some studies also focused on different formula compositions as well as functional
fillers in silicone rubbers for good cell structure and to improve the mechanical proper-
ties of the obtained foams. Yan et al. [15] studied high-temperature vulcanized silicone
rubber foam material and found that increasing the content of silica could reduce the
cell size of silicone rubber bubbles. Bai et al. [17] used supercritical CO2 to foam poly-



Polymers 2021, 13, 3384 3 of 19

methyl-vinyl siloxane and found that the introduction of nanometer-sized graphene into
polymer matrix as a nucleating agent could reduce the size of foam cells and improve the
mechanical strength of silicone rubber foam material. Messinger et al. [18] studied the
influence of the microscopic properties such as molecular composition, molecular structure,
intermolecular interaction, and foam structure on the macroscopic mechanical properties
of the silicone foam material. They found that silicone foam materials were stronger with a
higher crosslinking degree and fewer side chain phenyl groups. Liu et al. [19] found that
polyhedral oligomeric silsesquioxane (POSS) particles with grafted carboxylic acid groups
could improve the strength of silicone rubber foam, but POSS grafted with carboxylic
acid groups played an inhibitory role in the curing process. Shi et al. [20] prepared silicon
rubber/functionalized graphene nanocomposite foam with reinforced mechanical proper-
ties, and the uniformly dispersed 3-aminopropyltriethoxysilane functionalized graphene
significantly enhanced the matrix strength, which was beneficial for limiting the shrinkage
of the cell wall.

Although the effect of pre-vulcanization of silicone rubbers on their CO2 foaming
behavior has been investigated a lot, few studies involve the further vulcanization reac-
tion during bubble nucleation and growth, and the effect of CO2 plasticization on the
vulcanization reaction has been also rarely concerned until now. The effect of CO2 plasti-
cization on polymer matrix strength has been known from the rheological properties of
silicone rubber under a high CO2 pressure atmosphere, but the rheological behavior of
CO2 plasticized silicone rubbers may change with the dissolved CO2 diffusion out of a
polymer matrix continuously during bubble formation. In this work, the effect of complex
chemical and physical changes on cell morphology will be studied in the temperature
rise foaming process of silicone rubber using supercritical CO2 as a blowing agent. The
samples with different pre-vulcanization degrees first are prepared and foamed under
optimum conditions, and the proper pre-vulcanization degree with good cell morphology
can be chosen. Then, the rheological and non-isothermal DSC tests will be carried out
for the pre-vulcanized samples after being saturated under different CO2 pressure and
time, which can be helpful to deeply understand the effect of CO2 plasticization on cell
morphology. Finally, combined with the rheological properties and further vulcanization
degree rising in different temperature change courses, the influence of both vulcanization
degree and rate on bubble nucleation and growth is explored.

2. Experimental Section
2.1. Materials

The methyl-vinyl silicone rubber raw gum had a molecular weight of 600,000 g/mol.
The hydroxyl silicone oil contained 6.0–12.0% hydroxyl group, and the viscosity was
less than 20 mm2/s at 35 ◦C. Silica powder (HS−200) had the specific surface area of
185–225 m2/g. All the above materials were provided by HeSheng Silicon Industry Co.
Ltd. (Jiaxing, Zhejiang, China). Dicumyl peroxide (DCP, purity > 99%) was purchased
from Shanghai Aladdin biochemical technology Co. Ltd. (Shanghai, China). Silica pow-
der was pretreated for 180 min at 75 ◦C in an oven to remove the moisture and have
better dispersion.

