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Abstract: This paper proposes a multi-scale analysis technique based on the micromechanics of failure
(MMF) to predict and investigate the damage progression and ultimate strength at failure of laminated
composites. A lamina’s representative volume element (RVE) is developed to predict and calculate
constituent stresses. Damages that occurred in the constituents are calculated using separate failure
criteria for both fiber and matrix. Subsequently, the volume-based damage homogenization technique
is utilized to prevent the localization of damage throughout the total matrix zone. The proposed
multiscale analysis procedure is then used to investigate the notched and unnotched behavior of
three multi-directional composite layups, [30, 60, 90, −60, 30]2S, [0, 45, 90, −45]2S, and [60, 0, −60]3S,
subjected to static tension and compression loading. The specimen is fabricated from unidirectionally
reinforced composite (IM7/977-3). The prediction of ultimate strength at failure and equivalent
stiffness are then benchmarked against the experimental test data. The comparative analysis with
various failure models is also carried out to validate the proposed model. MMF demonstrated
the capability to correctly predict the ultimate strength at failure for a range of multidirectional
composites laminates under tensile and compressive load. The numerically predicted findings
revealed a good agreement with the experimental test data. Out of the three investigated composite
layups, the simulated results for the quasi-isotropic [0, 45, 90, −45]2S layup agreed extremely well
with the experimental results with all the percentage errors within 10% of the measured failure loads.

Keywords: multiscale simulation; micromechanics of failure; ultimate strength; IM7/977-3; composite laminates

1. Introduction

Composite laminate-based structures are extensively used in aerospace applications [1].
They are characterized as a significant configuration of composites that are critical for dif-
ferent categories of exceedingly loaded structures. Due to the elevated strength–weight
ratio, high specific modulus, and the ability to be customized for a particular application,
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composite materials offer a variety of advantages compared to other conventional ma-
terials [2]. In view of the recent developments in the advanced aerospace industry and
progressively high demand for increased performance of laminated composites structures,
more sophisticated design and failure prediction models are required [3].

Reliable failure theories and progressive damage models are needed to precisely pre-
dict the complex failure phenomenon in the structures made of composites. Therefore,
predictive tools that require a reduced number of essentials tests are becoming more impor-
tant because of the extremely expensive tests on composite structures [4]. Computational
multi-scale modelling and simulation tools for the prediction of damage mechanisms,
progressive damage, and residual strengths can be used to achieve this ambitious goal [5,6].
However, the concerns like an-isotropy, non-linear stress–strain response, complex failure
processes contribute to the difficulty of modeling the structural and damage behavior of
composites, especially the failure’s initiation and propagation, subsequently leading to the
prediction of ultimate strength [7,8].

Progressive Damage Analysis (PDA) and ultimate strength at failure’s prediction in
composite laminates is a difficult task, even after many years of publication of ground-
breaking works on failure theories by Rosen [9] and Tsai and Wu [10]. Even with composite
structures subjected to constant in-plane loading, ultimate strength prediction has shown
serious issues, as mentioned in different World-Wide Failure exercises [11,12]. The main
problems and intricacy lie in the interaction and mixture of various damage modes in
laminates, such as fiber-failure, matrix-cracking, and delamination, which ultimately result
in residual strength and structural integrity loss.

Progressive failure simulation and modeling approaches focus on the growth of dam-
age and the interaction of different phenomena in composite laminates. To evaluate the
progressive damage approaches, a benchmarking exercise [13] organized by “Air Force
Research Laboratory” (AFRL) [13], titled “Damage Tolerance Design Principles (DTDP),”
was arranged to investigate the capability of different PDA models against AFRL pro-
vided test data. The main aim of the exercise was to predict the ultimate strength of
several IM7/977-3 carbon fiber reinforced laminates under tensile and compressive load-
ing. During this study, nine different analysis teams forecasted the ultimate strength of
the unnotched and open-hole specimen. These predictions were made for three multidi-
rectional laminate groups [14], which are [30, 60, 90, −60, −30]2S, [0, 45, 90, −45]2S and
[0, 60, 60]3S.

