Boron Nitride-Filled Linear Low-Density Polyethylene for Enhanced Thermal Transport: Continuous Extrusion of Micro-Textured Films
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Processing
2.3. Characterization
3. Results and Discussion
3.1. Rheology and Processing
3.1.1. Viscosity and Die Swell
3.1.2. Film Microstructure and Micro-Texture
3.2. Thermal Conductivity of BN/LLDPE Films
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chandler, A.D. Inventing the Electronic Century; Harvard Universty Press: Cambridge, MA, USA, 2009; ISBN 9780674018051. [Google Scholar]
- Tonapi, S.S.; Fillion, R.; Schattenmann, F.; Cole, H.S.; Evans, J.D.; Sammakia, B. An Overview of Thermal Management for Next Generation Microelectronic Devices. In Proceedings of Advanced Semiconductor Manufacturing Conference and Workshop; IEEE: Munich, Germany, 2003; ISBN 0-7803-7673-0. [Google Scholar] [CrossRef]
- Alshaer, W.; Nada, S.A.; Rady, M.; Palomo del Barrio, E.; Sommier, A. Thermal management of electronic devices using carbon foam and PCM/nano-composite. Int. J. Therm. Sci. 2015, 89, 79–86. [Google Scholar] [CrossRef]
- Kim, K.M.; Jeong, Y.S.; Bang, I.C. Thermal analysis of lithium ion battery-equipped smartphone explosions. Eng. Sci. Technol. Int. J. 2019, 22, 610–617. [Google Scholar] [CrossRef]
- Zhou, W.; Li, Y.; Chen, Z.; Deng, L.; Gan, Y. Ultra-thin flattened heat pipe with a novel band-shape spiral woven mesh wick for cooling smartphones. Int. J. Heat Mass Transf. 2020, 146, 118792. [Google Scholar] [CrossRef]
- Asai, H.; Yano, K.; Iyogi, K.; Iwase, N.; Fujiwara, T. Design and characteristics of a newly developed cavity-up plastic and ceramic laminated thin BGA package. IEEE Trans. Adv. Packag. 1999, 22, 460–467. [Google Scholar] [CrossRef]
- Tong, X.C. Thermal Management Fundamentals and Design Guides in Electronic Packaging BT—Advanced Materials for Thermal Management of Electronic Packaging; Tong, X.C., Ed.; Springer: New York, NY, USA, 2011; pp. 1–58. ISBN 978-1-4419-7759-5. [Google Scholar]
- Engelien, E.; Beshchasna, N.; Braunschweig, M.; Uhlemann, J.; Wolter, K.-J. Property evaluations of polymers used as housing material for passivation of electronic devices. In Proceedings of the 2008 2nd Electronics Systemintegration Technology Conference, Greenwich, UK, 1–4 September 2008; IEEE: Piscataway, NJ, USA, 2008; pp. 259–264. [Google Scholar]
- Chilton, J.A.; Goosey, M.T. (Eds.) Special Polymers for Electronics and Optoelectronics; Springer: Dordrecht, The Netherlands, 1995; ISBN 978-94-010-4252-9. [Google Scholar]
- Wong, C. (Ed.) Polymers for Electronic & Photonic Application; Academic Press: Cambridge, MA, USA, 1992; ISBN 9781483289397. [Google Scholar]
- Xuyen, N.T.; Ra, E.J.; Geng, H.-Z.; Kim, K.K.; An, K.H.; Lee, Y.H. Enhancement of conductivity by diameter control of polyimide-based electrospun carbon nanofibers. J. Phys. Chem. B 2007, 111, 11350–11353. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; Mcnamara, A.; Liu, Y.; Moon, K.; Wong, C.-P. Exfoliated hexagonal boron nitride-based polymer nanocomposite with enhanced thermal conductivity for electronic encapsulation. Compos. Sci. Technol. 2014, 90, 123–128. [Google Scholar] [CrossRef]
- Wang, X.; Wu, P. Preparation of Highly Thermally Conductive Polymer Composite at Low Filler Content via a Self-Assembly Process between Polystyrene Microspheres and Boron Nitride Nanosheets. ACS Appl. Mater. Interfaces 2017, 9, 19934–19944. [Google Scholar] [CrossRef]
- Han, Z.; Fina, A. Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review. Prog. Polym. Sci. 2011, 36, 914–944. [Google Scholar] [CrossRef] [Green Version]
- Mapleback, B.J.; Brack, N.; Thomson, L.; Spencer, M.J.S.; Osborne, D.A.; Doshi, S.; Thostenson, E.T.; Rider, A.N. Development of Stable Boron Nitride Nanotube and Hexagonal Boron Nitride Dispersions for Electrophoretic Deposition. Langmuir 2020, 36, 3425–3438. [Google Scholar] [CrossRef]
- Chan, E.; Leung, S.N.; Khan, M.O.; Naguib, H.; Dawson, F.; Adinkrah, V.; Lakatos-Hayward, L. Fabrication and characterization of ceramic-filled thermoplastics composites with enhanced multifunctional properties. J. Thermoplast. Compos. Mater. 2014, 27, 541–557. [Google Scholar] [CrossRef]