2.2. Pre-Vulcanization Process

All components, including methyl vinyl silicone rubber 100 phr, filler silica in 25 phr,
hydroxyl silicone oil in 4 phr, and dicumyl peroxide in 1 phr, were well mixed in a micro
extruder (HAAKE Mini Lab II, Thermo Fisher Scientific, Waltham, MA, USA) at room
temperature to obtain silicone rubber sample; then, this sample was placed at 150 ◦C
in an oven to obtain pre-vulcanized samples with different vulcanization degrees by
controlling time.
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2.3. Step Temperature-Rising Foaming Process

Figure 1 is the diagram of a foaming device. The pre-vulcanized silicone rubber sheet
sample with 0.5 mm thickness was put into an autoclave of 250 mL, and the air in this
autoclave was replaced by slowly purging with low-pressure CO2 for three times. Then, the
autoclave was placed in an oil bath at 35 ◦C, and CO2 at different pressure was introduced
into silicone rubber for 30–180 min before slow depressurization. After pressure relieving,
the sample was quickly transferred into an oil bath at 150–180 ◦C to conduct a rising
temperature foaming stage. Finally, the foamed sample was kept in the oven at 200 ◦C for
120 min for a complete post-vulcanization.
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Figure 1. Diagram of CO2 foaming silicone rubber devices.

The CO2 saturation in preparation of CO2 plasticized samples was the same as the
foaming process. After CO2 saturation, the pressure was released within 90 s, and silicone
rubber sheet samples were taken out for further measurements. The CO2 content dissolved
in silicone rubber was determined by the desorption method [21]. The CO2-saturated
samples were quickly put on the balance to record its weight change over time at atmo-
spheric pressure. The desorption curve was extrapolated to obtain CO2 concentration
based on polymer.

2.4. Characterization
2.4.1. Differential Scanning Calorimetry (DSC) Analysis

The vulcanization degree of different silicone rubber samples including after pre-
vulcanization, CO2 saturation, and foaming was determined by differential scanning
calorimetry (DSC, TADHR-2, TA Instrument Inc., New Castle, DE, USA) at a heating rate
of 5 ◦C/min. The vulcanization degree value was calculated by Equation (1).

α = 1− ∆Ht/∆Htotal (1)

where α is the vulcanization degree of the sample, ∆Ht is the vulcanization reaction
exothermic enthalpy of vulcanized samples, and ∆Htotal is the vulcanization reaction
exothermic enthalpy of the un-vulcanized sample. The reaction exothermic enthalpies
were calculated by the DSC curve.

2.4.2. Rheological Properties Measurements

The rheological properties of mixed rubber samples were characterized by a rotational
rheometer (TA DHR-2, TA Instrument Inc., New Castle, DE, USA) with a 25 mm diameter
plate under atmospheric pressure. The thickness of the samples was 1 mm. Both pre-
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vulcanized silicone rubber samples and CO2 plasticized silicone rubber samples were
subjected to an oscillation shear test at 35 ◦C, the oscillation frequency was 0.1–100 rad/s,
and the strain was 1%. Dynamic temperature scanning of CO2 plasticized silicone rubber
samples was carried out under atmospheric pressure. The fixed frequency was 1 Hz and
1% for the control strain, and the temperature scanning range was 30–250 ◦C.

2.4.3. Foam Characterization

The density of silicone rubber samples before and after foaming was measured by the
drainage method. The following formula is the calculation method.

ρ = [m0/(m2 + m0 −m1)]ρwater (2)

m0 is the mass of the sample in the air, m1 is the mass of the sample in a density bottle
filled with water, m2 is the mass of the density bottle full of water, and ρwater is the density
of water [22].

The cell morphology of the silicone rubber foam sample was characterized by scanning
electron microscope (SEM, 1430VP, Carl Zeiss AG, Jena, Germany). The average cell size
was analyzed by the Image-Pro Plus software, and the following formula was used to
calculate the silicone rubber cell density (Nf) [6].

N f = (n/A)3/2
(

ρ0/ρ f

)
(3)

When n is the number of cells in the microscope photograph, A is the area of the
micrograph. ρ0 is the density of silicone rubber before foaming (1.06 g/m3), and ρ f is the
density of fully vulcanized silicone rubber after foaming.