The analysis codes presented in the DTDP exercise can be divided into two categories
depending upon the type of methodology, i.e., macromechanics and micromechanics [13].
From the presented analysis codes, the b-spline analysis method with mesh independent
cracking (BSAM with MIC) [13] and discrete crack network (DCN) [15] was based on the
macromechanics level. In macromechanics, damage in the matrix and fibers is computed
using composite level macro stresses. In contrast, the micromechanics approach utilizes
stress and strain information from each of the composite constituents.

Using the micromechanics approach to perform the PDA of composite laminates is of
great significance because of non-linearity before final failure, which most first ply failure
criteria cannot capture. Furthermore, the micromechanics approach facilitates accounting
precisely for changes in the properties of constituents in composite materials and the impact
of the microstructure, such as the fiber-orientation and fiber volume ratio, which makes it a
powerful tool to estimate progressive damage in composite based structures.

In the DTDP exercise [13], the analysis codes, namely generalized method of cells
(MAC/GMC) [16], helius progressive failure analysis (Helius PFA) [17], enhanced schapery
theory (EST) [13], multi-scale design system for linking continuum scales (MDS-C) [18],
general optimization analyzer (GENOA) [19], eigendeformation-based reduced order
homogenization (EHM) [20], and n-phase cylindrical model (NCYL) [21], were based on
the micromechanics approach.

The failure theories based on micromechanics have become increasingly attractive
for researchers in modeling the failure patterns of composite-based structures due to the
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benefit in describing the failure processes at the constituent level [22]. By combining
the representative unit cells of the meso level and micro level, the multiscale analysis
technique takes both the accuracy of micromechanics-based failure technique and efficiency
of macro-based analysis. Gosse et al. [23] suggested a theory based on the stress invariant
to predict the commencement of damage in composites by utilizing the strain-based
enhancement factors.

A micromechanics-based modeling technique using stress invariants was proposed by
Tran et al. [24]. Mayes et al. [25] suggested micromechanics depended on multi-continuum
theory (MCT), in which the stress and strain fields are obtained using a FE analysis.
Ha et al. [26] proposed a damage model based upon the micromechanics of failure (MMF)
technique for the estimation of failure in composite material’s constituents using stress
amplification factors. MMF is a constituent-based progressive damage model in which
the data is transferred from the microscale model to the mesoscale model and vice versa.
Lei et al. utilized MMF to accurately forecast the ultimate failure strength of woven
configuration [27] and braided configuration [28] textile composites.

Considering the advantage of MMF in prediction accuracy, the MMF model is utilized
to estimate the failure strength and stiffness of coupons fabricated from unidirectionally
reinforced composite (IM7/977-3) in this work. The prediction is conducted for unnotched
and open-hole specimens under tensile as well as compressive loading conditions. The
coupons were categorized as unnotched tension (UNT), unnotched compression (UNC),
open-hole tension (OHT), and open-hole compression (OHC). The investigated layups
used in the DTDP program are [30, 60, 90, −60, −30]2S, [0, 45, 45, 90]2S, and [60, 0, −60]3S.

A micromechanics-based FE model employing representative volume element (RVE)
is developed to estimate the ultimate strength of composite laminates subjected to tensile
and compressive loading. The mesoscale-based structural analysis was used to give input
to the RVE regarding the mesoscale stresses. Damages that occurred in different composite
constituents are observed based on the failure model for each constituent. The volume-
based damage homogenization technique is used to avoid damage localization throughout
the total matrix zone. The predicted results using MMF are also assessed by comparison
with the experimental tests data as well as the results from the other analysis methods.

2. Micromechanics Based Progressive Damage Model
2.1. Multi-Scale Analysis

The idealized model of the composite laminate is essential to predict their mechanics-
based behavior subjected to static loading, prior to multi-scale analysis. The schematic
of damage theory can be split up into macroscale procedure and microscale procedure.
In the homogenized framework of multiscale analysis, the microscale sub-domain is a
representative volume element (RVE) [29], from which micromechanical results are used to
yield results from the macro-scale model. The RVE of a lamina is developed in the terms of
the fiber, matrix, and interface to express microstructure as illustrated in Figure 1.
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Figure 1. Representative volume element (hexagonal fiber).



