Active Bio-Based Pressure-Sensitive Adhesive Based Natural Rubber for Food Antimicrobial Applications: Effect of Processing Parameters on Its Adhesion Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Xyloglucan
2.3. Preparation of Bio-PSA/CO Patch
2.4. Antimicrobial Activity Test
2.5. Molecular Weight Determination
2.6. Adhesive Properties Tests
2.6.1. T-Peel Testing (Peel Strength of Bio-PSA/CO)
2.6.2. Lap Shear Testing (Shear Strength of Bio-PSA)
2.7. Morphological Analysis
2.8. Statistical Analysis
3. Results and Discussion
3.1. Antimicrobial Activity
3.2. Effect of Mixing Conditions on Properties of NR-PSA/CO
3.2.1. Influence of Nip Gaps
3.2.2. Influence of Mastication Time
3.3. Effect of XG Content On Properties of NR-PSA/CO
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Appendini, P.; Hotchkiss, J.H. Review of antimicrobial food packaging. J. Innov. Food Sci. Emerg. Technol. 2002, 3, 113–126. [Google Scholar] [CrossRef]
- Oral, N.; Vatansever, L.; Sezer, C.; Aydın, B.; Güven, A.; Gülmez, M.; Kürkçüoğlu, M. Effect of absorbent pads containing oregano essential oil on the shelf life extension of overwrap packed chicken drumsticks stored at four degrees Celsius. J. Poult. Sci. 2009, 88, 1459–1465. [Google Scholar] [CrossRef] [PubMed]
- Campos-Requena, V.H.; Rivas, B.L.; Pérez, M.A.; Figueroa, C.R.; Figueroa, N.E.; Sanfuentes, E.A. Thermoplastic starch/clay nanocomposites loaded with essential oil constituents as packaging for strawberries—In vivo antimicrobia synergy over Botrytis Cinerea. J. Postharvest Biol. Technol. 2017, 129, 29–36. [Google Scholar] [CrossRef]
- Wieczynska, J.; Luca, A.; Kidmose, U.; Cavoski, I.; Edelenbos, M. The use of antimicrobial sachets in the packaging of organic wild rocket: Impact on microorganisms and sensory quality. J. Postharvest Biol. Technol. 2016, 121, 126–134. [Google Scholar] [CrossRef]
- Passarinho, A.T.P.; Dias, N.F.; Camilloto, G.P.; Cruz, R.S.; Otoni, C.G.; Moraes, A.R.F.; Soares, N.D.F.F. Sliced bread preservation through oregano essential oil-containing sachet. J. Food Process Eng. 2014, 37, 53–62. [Google Scholar] [CrossRef]
- Ju, J.; Xu, X.; Xie, Y.; Guo, Y.; Cheng, Y.; Qian, H.; Yao, W. Inhibitory effects of cinnamon and clove essential oils on mold growth on baked foods. J. Food Chem. 2018, 240, 850–855. [Google Scholar] [CrossRef]
- Nazzaro, F.; Fratianni, F.; De Martino, L.; Coppola, R.; De Feo, V. Effect of essential oils on pathogenic bacteria. J. Pharm. 2013, 6, 1451–1474. [Google Scholar] [CrossRef]
- Lee, N.K.; Paik, H.D. Status, antimicrobial mechanism, and regulation of natural preservatives in livestock food systems. Korean J. Food Sci. Anim. Resour. 2016, 36, 547–557. [Google Scholar] [CrossRef] [Green Version]
- Otoni, C.G.; Espitia, P.; Avena-Bustillos, R.J.; McHugh, T.H. Trends in antimicrobial food packaging systems: Emitting sachets and absorbent pads. J. Food Res. Int. 2016, 83, 60–73. [Google Scholar] [CrossRef]
- Ayala-Zavala, J.F.; González-Aguilar, G.A. Optimizing the use of garlic oil as antimicrobial agent on fresh-cut tomato through a controlled release system. J. Food Sci. 2010, 75, 1–8. [Google Scholar] [CrossRef]