3. Results and Discussion
3.1. Foamable Range of Pre-Vulcanization Degree

There are four stages of pre-vulcanization, CO2 saturation, bubble nucleation and
growth, and post-vulcanization in the temperature rise foaming process, as shown in
Figure 2. The pre-vulcanization degree can be controlled by the reaction temperature and
time. The temperature during CO2 saturation is controlled at low temperature so that the
vulcanization reaction does not further happen. The CO2 content in the pre-vulcanized
silicone rubber sample can be adjusted by CO2 saturation pressure and time. The CO2
diffusion and further vulcanization reaction occur simultaneously in CO2 plasticized
polymer during bubble nucleation and growth, since the bubble nucleation happens
because of the thermodynamic instability induced by the rising temperature, and the
bubbles continue to grow up at a certain higher temperature for a period of time. Final
post-vulcanization at high temperature aims to achieve complete crosslink networks in
foamed samples for stable cell morphology. Therefore, the vulcanization degree of silicone
rubber continues to increase except at the high-pressure CO2 saturation stage.
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Silicone rubber samples with different pre-vulcanization times were saturated under
CO2 pressure of 10 MPa for 120 min at 35 ◦C and then heated to 170 ◦C for 60 min of
foaming. The cell morphology of foamed samples is shown in Figure 3 and Table 1.
When the pre-vulcanization time increased from 10 to 20 min, the vulcanization degree
increased from 12.7% to 23.9%. The cell size decreased, but there was still cell rupture. The
vulcanization time range varied from 30 to 40 min, and the vulcanization degree increased
from 36.0% to 43.8%; meanwhile, the cell size became small, and the cell density increased.
However, only a small amount of cells existed when the vulcanization was performed for
50 min. When the vulcanization time rose to 60 min, the vulcanization degree reached
56.6%, and the crosslinking process was too high to form a bubble cell structure. So, there
was a pre-vulcanization degree range of 23.9−43.8% for the chosen silicone rubber system,
in which the foamed samples had a smaller cell size, just as other crosslinked polymers,
for example epoxy resin [23]. In the pre-vulcanized silicone rubber, there are vulcanized
regions and un-vulcanized regions. The un-vulcanized part generally shows good CO2-
dissolving capacity, which is conducive to bubble nucleation and growth [12,24], and the
vulcanized regions have good viscoelasticity, which enables silicone rubber to have enough
polymer matrix strength to support bubble growth without cell coalescence or cell collapse.
However, many more crosslinked networks in silicone rubber not only would restrict the
growth of cells but also would hinder CO2 dissolution.

The data of CO2 solubility in pre-vulcanized samples are listed in Table 1, since the
dense crosslinked networks in the samples with a high pre-vulcanization degree limited
CO2 diffusion into the polymer seriously, the CO2 content is too low to provide sufficient
nucleation driving force, only a few holes are observed, and most regions are non-foamed
in Figure 3f,g. Therefore, the low CO2 content in samples with a pre-vulcanization degree
over 50% should be the dominating factor for little bubble formation. Here, one thing needs
to be noted: when the pre-vulcanization degree is lower than 20%, small molecules in the
composition of silicone rubber are easily drained off by CO2, and the CO2 content in the
polymer matrix cannot be determined reasonably. The samples with a pre-vulcanization
degree of 36.0%, which has better cell morphology, were chosen to carry out further studies.

Table 1. Parameters of foamed samples with different pre-vulcanization times.

Pre-
Vulcanization

Time (min)

Pre-
Vulcanization

Degree (%)

CO2 Content
(g CO2/g SR)

Foam Density
(g·cm−3)

Average Cell
Diameter (µm)

Cell Density
(×105

Cells·cm−3)

Expansion
Ratio

0 0 - 0.43 ± 0.04 465.2 ± 93.0 0.1 2.4
10 12.7 - 0.41 ± 0.02 307.2 ± 61.4 0.3 2.5
20 23.9 0.086 0.45 ± 0.03 157.7 ± 35.1 2.2 2.3
30 36.0 0.070 0.51 ± 0.03 51.6 ± 8.6 72.1 2.0
40 43.8 0.063 0.40 ± 0.04 115.0 ± 23.0 7.9 2.5
50 50.7 0.015 1.03 ± 0.05 - - -
60 56.6 0.008 1.05 ± 0.05 - - -
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Figure 4 shows the complex viscosity (η*) as a function of frequency (ω) ranging from
0.1 to 100 rad/s for silicone rubber samples with different pre-vulcanization degrees; the
complex viscosities change linearly with frequency, but it also could be seen that the change
range of the rheological properties of these pre-vulcanized samples was not significant.
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Figure 4. Rheological behavior of silicone rubber samples at different pre-vulcanization times at 35 ◦C: (a) Storage modulus
G′; (b) Loss modulus G”; (c) Loss angle tan (δ); (d) Complex viscosity η*.