Polymers 2021, 13, 3491 4 of 22

The Representative Volume Element (RVE), a micro unit cell of hexagonal fiber shape
as shown in Figure 1, may be utilized to correlate the behavior of ply to the behavior of
fiber and matrix constituents [30]. Stress amplification factors (SAFs) [31], denoted by M
and A matrices, are used for the transformation between the ply level macro stresses (σ),
and the fiber-based stresses (σf) and matrix-based stresses (σm) at the micro level. The
transformation can be computed with the help of the following Equations (1) and (2).

σf = M f σ + A f ∆T (1)

σm = Mmσ + Am∆T (2)

where ∆T is the difference between ambient temperature and zero temperature. Mf and
Mm are the SAFs (mechanical) for the fiber and matrix, respectively, whereas Af and Am are
the SAFs (thermal) for the fiber and matrix, respectively. Mf and Mm are 6 × 6 matrices,
and Af and Am are 6 × 1 matrices. Equation (1) shows that the correlation between stresses
at macro level and micro level is linear with a uniform fiber distribution.

Multiscale analysis is performed in three steps. First, the SAFs are computed by
applying FE analysis on unit cell as shown in Figure 1. Second, Equation (1) is used to
determine the micro level stresses of selected key points in the fiber and matrix using
stresses in the ply. In the third step, micro stresses are then substituted in the constituent
depended progressive damage model to determine the damage factors in the fiber and
matrix. Later, as a result, the stiffness of each component, i.e., the fiber and matrix, was
degraded, based on the calculated damages. Subsequently, the effective properties of the
ply were again computed with the help of RVE.

2.2. Stress Amplification Factors

The diamond array of a fiber was selected to calculate the SAFs as shown in Figure 1.
The stress state of unit cell is described by selecting 18 key points in the fiber and 19 key
points in the matrix [28]. The majority of the selected points are positioned around the
interface area where the maximum stress concentration takes place, and the remaining key
points are situated in the center of the fiber and matrix. SAFs for the macro stress M and
for the temperature increment A were calculated through direct FE analysis of a unit cell
with appropriate repeated boundary conditions to ensure the correct behavior of a cell
model [32]. The comprehensive structure of Equation (1) is as follows:

σ1
σ2
σ3
σ4
σ5
σ6

 =



M11 M12 M13 M14 0 0
M21 M22 M23 M24 0 0
M31 M32 M33 M34 0 0
M41 M42 M43 M44 0 0

0 0 0 0 M55 M56
0 0 0 0 M65 M66





σ1
σ2
σ3
σ4
σ5
σ6

+



A1
A2
A3
A4
A5
A6

∆T (3)

Stress amplification factors were determined by applying the uniformly distributed
unidirectional unit loads one at a time at each direction to the unit cell shown in Figure 1.

For example, applying a unit load having uniform distribution at x direction of unit
cell with no thermal load will result in the simplification of Equation (3). The simplified
Equation (4) is given below:

σ1
σ2
σ3
σ4
σ5
σ6

 =



M11 M12 M13 M14 0 0
M21 M22 M23 M24 0 0
M31 M32 M33 M34 0 0
M41 M42 M43 M44 0 0

0 0 0 0 M55 M56
0 0 0 0 M65 M66





1
0
0
0
0
0

 (4)
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The solution of linear system given in Equation (4) yields Equation (5):

σ1
σ2
σ3
σ4
σ5
σ6

 =



M11
M21
M31
M41

0
0

 (5)

Equation (5) shows that the calculated SAFs are the micromechanical stresses, e.g.,
M11 is basically the σ1 and so on. The same method was applied to other directions to
calculate all the other SAFs.

2.3. Damage Model of Constituents

A separate damage model is used for each individual constituent of the composite
material, i.e., fiber and matrix, due to their different mechanical properties and behaviors.
Usually, the glass fiber behaves as an isotropic material, and carbon fiber behaves as a
transversely isotropic. Therefore, the behavior of both carbon and glass fibers are presumed
to be linear elastic and brittle. On the other hand, the polymetric matrix behaves as an
isotropic and ductile material, demonstrating non-linear behavior when it is damaged.