- Mohammed, I.K.; Charalambides, M.N.; Kinloch, A.J. Modeling the effect of rate and geometry on peeling and tack of pressure-sensitive adhesives. J. Nonnewton. Fluid Mech. 2016, 233, 85–94. [Google Scholar] [CrossRef] [Green Version]
- Musa, L.; Firdaus, S.Z.; Hussin, K.; Teik, P.B. Effect of hybrid tackifiers on viscosity, peel strength and shear resistance of natural rubber and epoxidized natural rubber-based pressure sensitive adhesives. J. Appl. Mech. Mater. 2015, 754, 49–53. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhou, Y.; Zhang, C.; Li, Z. Optimization of SIS-based hot-melt pressure-sensitive adhesives for transdermal delivery of hydrophilic drugs. Int. J. Adhes. Adhes. 2016, 68, 256–262. [Google Scholar] [CrossRef]
- Bozorg, B.D.; Banga, A.K. Effect of different pressure-sensitive adhesives on performance parameters of matrix-type transdermal delivery systems. J. Pharm. 2020, 12, 209. [Google Scholar]
- Poh, B.T.; Lamaming, J.; Tay, G.S. Adhesion Properties of Acrylonitrile-Butadiene Rubber/Standard Malaysian Rubber Blend Based Pressure-Sensitive Adhesive. J. Coat. 2014, 2014, 369352. [Google Scholar] [CrossRef]
- Leong, Y.C.; Lee, L.M.S.; Gan, S.N. The viscoelastic properties of natural rubber pressure-sensitive adhesive using acrylic resin as a tackifier. J. Appl. Polym. Sci. 2003, 88, 2118–2123. [Google Scholar] [CrossRef]
- Bandyopadhyay, S.; Saha, N.; Brodnjak, U.B.; Sáha, P. Bacterial cellulose and guar gum based modified PVP-CMC hydrogel films: Characterized for packaging fresh berries. J. Food Packag. Shelf Life 2019, 22, 100402. [Google Scholar] [CrossRef]
- Khan, I.; Poh, B.T. Effect of molecular weight and testing rate on adhesion property of pressure-sensitive adhesives prepared from epoxidized natural rubber. J. Mater. Des. 2011, 32, 2513–2519. [Google Scholar] [CrossRef]
- Khan, I.; Poh, B.T. Effect of molecular weight and testing rate on peel strength and shear strength of epoxidized natural rubber (ENR 50)-based adhesives. J. Appl. Polym. Sci. 2011, 120, 2641–2647. [Google Scholar] [CrossRef]
- Kalkornsurapranee, E.; Waiprib, R.; Pichayakorn, W. Medicated pressure sensitive adhesive patch from STR-5l block rubber: Effect of preparation process. J. Mater. Sci. Technol. 2017, 751, 236–241. [Google Scholar]
- Barros, N.R.D.; Heredia-Vieira, S.C.; Borges, F.A.; Benites, N.M.; Reis, C.E.D.; Romeiro Miranda, M.C.; Cardoso, C.A.L.; Herculano, R.D. Natural rubber latex biodevice as controlled release system for chronic wounds healing. J. Biomed. Phys. Eng. Express. 2018, 4, 035026. [Google Scholar] [CrossRef]
- Prabuseenivasan, S.; Jayakumar, M.; Ignacimuthu, S. In vitro antibacterial activity of some plant essential oils. J. BMC Complement. Altern. Med. 2006, 6, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duan, J.; Zhao, Y. Antimicrobial efficiency of essential oil and freeze–thaw treatments against Escherichia coli O157:H7 and Salmonella enterica Ser. enteritidis in strawberry juice. J. Food Sci. 2009, 74, 131–137. [Google Scholar] [CrossRef] [PubMed]
- Silveira, S.M.; Júnior, A.C.; Scheuermann, G.N.; Secchi, F.L.; Vieira, C.R.W. Chemical composition and antimicrobial activity of essential oils from selected herbs cultivated in the south of Brazil against food spoilage and foodborne pathogens. J. Cienc. Rural 2012, 42, 1300–1306. [Google Scholar] [CrossRef] [Green Version]