3.2. Effect of CO2 Plasticization Derived from CO2 Saturation
3.2.1. Effect of CO2 Plasticization on Rheological Behavior

The oscillatory shear test was performed to study the rheological properties of pre-
vulcanized silicone rubber after being saturated with 10 MPa CO2 for 30–180 min at 35 ◦C.
As shown in Figure 5, the storage modulus, loss modulus, and complex viscosity all
decreased with CO2 treatment time. The shear flow deformation of the silicone rubber
was further determined according to Equation (4) [25], and the data-fitting results are
summarized in Table 2.

η∗ = η0/
[
1 + (λω)c] (4)

where η* represents the complex viscosity, η0 represents the zero-shear viscosity, λ repre-
sents the characteristic relaxation time, ω represents the angular frequency, and c represents
the Cross index.
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Table 2. Rheological parameters of pre-vulcanized silicone rubber samples being treated with
different CO2 saturation times.

CO2 Saturation
Time c λ η0 R2

0 min 0.76 83.34 2,608,843.0 0.9999
30 min 0.76 80.96 2,598,144.4 0.9999
60 min 0.81 75.18 2,557,879.8 0.9999
90 min 0.71 61.03 1,272,419.6 0.9994
120 min 0.72 59.53 1,128,299.6 0.9999
150 min 0.73 32.90 618,824.5 0.9995
180 min 0.67 26.08 474,267.6 0.9993
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vulcanized silicone rubber after being saturated with 10 MPa CO2 for 30–180 min at 35 °C. 
As shown in Figure 5, the storage modulus, loss modulus, and complex viscosity all de-
creased with CO2 treatment time. The shear flow deformation of the silicone rubber was 
further determined according to Equation (4) [25], and the data-fitting results are summa-
rized in Table 2. 𝜂∗ = 𝜂଴/[1 + ሺ𝜆𝜔ሻ௖] (4)

where η* represents the complex viscosity, η0 represents the zero-shear viscosity, λ repre-
sents the characteristic relaxation time, ω represents the angular frequency, and c repre-
sents the Cross index. 
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With the increase in CO2 saturation time, more CO2 entered into the silicone rubber
matrix, the free volume increased, the viscosity decreased, and the characteristic relaxation
time of the chain segments motion also decreased.

3.2.2. Effect of CO2 Plasticization on Vulcanization Reaction

The pre-vulcanization samples were saturated in different CO2 pressure for 120 min at
35 ◦C, and then, the non-isothermal DSC test was performed immediately with a 5 ◦C/min
temperature rising rate after the CO2 pressure was released slowly, which corresponded to
the cell nucleation and growth stage, in which CO2 diffusion and vulcanization reactions
were carried out simultaneously. The relative conversion α(t) of the further vulcanization
reaction was obtained according to Equation (5).

α(t) = ∆Ht/∆Htotal (5)

4Ht is the exothermic enthalpy of reaction at time t, and4Htotal is the total exothermic
enthalpy of the reaction.