2.4. Fiber Failure Criteria

For fiber material, the maximum longitudinal stress damage model was used as
(Equation (6)):

− C f < σf 11 < Tf (6)

The symbol σf 11 indicates the longitudinal stress at the micro level for the fiber, and
notations Tf and Cf presents the tensile strength (longitudinal) and compressive strength
(longitudinal) of the fiber constituent, respectively. As soon as the produced stress in the
longitudinal direction of fiber element reaches the Tf or Cf, then the fiber will fail. As a
result of failure, the stiffness of fiber constituent will be significantly degraded as showed
in the progressive model Figure 2.
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Therefore, once the fiber failure occurs, the localized damage factor, Df, is set to
0.9 to ensure computational stability [33], and if fiber failure does not occur, then the Df
is assigned value of zero. The fiber materials in this study are taken as brittle; therefore,
complete damage of single element is considered catastrophic towards the total area of the
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fiber. As a result, the global factor for damage in the fiber was described as the maximum
Df of all the calculated Df of elements (Equation (7)).

D f = Maximum
(

D(j)
f

)
(7)

where D(j)
f is the damage factor produced in jth element of fiber. Therefore, a fundamental

correlation for the stresses induced in the fiber was then calculated as (Equation (8)):

σf =
(

1 − D f

)
C f ε f (8)

In Equation (8), Cf indicates the stiffness matrix of the total fiber area inside the RVE.

2.5. Matrix Failure Criteria

In the majority of cases, the matrix materials are isotropic, with different tensile and
compressive strengths. Both types of strength contribute in a different way to matrix failure.
Raghava et al. [34] and Ha et al. [26] presented a tailored adaptation of the von-Mises
criterion for failure, using tensile strength Tm and compressive strength Cm, which is as
follows (Equation (9)):

σ2
VM

CmTm
+

(
1

Tm
− 1

Cm

)
I1 = 1 (9)

I1 and σVM may be computed by utilizing stress-based components with the help of
the subsequent Equations (10)–(12):

I1 = σm1 + σm2 + σm3 (10)

σVM =

√
1
2

[[
(σm1 − σm2)

2
]
+
[
(σm2 − σm3)

2
]
+
[
(σm3 − σm1)

2
]
+ σ2

m4 + σ2
m5 + σ2

m6

]
(11)

The failure criterion mentioned in Equation (9) is the same as the condition that an
equivalent stress σeq achieves the initial Tm,

σeq =
(β − 1) I1 +

√
(β − 1) 2 I2

1 + 4βσ2
VM

2β
(12)

In Equation (12), β for the matrix is defined as the ratio between compressive strength
and tensile strength. The equivalent stress σeq , frequently termed stasis stress, is established
upon the stress–strain correlation. The σeq can be translated into the equivalent strain εeq
with the help of subsequent Equation (13).

εeq =
(β − 1)J1 +

√
(β − 1)2 J2

1 +
(

2−4ν
1+ν

)2
βε2

VM

2β(1 − 2ν)
(13)

In Equation (13), J1 represents first-strain invariant, εVM represents the von Mises
equivalent strain and ν is the Poisson’s ratio. J1 and εVM can be computed with the help of
strain-based components using the subsequent Equations (14) and (15) [35]:

J1 = εm1 + εm2 + εm3 (14)

εVM =

√
1
2

[[
(εm1 − εm2)

2
]
+
[
(εm2 − εm3)

2
]
+
[
(εm3 − εm1)

2
]
+ ε2

m4 + ε2
m5 + ε2

m6

]
(15)

The damage evolution in the matrix material was computed with the help of the equiv-
alent strain calculated from Equation (13). Using σeq and εeq, a multilinear failure model for
a matrix, based on stress strain, was suggested by Ha et al. [28], as shown in Figure 3. The
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response of the matrix, before damage, follows the linear stress–strain relation. As soon
as the damage occurs, the matrix reveals hardening behavior, subsequently followed by
softening behavior. The stiffness degradation occurs on the basis of the damage factor Dm
in both hardening and softening behavior. The overall damage factor in the matrix Dm can
be computed using the following Equation (16).