- Muhammad, D.R.A.; Dewettinck, K. Cinnamon and its derivatives as potential ingredient in functional food—A review. Int. J. Food Prop. 2017, 20, 2237–2263. [Google Scholar] [CrossRef] [Green Version]
- Pandey, A.K.; Kumar, P.; Singh, P.; Tripathi, N.N.; Bajpai, V.K. Essential Oils: Sources of Antimicrobials and Food Preservatives. Front. Microbiol. 2017, 7, 1–14. [Google Scholar] [CrossRef] [Green Version]
- López, P.; Sánchez, C.; Batlle, R.; Nerín, C. Vapor-Phase Activities of Cinnamon, Thyme, and Oregano Essential Oils and Key Constituents against Foodborne Microorganisms. J. Agric. Food Chem. 2007, 55, 4348–4356. [Google Scholar] [CrossRef]
- Nayak, A.K.; Pal, D.; Santra, K. Screening of polysaccharides from tamarind, fenugreek and jackfruit seeds as pharmaceutical excipients. Int. J. Biol. Macromol. 2015, 79, 756–760. [Google Scholar] [CrossRef] [PubMed]
- Thomas, P.; Sekhar, A.C.; Upreti, R.; Mujawar, M.M.; Pasha, S.S. Optimization of single plate-serial dilution spotting (SP-SDS) with sample anchoring as an assured method for bacterial and yeast CFU enumeration and single colony isolation from diverse samples. J. Appl. Biotechnol. Rep. 2015, 8, 45–55. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.B.; Liu, X.Y.; Jiang, P.P.; Li, W.D.; Wang, Y.F. Mechanism and antibacterial activity of cinnamaldehyde against Escherichia coli and Staphylococcus aureus. Mod. Food Sci. Technol. 2015, 31, 31–35. [Google Scholar]
- Reyes-Jurado, F.; Cervantes-Rincón, T.; Bach, H.; López-Malo, A.; Palou, E. Antimicrobial activity of Mexican oregano (Lippia berlandieri), thyme (Thymus vulgaris), and mustard (Brassica nigra) essential oils in gaseous phase. J. Ind. Crop. Prod. 2019, 131, 90–95. [Google Scholar] [CrossRef]
- Mustapha, F.A.; Jai, J.; Nik Raikhan, N.H.; Sharif, Z.I.M.; Yusof, N.M. Response surface methodology analysis towards biodegradability and antimicrobial activity of biopolymer film containing turmeric oil against Aspergillus niger. Food Control. 2019, 99, 106–113. [Google Scholar] [CrossRef]
- Hu, Y.; Zhang, J.; Kong, W.; Zhao, G.; Yang, M. Mechanisms of antifungal and anti-aflatoxigenic properties of essential oil derived from turmeric (Curcuma longa L.) on Aspergillus flavus. J. Food Chem. 2017, 220, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.P.; Shay, J.S.; Spontak, R.J.; Balik, C.M.; Ade, H.; Smith, S.D.; Koch, C.C. High-energy mechanical milling of poly(methyl methacrylate), polyisoprene and poly(ethylene-alt-propylene). J. Polym. 2000, 41, 6271–6283. [Google Scholar] [CrossRef]
- Sun, S.; Li, M.; Liu, A. A review on mechanical properties of pressure sensitive adhesives. Int. J. Adhes. Adhes. 2013, 41, 98–106. [Google Scholar] [CrossRef]
- Fröhlich, J.; Niedermeier, W.; Luginsland, H.D. The effect of filler-filler and filler-elastomer interaction on rubber reinforcement. J. Compos. Part A Appl. Sci. Manuf. 2005, 36, 449–460. [Google Scholar] [CrossRef]
Materials | Weight (phr) |
---|---|
STR 5L | 100 |
Xyloglucan (XG) | 20, 40, 60, and 80 |
Cinnamon oil (CO) | 0.06 (1,600 μL) * |
Nip Gap | Peel Strength (×102 N/m) | Shear Strength (×104 N/m2) | ||||||