Figure 6a shows non-isothermal DSC curves; dissolved CO2 in silicone rubber caused
a delay in the starting temperature of the further vulcanization reaction. As the saturation
pressure of CO2 increased, the content of CO2 increased, and the faster and more CO2 that
escaped from polymer matrix, the more heat CO2 absorbed in this process, which would
lead to a decrease in the exothermic peak of the vulcanization reaction. Figure 6b shows
curves of the relative conversion of the further vulcanization reaction changing with time
for CO2-plasticized silicon rubber samples. Owing to both the free volume in the polymer
matrix increasing and viscosity decreasing with CO2 concentration, the mass transfer is
enhanced, so that the vulcanization reaction rate was accelerated and the vulcanization
time was shortened; this phenomenon is similar to the faster curing rate for polyurethane
and epoxy resin under high CO2 atmosphere [26–28]. However, after CO2 pressure reached
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14 MPa, the vulcanization reaction rate varied insignificantly, since the free volume of the
polymer was also extruded by system static pressure [29].
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3.2.3. Effect of CO2 Saturation Time on Cell Morphology

The pre-vulcanized samples were saturated by 10 MPa CO2 pressure for 30–180 min
at 35 ◦C; then, they reached 170 ◦C by a heating rate of 5 ◦C/min and foamed for 60 min at
170 ◦C. The cell morphology of the foamed samples is presented in Figure 7 and Table 3.
When silicone rubber samples were saturated in CO2 for 30 min, the solubility of CO2 was
only 0.010 g CO2/g SR because of inadequate saturation time. The low solubility cannot
induce the cell nucleation and form bubbles, which is illustrated in Figure 7a. With the
sample being saturated for 60 min, the concentration of CO2 reached 0.025 g CO2/g SR,
and only a small number of closed spherical bubbles appeared. When the CO2 saturation
time varied from 90 to 120 min, the amount of CO2 that dissolved into the polymer matrix
increased from 0.058 to 0.070 g CO2/g SR, and relatively uniform and close cells could be
obtained. When the saturation time was further extended, the CO2 concentration increased
a little and approached the CO2 solubility limit, but the polymer samples have been well
plasticized by the higher content of dissolved CO2, and the polymer matrix strength became
lower because of the CO2 plasticization effect on the rheological properties, as shown in
Figure 5; therefore, bubbles began to rupture and merge, resulting in the formation of
big cells.

Table 3. Parameters of foamed samples with different CO2 saturation times.

Solution
Time (Min)

CO2 Content
(g CO2/g SR)

Foam
Density
(g·cm−3)

Average Cell
Diameter

(µm)

Cell Density
(×105

Cells·cm−3)

Expansion
Ratio

30 0.010 0.88 ± 0.06 - - 1.2
60 0.025 0.76 ± 0.05 - - 1.4
90 0.058 0.48 ± 0.03 68.7 ± 13.7 13.5 2.1

120 0.070 0.51 ± 0.03 51.6 ± 8.6 72.1 2.0
150 0.071 0.48 ± 0.03 75.6 ± 12.6 10.2 2.1
180 0.072 0.41 ± 0.01 214.0 ± 35.7 2.1 2.5
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3.2.4. Effect of CO2 Saturation Pressure on Cell Morphology

The samples were saturated under 8–18 MPa CO2 pressure for 120 min at 35 ◦C and
then reached 170 ◦C by a heating rate of 5 ◦C/min and foamed for 60 min at 170 ◦C.
The cell morphology of the foamed samples is presented in Figure 8 and Table 4. When
the saturation pressure was 10 MPa, the cell density of 72.1 × 105 cells/cm3 was the
largest and the average cell diameter of 51.6 µm was the smallest. Due to the good affinity
between CO2 and silicone rubber [30,31], the higher CO2 saturation pressure, and the
higher dissolved CO2 content in the silicone rubber matrix, more bubble nucleation should
happen according to the classical nucleation theory, but the cell density began to decrease
at higher CO2 saturation pressure. This may be due to the lower polymer matrix strength
caused by strong CO2 plasticization. On the other hand, the delayed start of the further
vulcanization reaction may also result in less polymer matrix strength, and the bubbles
tended to merge. For samples saturated by 14–18 MPa CO2, as mentioned in Section 3.2.2,
the effect of CO2 plasticization on the vulcanization reaction was not significant; the main
reason would be lower viscoelasticity caused by CO2 plasticization.
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Figure 8. Cell morphology of foamed samples under different CO2 saturation pressures: (a) 8 MPa;
(b) 10 MPa; (c) 12 MPa; (d) 14 MPa; (e) 16 MPa; (f) 18 MPa.