Dm = 1 −
(

ε
(i)
y −εeq

)
σ
(i−1)
y +

(
εeq−ε

(i−1)
y

)
σ
(i)
y

E0

(
εeq−ε

(i−1)
y

)
εeq

(ε
(i−1)
y < εeq < ε

(i)
y )

(16)

where σ
(i−1)
y and ε

(i−1)
y indicate the yielding stress and strain at the initial point of the ith

damage state; σ
(i)
y and ε

(i)
y indicate the yielding stress and strain at the ending point of the

ith damage state; εeq represents existing equivalent strain in the i-th damage state, and
E0 indicates undamaged matrix’s stiffness. To calculate the yielding stress and strain at
the start and end point of the damage state, the tensile stress–strain curve of the polymer
matrix (i.e., epoxy 977-3) reported in the literature [36] is used in this work.
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The stress–strain curve is divided into 10 stages. In each stage, the yield stress and cor-
responding yield strain are used to evaluate the matrix damage Dm. The details regarding
the yield stress–strain data of each stage are described in Section 3.3. The maximum Dm
was selected as 0.9 to ensure computational stability [33]. After the computation of each
element’s failure state, the damage localization was prevented with the help of the volume-
based damage homogenization technique [37], given by the following Equation (17).

Dm =

∫
V [Dm]

p d V∫
V d V

(17)

In Equation (17), p is a local damage’s positive weighting parameter and V is defined
as the total volume of the matrix area inside the RVE. Considering the stiffness degradation
of the matrix, the constitutive relation was calculated by (Equation (18)):

σm =
(
1 − Dm

)
Cmεm (18)
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In Equation (18), Cm indicates the stiffness matrix of the total matrix area in the RVE.

2.6. Numerical Implementation of Constituent Damage Models

Figure 4 shows the flow diagram of the algorithm, established for the methodology
combining MMF and progressive damage model. The detailed methodology is as follows:

1. The overall global strain produced at the global time n, was calculated through the
addition of the global strain increment at n and at the previous step n-1.

2. With regard to the composite laminate, the macro level stresses of each constituent
element, i.e., the fiber and matrix, were calculated with the help of previous effective
stiffness properties.

3. Subsequently, the micro level stress of each constituent was computed from the macro
stresses with the help of SAFs.

4. The damage model of constituents was then employed to both fiber and matrix to
calculate the damage factor in the fiber and matrix areas, symbolized by Dm and Df.

5. The total damage factor produced for matrix and fiber zones were then analyzed
using their corresponding damage methods, i.e., the maximum damage for fiber and
the damage homogenization using volume-based technique for the matrix.

6. The stiffness degradation of matrix and fiber were calculated using the status of the
total damage factor. Subsequently, the ply level effective properties were calculated
for the following time increment.

7. The numerical execution of MMF was implemented using ABAQUS, combined with
the user subroutine USDFLD.
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3. Methodology

An implicit scheme was employed to execute the simulation of the static loading with
the help of the finite element analysis software package ABAQUS/Implicit.

3.1. Models Geometries and Boundary Conditions

The DTDP exercise program by AFRL included UNT, UNC, OHT, and OHC, and there
were three layups for each coupon, resulting in twelve multi-directional configurations.
The investigated layups were soft layup [30, 60, 90, −60, −30]2S, quasi-isotropic layup
[0, 45, 90, −45]2S, and [60, 0, −60]3S with 0◦ developed in parallel with the loading direction.
The model geometries along with dimensions and boundary conditions for UNT and UNC
is given Figure 5 and for OHT and OHC is given in Figure 6.

Polymers 2021, 13, x FOR PEER REVIEW 10 of 23 
 

 

 
Figure 5. Geometries and boundary conditions (a) UNT (b) UNC. 

 
Figure 6. Geometries and boundary conditions (a) OHT (b) OHC. 

3.2. Mesh Details 
The successful simulation of physical damage mechanisms occurring in composite 

structures as a result of finite element-based failure theory is highly reliant on the 
consistency of the mesh discretization [38]. Modeling and meshing laminate using single 
element in the direction of stack, demonstrating entire composite laminate, will no longer 
be able to simulate the state of interlaminar damage. Ideally, the finite element model with 
structured mesh type will have complete reliability to catch and identify all the failure 
modes; however, using this type of mesh will result in the overcapacity of computing 
resources as well as consumption of excessive time to complete the simulation with full 
load history. Therefore, a workable approach to create a finite element model is one that 
produces precise simulations without being excessively cumbersome. 