---|---|---|---|---|---|---|---|---|
(mm) | Kraft | Nylon | PP | Al Foil | Kraft | Nylon | PP | Al Foil |
1 | 1.99 ± 0.11 bD * | 0.83 ± 0.02 bA * | 1.00 ± 0.08 bB * | 1.14 ± 0.01 bC * | 5.99 ± 0.28 bD | 4.30 ± 0.08 cB | 2.63 ± 0.10 cA | 5.28 ± 0.13 cC |
2 | 1.75 ± 0.10 aD | 0.03 ± 0.01 aA | 0.56 ± 0.01 aB | 0.94 ± 0.06 aC | 5.49 ± 0.46 bD | 3.50 ± 0.05 bB | 2.35 ± 0.09 bA | 4.11 ± 025 bC |
3 | ND | ND | ND | ND | 0.24 ± 0.03 aA | 0.33 ± 0.02 aB | 0.37 ± 0.05 aB | 0.36 ± 0.03 aB |
4 | ND | ND | ND | ND | ND | ND | ND | ND |
Mastication Time (min) | Peel Strength (×102 N/m) | Shear Strength (×104 N/m2) | ||||||
---|---|---|---|---|---|---|---|---|
Kraft | Nylon | PP | Al Foil | Kraft | Nylon | PP | Al Foil | |
5 | 1.51 ± 0.10 aC | ND | 0.49 ± 0.02 aA | 0.86 ± 0.02 aB | 9.08 ± 0.94 bC | 3.45 ± 0.17 aA | 2.48 ± 0.13 cA | 4.74 ± 0.95 abB |
10 | 1.75 ± 0.10 bD | 0.30 ± 0.01 aA | 0.56 ± 0.01 aB | 0.94 ± 0.01 aC | 5.49 ± 0.46 aD | 3.50 ± 0.05 aB | 2.35 ± 0.09 abA | 4.11 ± 0.25 aC |
15 | 2.14 ± 0.13 cC | 0.49 ± 0.03 bA | 0.59 ± 0.07 bA | 1.38 ± 0.13 eB | 5.15 ± 0.18 aC | 3.95 ± 0.46 bB | 2.28 ± 0.03 aA | 5.36 ± 0.35 cC |
XG Content (phr) | Peel Strength (×102 N/m) | Shear Strength (×104 N/m2) | ||||||
---|---|---|---|---|---|---|---|---|
Kraft | Nylon | PP | Al Foil | Kraft | Nylon | PP | Al Foil | |
20 | 2.14 ± 0.13 aC | 0.49 ± 0.03 aA | 0.59 ± 0.07 aA | 1.38 ± 0.13 aB | 5.15 ± 0.18 aC | 3.95 ± 0.14 aB | 2.12 ± 0.07 aA * | 5.36 ± 0.35 aC * |
40 | 5.64 ± 0.16 dB | 1.33 ± 0.17 cA | 1.77 ± 0.28 bA | 1.66 ± 0.35 aA | 8.24 ± 0.49 bD | 4.87 ± 0.21 bB | 2.97 ± 0.21 bA | 5.92 ± 0.52 aC |
60 | 4.55 ± 0.46 cC | 1.36 ± 0.14 cA | 2.44 ± 0.20 cB * | 2.69 ± 0.20 cB * | 8.51 ± 0.24 bD * | 6.37 ± 0.49 cC | 2.89 ± 0.20 bA * | 5.77 ± 0.08 aB * |
80 | 3.76 ± 0.23 bC * | 1.04 ± 0.15 bA | 2.17 ± 0.09 cB * | 2.25 ± 0.01 bB * | 9.50± 0.28 cD * | 6.56 ± 0.24 cC | 2.97 ± 0.09 bA * | 5.93 ± 0.52 aB * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sengsuk, T.; Songtipya, P.; Kalkornsurapranee, E.; Johns, J.; Songtipya, L. Active Bio-Based Pressure-Sensitive Adhesive Based Natural Rubber for Food Antimicrobial Applications: Effect of Processing Parameters on Its Adhesion Properties. Polymers 2021, 13, 199. https://doi.org/10.3390/polym13020199
Sengsuk T, Songtipya P, Kalkornsurapranee E, Johns J, Songtipya L. Active Bio-Based Pressure-Sensitive Adhesive Based Natural Rubber for Food Antimicrobial Applications: Effect of Processing Parameters on Its Adhesion Properties. Polymers. 2021; 13(2):199. https://doi.org/10.3390/polym13020199
Chicago/Turabian StyleSengsuk, Theerarat, Ponusa Songtipya, Ekwipoo Kalkornsurapranee, Jobish Johns, and Ladawan Songtipya. 2021. "Active Bio-Based Pressure-Sensitive Adhesive Based Natural Rubber for Food Antimicrobial Applications: Effect of Processing Parameters on Its Adhesion Properties" Polymers 13, no. 2: 199. https://doi.org/10.3390/polym13020199
APA StyleSengsuk, T., Songtipya, P., Kalkornsurapranee, E., Johns, J., & Songtipya, L. (2021). Active Bio-Based Pressure-Sensitive Adhesive Based Natural Rubber for Food Antimicrobial Applications: Effect of Processing Parameters on Its Adhesion Properties. Polymers, 13(2), 199. https://doi.org/10.3390/polym13020199