Table 4. Parameters of foamed samples at different CO2 saturation pressures.

P (MPa) CO2 Content
(g CO2/g SR)

Foam
Density
(g·cm−3)

Average Cell
Diameter

(µm)

Cell Density
(×105

Cells·cm−3)

Expansion
Ratio

8 0.064 0.40 ± 0.03 102.6 ± 20.5 10.4 2.6
10 0.070 0.51 ± 0.03 51.6 ± 8.6 72.1 2.0
12 0.075 0.43 ± 0.02 94.5 ± 15.8 14.4 2.4
14 0.081 0.40 ± 0.03 124.7 ± 18.6 7.2 2.6
16 0.087 0.37 ± 0.02 132.9 ± 20.8 7.1 2.8
18 0.091 0.31 ± 0.01 201.2 ± 40.2 4.0 3.3

3.3. Effect of Vulcanization during Bubble Nucleation and Growth
3.3.1. Effect of Foaming Temperature on Cell Morphology

The samples were saturated in 10 MPa CO2 for 120 min at 35 ◦C and then were
heated to 150–180 ◦C for 60 min of foaming. The vulcanization degree of the samples was
measured at the end of the foaming stage. The cell morphology of the obtained silicone
rubber foam samples is presented in Figure 9 and Table 5. At a foaming temperature of
150 ◦C, the vulcanization degree after foaming was only 67.3%, and the polymer matrix
strength during bubble growth was insufficient to maintain the bubbles. When the foaming
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temperature was 160 ◦C, the vulcanization degree after foaming reached 70.2%, and only
a small amount of cells collapsed. When the foaming temperature was up to 170 ◦C, the
vulcanization reaction rate increased, the polymer matrix strength was sufficient to avoid
cell coalescence, and small uniform closed spherical cells were generated [32]. When the
foaming temperature continued to 180 ◦C, vulcanization was complete and generated
high crosslinking networks which limited bubble nucleation and growth. By the way, CO2
diffusion is faster at higher temperature, and more gas would escape out of the polymer
matrix; therefore, the expansion ratio decreased.
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Figure 9. Cell morphology of foamed samples at different foaming temperatures: (a) 150 ◦C; (b) 160 ◦C;
(c) 170 ◦C; (d) 180 ◦C.

Table 5. Parameters of foamed samples at different foaming temperatures.

Temperature
(◦C)

Vulcanization
Degree (%)

Foam
Density
(g·cm−3)

Average Cell
Diameter

(µm)

Cell Density
(×105

Cells·cm−3)

Expansion
Ratio

150 67.3 0.46 ± 0.03 - - 2.2
160 70.2 0.45 ± 0.02 120.9 ± 15.1 7.5 2.3
170 94.4 0.51 ± 0.03 51.6 ± 8.6 72.1 2.0
180 100.0 0.63 ± 0.03 152.0 ± 31.6 1.8 1.6

The temperature-dependent rheological properties of pre-vulcanized silicone rubber
samples are shown in Figure 10. The occurrence of a further vulcanization reaction resulted
in a sudden rising of storage modulus and complex viscosity at higher temperature, but
the loss modulus only had a little increase. After CO2 treatment, the storage modulus, loss
modulus, and complex viscosity of the vulcanized sample decreased, but their scope of
change with temperature was much smaller than that of a sample without CO2 treatment.
Figure 4 also exhibited that when the temperature was around 170 ◦C, the storage modulus
of the pre-vulcanized silicone rubber sample after CO2 treatment was slightly larger than
its loss modulus, and the loss factor was still close to 1, which would be good for polymer
foaming [23]; this is also corresponding to the foaming results.
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3.3.2. Effect of Foaming Time on Cell Morphology

When saturated at 35 ◦C and 10 MPa CO2 for 120 min and then foamed at 170 ◦C
for 20–120 min, the cell morphology of the foamed samples is shown in Figure 11 and
Table 6. When the foaming time increased from 20 to 60 min, the vulcanization degree
at the end of the foaming stage was from 74.6% to 94.4%, the cell size decreased, and
the cell density increased. One reason is that the lower polymer matrix strength at the
lower vulcanization degree resulted in more cell mergence; another reason is that the
higher crosslinked networks at higher vulcanization degrees limited bubble growth. When
the foaming time increased to 80–120 min, the cell morphologies were similar due to the
complete vulcanization reaction and full cell growth.