In this study, solid element type is used with through-thickness discretization 
techniques, which utilize non-layered elements. In structured mesh, non-layered types of 
elements have a single ply per element and are given preference when models have stress 
concentrations causing large transverse shear and normal stress gradients. Non-layer 
types of elements are also capable of simulating the localized softening behavior that 
arises because of failure occurs in the fiber and matrix [39]. As half of the specimens 

Figure 5. Geometries and boundary conditions (a) UNT (b) UNC.

Polymers 2021, 13, x FOR PEER REVIEW  10  of  23 
 

 

 

Figure 5. Geometries and boundary conditions (a) UNT (b) UNC. 

 

Figure 6. Geometries and boundary conditions (a) OHT (b) OHC. 

3.2. Mesh Details 

The successful simulation of physical damage mechanisms occurring in composite 

structures  as  a  result  of  finite  element‐based  failure  theory  is  highly  reliant  on  the 

consistency of the mesh discretization [38]. Modeling and meshing laminate using single 

element in the direction of stack, demonstrating entire composite laminate, will no longer 

be able to simulate the state of interlaminar damage. Ideally, the finite element model with 

structured mesh type will have complete reliability to catch and  identify all the  failure 

modes; however, using  this  type of mesh will  result  in  the overcapacity of computing 

resources as well as consumption of excessive time to complete the simulation with full 

load history. Therefore, a workable approach to create a finite element model is one that 

produces precise simulations without being excessively cumbersome. 

In  this  study,  solid  element  type  is  used  with  through‐thickness  discretization 

techniques, which utilize non‐layered elements. In structured mesh, non‐layered types of 

elements have a single ply per element and are given preference when models have stress 

concentrations  causing  large  transverse  shear  and  normal  stress  gradients. Non‐layer 

types of  elements  are  also  capable of  simulating  the  localized  softening behavior  that 

arises because of  failure occurs  in  the  fiber  and matrix  [39]. As half of  the  specimens 

Figure 6. Geometries and boundary conditions (a) OHT (b) OHC.



Polymers 2021, 13, 3491 10 of 22

To avoid unnecessary complexity to the finite element models and artificial stress
concentrations, the geometrical models were simplified by exclusion of the fixtures. In
the case of UNT ad UNC, only the gage section was modeled, and boundary conditions
were applied to the gage section as shown in Figure 5. For all developed models, the ply
thickness was taken as 0.12954 mm.

3.2. Mesh Details

The successful simulation of physical damage mechanisms occurring in composite
structures as a result of finite element-based failure theory is highly reliant on the con-
sistency of the mesh discretization [38]. Modeling and meshing laminate using single
element in the direction of stack, demonstrating entire composite laminate, will no longer
be able to simulate the state of interlaminar damage. Ideally, the finite element model with
structured mesh type will have complete reliability to catch and identify all the failure
modes; however, using this type of mesh will result in the overcapacity of computing
resources as well as consumption of excessive time to complete the simulation with full
load history. Therefore, a workable approach to create a finite element model is one that
produces precise simulations without being excessively cumbersome.

In this study, solid element type is used with through-thickness discretization tech-
niques, which utilize non-layered elements. In structured mesh, non-layered types of
elements have a single ply per element and are given preference when models have stress
concentrations causing large transverse shear and normal stress gradients. Non-layer types
of elements are also capable of simulating the localized softening behavior that arises
because of failure occurs in the fiber and matrix [39]. As half of the specimens investigated
in the DTDP exercise by AFRL contains stress concentrations due to notches, the meshes
of all the models used non-layered elements, i.e., each ply was meshed with the help of
separate layer.