- Lin, Z.; Liu, Y.; Raghavan, S.; Moon, K.; Sitaraman, S.K.; Wong, C. Magnetic Alignment of Hexagonal Boron Nitride Platelets in Polymer Matrix: Toward High Performance Anisotropic Polymer Composites for Electronic Encapsulation. ACS Appl. Mater. Interfaces 2013, 5, 7633–7640. [Google Scholar] [CrossRef]
- Ren, P.-G.; Hou, S.-Y.; Ren, F.; Zhang, Z.-P.; Sun, Z.-F.; Xu, L. The influence of compression molding techniques on thermal conductivity of UHMWPE/BN and UHMWPE/(BN + MWCNT) hybrid composites with segregated structure. Compos. Part A Appl. Sci. Manuf. 2016, 90, 13–21. [Google Scholar] [CrossRef]
- Yuan, C.; Duan, B.; Li, L.; Xie, B.; Huang, M.; Luo, X. Thermal Conductivity of Polymer-Based Composites with Magnetic Aligned Hexagonal Boron Nitride Platelets. ACS Appl. Mater. Interfaces 2015, 7, 13000–13006. [Google Scholar] [CrossRef]
- Yan, H.; Tang, Y.; Su, J.; Yang, X. Enhanced thermal–mechanical properties of polymer composites with hybrid boron nitride nanofillers. Appl. Phys. A 2014, 114, 331–337. [Google Scholar] [CrossRef]
- Ghose, S.; Watson, K.; Connell, J.; Smith, J.G., Jr.; Sun, Y. Thermal conductivity of ethylene vinyl acetate copolymer/nanofiller blends. Compos. Sci. Technol. 2008, 68, 1843–1853. [Google Scholar] [CrossRef] [Green Version]
- Zhi, C.; Bando, Y.; Terao, T.; Tang, C.; Kuwahara, H.; Golberg, D. Towards Thermoconductive, Electrically Insulating Polymeric Composites with Boron Nitride Nanotubes as Fillers. Adv. Funct. Mater. 2009, 19, 1857–1862. [Google Scholar] [CrossRef]
- Li, T.-L.; Hsu, S.L.-C. Preparation and properties of thermally conductive photosensitive polyimide/boron nitride nanocomposites. J. Appl. Polym. Sci. 2011, 121, 916–922. [Google Scholar] [CrossRef]
- Cho, H.-B.; Tokoi, Y.; Tanaka, S.; Suematsu, H.; Suzuki, T.; Jiang, W.; Niihara, K.; Nakayama, T. Modification of BN nanosheets and their thermal conducting properties in nanocomposite film with polysiloxane according to the orientation of BN. Compos. Sci. Technol. 2011, 71, 1046–1052. [Google Scholar] [CrossRef]
- Komatsu, R.; Nakazato, R.; Sasaki, T.; Suzuki, A.; Senda, N.; Kawata, T.; Jimbo, Y.; Aoyama, T.; Ohno, N.; Kawashima, S.; et al. Repeatedly foldable AMOLED display. J. Soc. Inf. Disp. 2015, 23, 41–49. [Google Scholar] [CrossRef]
- Watanabe, K.; Iwaki, Y.; Uchida, Y.; Nakamura, D.; Ikeda, H.; Katayama, M.; Cho, T.; Miyake, H.; Hirakata, Y.; Yamazaki, S. A foldable OLED display with an in-cell touch sensor having embedded metal-mesh electrodes. J. Soc. Inf. Disp. 2016, 24, 12–20. [Google Scholar] [CrossRef]
- Gheisari, R.; Lan, P.; Polycarpou, A.A. Efficacy of surface microtexturing in enhancing the tribological performance of polymeric surfaces under starved lubricated conditions. Wear 2020, 444–445, 203162. [Google Scholar] [CrossRef]
- Deutsch, J.; Motlagh, D.; Russell, B.; Desai, T.A. Fabrication of microtextured membranes for cardiac myocyte attachment and orientation. J. Biomed. Mater. Res. 2000, 53, 267–275. [Google Scholar] [CrossRef]
- Gentile, F.; Coppedè, N.; Tarabella, G.; Villani, M.; Calestani, D.; Candeloro, P.; Iannotta, S.; Di Fabrizio, E. Microtexturing of the Conductive PEDOT:PSS Polymer for Superhydrophobic Organic Electrochemical Transistors. Biomed Res. Int. 2014, 2014, 302694. [Google Scholar] [CrossRef] [PubMed]
- Isenberg, B.C.; Tsuda, Y.; Williams, C.; Shimizu, T.; Yamato, M.; Okano, T.; Wong, J.Y. A thermoresponsive, microtextured substrate for cell sheet engineering with defined structural organization. Biomaterials 2008, 29, 2565–2572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shalaby, S.W.; Roweton, S.L. Microporous polymeric foams and microtextured surfaces. U.S. Patent US10606493A, 1994. [Google Scholar]
- Srinivasan, S.; Chhatre, S.S.; Mabry, J.M.; Cohen, R.E.; McKinley, G.H. Solution spraying of poly(methyl methacrylate) blends to fabricate microtextured, superoleophobic surfaces. Polymer 2011, 52, 3209–3218. [Google Scholar] [CrossRef] [Green Version]
- Villacorta, B.S.; Hulseman, S.; Cannon, A.H.; Hulseman, R.; Ogale, A.A. Continuously extruded micro-textured polypropylene films. Polym. Eng. Sci. 2014, 54, 2147–2154. [Google Scholar] [CrossRef]
- Macosko, C.W. Rheology—Principles, Measurements and Applications—Knovel. Available online: https://app.knovel.com/web/toc.v/cid:kpRPMA0004/viewerType:toc//root_slug:viewerType%3Atoc/url_slug:root_slug%3Arheology-principles-measurements?kpromoter=federation (accessed on 3 August 2021).