Table 6. Parameters of foamed samples with different foaming times.

Time (Min) Vulcanization
Degree (%)

Foam
Density
(g·cm−3)

Average Cell
Diameter

(µm)

Cell Density
(×105

Cells·cm−3)

Expansion
Ratio

20 74.6 0.43 ± 0.01 324.4 ± 54.1 0.6 2.4
40 86.9 0.47 ± 0.03 202.2 ± 33.7 2.2 2.2
60 94.4 0.51 ± 0.03 51.6 ± 8.6 72.1 2.0
80 100.0 0.53 ± 0.02 98.3 ± 16.4 11.5 1.9

100 100.0 0.52 ± 0.02 97.2 ± 15.8 11.4 2.0
120 100.0 0.53 ± 0.03 101.6 ± 16.9 11.3 1.9
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3.3.3. Effect of Temperature Rising Rate on Cell Morphology

Different temperature rising rates were controlled for foaming the same CO2 saturated
pre-vulcanized silicon rubber samples at 170 ◦C for 60 min. The cell morphology of
obtained foams is shown in the Figure 12 and Table 7.

Table 7. Parameters of foamed samples with different temperature-rising rates.

Temperature
Rising Rate

(◦C/min)

Foam Density
(g·cm−3)

Average Cell
Diameter (µm)

Cell Density
(×105

Cells·cm−3)

Expansion
Ratio

5 0.62 ± 0.03 182.0 ± 36.4 1.6 1.6
10 0.56 ± 0.02 90.7 ± 18.1 10.7 1.8
15 0.52 ± 0.03 78.0 ± 15.6 19.1 2.0
20 0.57 ± 0.03 37.5 ± 7.5 109.1 1.8
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The higher temperature-rising rate caused a higher cell density and smaller cell size.
When the temperature rising rate incresed from 5 to 20 ◦C/min, the expansion ratio had a
little change, but the cell density increased by about two orders of magnitude, and the cell
size also decreased a lot. On the one hand, a higher temperature-rising rate means more
CO2 supersaturation in a polymer matrix, which was beneficial for bubble nucleation, and
more dissolved CO2 would be used for bubble nucleation rather than bubble growth. On
the other hand, both the vulcanization reaction rate and vulcanization degree increased
during a fast temperature-rising process; as shown in Figure 13, the polymer matrix
strength consequently increased rapidly, which limited bubble growth. Furthermore,
bubble nucleation might also be induced by more and faster chain crosslinking.
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methyl-vinyl silicone rubber system, there existed a pre-vulcanization degree range of
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23.9–43.8% for good cell structure. During the nucleation and growth of bubbles, the
effluent of dissolved CO2 from silicone rubber caused a delay in the initial temperature of
the further vulcanization reactions, but the vulcanization reaction was still accelerated by
the plasticization of dissolved CO2. Therefore, the lower viscoelasticity caused by good
CO2 plasticization would be the dominating factor for appearance of bigger cells at longer
CO2 saturation time or higher CO2 saturation pressure. When the foaming temperature
was lower or the foaming time was shorter, less vulcanization led to a lower polymer
matrix strength, and more cell mergence would happen. With increase in temperature,
the elastic modulus and complex viscosity had a sudden increase because of a further
vulcanization reaction. In particular, the loss factor of the vulcanized silicone rubber after
CO2 treatment was close to 1 around 170 ◦C, which was beneficial for polymer foaming.
Due to more bubble nucleation and faster vulcanization reaction rate, silicone rubber foam
had higher cell density and smaller cell size at a higher temperature rising rate.
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