In finite element models, the plies were modelled using the Abaqus element type
C3D8R, which is an eight-node linear brick, reduced integration, hourglass control el-
ement [40]. The reduced integration elements are efficient, specifically in the case of
progressive damage simulations as the entire element is represented with the help of a
single integration point [41]. The adapted mesh developed for the unnotched models is
illustrated in Figure 6. The mesh discretization for the notched models as illustrated in the
Figure 7, is based on “notch centric” design, characterized with the help of rounded mesh
all around the region of notch that rapidly converts into a rectangular-based mesh shifting
farther from the notch.
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A zoomed view of the mesh is also shown in Figures 7 and 8. Mesh sensitivity analysis
was performed for all the cases, and we established that the final adapted mesh was to be a
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compromise between the output quality and time required for computation for each case.
In particular, for the mesh sensitive OHT and OHC coupons, five cases were investigated
with the numbers of elements of 40, 960; 67, 840; 97, 280; 179, 200; and 430, 080 elements,
respectively. The mesh convergence study shows that there is no major difference in the
strength values as the number of elements are increased; therefore, the case with number
of elements of 97, 280, was chosen for the study, keeping in mind the time required and the
output quality.
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3.3. Material Properties

In this study, the matrix (977-3) is presumed as an isotropic material with two inde-
pendent material properties, and the fiber (IM7) behaves as transversely isotropic with
five independent material properties. Initially, the mechanical properties of IM7/977-3 ply
were taken from experimental results provided by the AFRL [14]. The lamina experimental
tests were all performed employing ASTM test standards 85. During the benchmark study,
the initial measurement of the compressive failure strength of laminate that was delivered
to the analysts did not keep into account the specimen buckling, resulting in an incorrectly
measured failure load. However, after the discovery of buckling failure mode, analysts
were instructed to increase the laminate compressive failure strength input property to
1680 MPa for recalibration [14].

The calibration of material properties for the carbon fiber (IM7) and matrix (977-3) was
performed using the micromechanics approach, which minimizes the difference between
the numerical model and experimental data. During calibration, the fiber and matrix
properties were determined using the micromechanics model to estimate the composite
laminate elastic properties that closely matched the experimental results. The stiffness and
strength properties of the carbon-based fiber constituent [14] and matrix listed in Table 1.
The tensile yield stress and yield strain data of matrix (977-3) [36] at different stages for
matrix multi-linear damage model is given in Table 2. The effective properties of the ply
were computed from the micro unit cell, using the micromechanics approach and are listed
in Table 3.



Polymers 2021, 13, 3491 12 of 22

Table 1. Material properties of the carbon fiber (IM7) and matrix (977-3).

Material Properties Value

Carbon Fiber (IM7)

Longitudinal Tensile Modulus Ef 1 (GPa) 276
Transverse Tensile Modulus Ef 2 (GPa) 21

Longitudinal Compressive Modulus Ef 1 (GPa) 204
Transverse Compressive Modulus Ef 2 (GPa) 21

In-plane Shear Modulus Gf 12 (GPa) 29
Transverse Modulus Gf 23 (GPa) 7

Poisson’s ratio vf 12 0.31
Poisson’s ratio vf 23 0.28

Longitudinal Tensile strength XF (MPa) 4082
Longitudinal Compressive strength XFP (MPa) 2682

Fiber volume fraction 0.592
Matrix (977-3)

Elastic modulus Em (GPa) 3.5
Elastic Poisson’s ratio vm 0.35

Tensile strength XM (MPa) 81
Compressive strength XMP (MPa) 131

Table 2. Tensile yield stress and yield strain data of the matrix (977-3) at different stages for the
multi-linear damage model for the matrix.

Stages Yield Stress
(MPa)

Yield Strain
(m/m)

Stage 1 82.16 0.03
Stage 2 100.83 0.08
Stage 3 113.15 0.16
Stage 4 119.50 0.30
Stage 5 124.73 0.45
Stage 6 131.45 0.62
Stage 7 135.93 0.76
Stage 8 142.66 0.92
Stage 9 146.76 1.06

Stage 10 153.86 1.21

Table 3. Material properties of laminae (IM7/977-3).