- Metzner, A.B. Rheology of Suspensions in Polymeric Liquids. J. Rheol. 1985, 29, 739–775. [Google Scholar] [CrossRef]
- Kalaitzidou, K.; Fukushima, H.; Drzal, L.T. Multifunctional polypropylene composites produced by incorporation of exfoliated graphite nanoplatelets. Carbon N. Y. 2007, 45, 1446–1452. [Google Scholar] [CrossRef]
- Mooney, M. The viscosity of a concentrated suspension of spherical particles. In Proceedings of the Annual Meeting of the Society of Rheolog, New York, NT, USA, 3–4 November 1950. [Google Scholar]
- Mardles, E.W.J. Viscosity of Suspensions and the Einstein Equation. Nature 1940, 145, 970. [Google Scholar] [CrossRef]
- Mu, Y.; Zhao, G.; Huiping, L.; Liu, J.; Xu, X.; Mu, W.; Chen, A. Measurement and simulation of low-density polyethylene extrudate swell through a circular die. Polym. Int. 2009, 58, 475–483. [Google Scholar] [CrossRef]
- Yang, X.; Wang, S.-Q.; Chai, C. Extrudate swell behavior of polyethylenes: Capillary flow, wall slip, entry/exit effects and low-temperature anomalies. J. Rheol. 1998, 42, 1075–1094. [Google Scholar] [CrossRef]
- Vlachopoulos, J.; Strutt, D. The Role of Rheology in Polymer Extrusion. In Proceedings of the Extrusion Minitec and Conference: From Basics to Recent Developments, Dusserldorf, Germany, 26 October 2004. [Google Scholar]
- Wang, K. Die Swell of Complex Polymeric Systems. In Viscoelasticity—From Theory to Biological Applications; InTech: London, UK, 2012. [Google Scholar]
- Dealy, J.M.; Wissburn, K.F. Melt Rheology and Its Role in Plastic Processing; Van Nostrand Reinhold: New York, NY, USA, 1990; ISBN 0-442-22099-5. [Google Scholar]
LLDPE | BN1 | BN5 | BN10 | BN20 | BN30 | |
---|---|---|---|---|---|---|
n | 0.50 | 0.50 | 0.45 | 0.45 | 0.40 | 0.38 |
λ (s) | 0.005 | 0.05 | 0.050 | 0.055 | 0.060 | 0.070 |
Ƞ0 (Pa.s) | 467 | 1391 | 2337 | 3000 | 4600 | 7600 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Güzdemir, Ö.; Kanhere, S.; Bermudez, V.; Ogale, A.A. Boron Nitride-Filled Linear Low-Density Polyethylene for Enhanced Thermal Transport: Continuous Extrusion of Micro-Textured Films. Polymers 2021, 13, 3393. https://doi.org/10.3390/polym13193393
Güzdemir Ö, Kanhere S, Bermudez V, Ogale AA. Boron Nitride-Filled Linear Low-Density Polyethylene for Enhanced Thermal Transport: Continuous Extrusion of Micro-Textured Films. Polymers. 2021; 13(19):3393. https://doi.org/10.3390/polym13193393
Chicago/Turabian StyleGüzdemir, Özgün, Sagar Kanhere, Victor Bermudez, and Amod A. Ogale. 2021. "Boron Nitride-Filled Linear Low-Density Polyethylene for Enhanced Thermal Transport: Continuous Extrusion of Micro-Textured Films" Polymers 13, no. 19: 3393. https://doi.org/10.3390/polym13193393
APA StyleGüzdemir, Ö., Kanhere, S., Bermudez, V., & Ogale, A. A. (2021). Boron Nitride-Filled Linear Low-Density Polyethylene for Enhanced Thermal Transport: Continuous Extrusion of Micro-Textured Films. Polymers, 13(19), 3393. https://doi.org/10.3390/polym13193393