Material Properties Value

Longitudinal Tensile Modulus Ef 1 (GPa) 164
Transverse Tensile Modulus Ef 2 (GPa) 8.9438

Longitudinal Compressive Modulus Ef 1 (GPa) 121.6
Transverse modulus Ef 2 (GPa) 8.9236

In-plane Shear Modulus Gf 12 (GPa) 4.3516
Transverse Modulus Gf 23 (GPa) 2.9906

Poisson’s ratio vf 12 0.324
Poisson’s ratio vf 23 0.417

4. Results and Discussion

The ability to precisely predict the damage onset and damage propagation have a
potential role in designing and manufacturing composite structures. Furthermore, accu-
rate progressive damage models could substantially minimize the constituents damage
tolerance tests, reducing the time and cost to verify a composite structure. This section
investigates the performance of the proposed micromechanics-based failure model (MMF)
with experimental results [14] and other failure models [21]. First, the finite element simu-
lations were performed for all four test specimens, i.e., UNT, UNC, OHT, and OHC, with
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three distinct multi-directional layups ([30, 60, 90, −60, −30]2S, [0, 45, 90, −45]2S, and
[60, 0, −60]3S) per coupon. The findings were then compared with the experimental results
and other failure techniques to investigate the efficiency of the MMF.

4.1. Unnotched Tension

The comparison between the experimental and simulated results for static strength
at failure and stiffness for different unnotched tension specimen/layup configurations is
given in Table 4. The comparison of results of MMF and other analysis methods [21] with
experimental results [14] for unnotched static strength and stiffness in terms of percentage
error is given in the form of bar charts in Figure 9.

Table 4. Unnotched tension results.

Unnotched Tension Static Strength Unnotched Tension Stiffness

Team Static
Strength

[30, 60, 90,
−60, −30]2S

[0, 45, 90,
–45]2S

[60, 0,
−60]3S

Elastic
Modulus

[30, 60, 90,
−60, −30]2S

[0, 45, 90,
−45]2S

[60, 0,
−60]3S

Experiment σmax
(Mpa) 473 866 1005 E (Gpa) 38 60 60

MMF σmax
(Mpa) 562 893 900 E (Gpa) 37.8 59.95 60.5

GENOA σmax
(Mpa) 508 828 944 E (Gpa) 43.0 65.9 67.0

Helius PFA σmax
(Mpa) 679 879 877 E (Gpa) 40.2 61.3 61.6

DCN σmax
(Mpa) 506 944 997 E (Gpa) 40.5 61.6 61.9

MDS-C σmax
(Mpa) 462 890 987 E (Gpa) 42.2 56.1 62.8

MAC/GMC σmax
(Mpa) 474 897 951 E (Gpa) 39.0 59.6 59.8

EST σmax
(Mpa) 603 825 1009 E (Gpa) 40.5 61.1 61.0

NCYL σmax
(MPa) 462 856 1011 E (GPa) 39.7 60.6 61.5

BSAM/MIC σmax
(MPa) 432 858 1113 E (GPa) 40.6 61.5 61.8

EHM σmax
(MPa) 522 911 1014 E (GPa) 39.9 60.4 61.7
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The results given in Table 4 and Figure 9 show that the MMF presented a good
agreement for quasi-isotropic [0, 45, 90, −45]2S configuration and [60/0/−60]3S configu-
ration with a percentage error of 3.12% and 10.45%, respectively. Whereas, for soft layup
[30/60/90/−60/−30]2S, the MMF underpredicted the results with a percentage error of
18.82 %. The higher percentage error in the simulation response of this soft layup is at-
tributed to the fact that the real failure mechanism for the soft layup as per experimental
investigation is too complicated to detect using modeling techniques.

This issue was also discussed by Dalgarno et al. [17]. The investigation of experimental
results and failure images [14] indicate that the laminate exhibited considerable delamina-
tion. Currently, MMF does not account for the delamination effect due to computational
simplicity and execution speed. To clearly understand the overall progressive damage
simulation response, Figure 10 shows a comparison of the stress–strain curves obtained by
MMF and the experimental results for the UNT case for all three layups.
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In addition to the unnotched tension strength, the comparison of the unnotched
tension stiffness results with experimental results given in Table 4 and Figure 9 shows that
the MMF exhibited excellent agreement for [30/60/90/−60/−30]2S, [0, 45, 90, −45]2S, and
[60/0/−60]3S layups with percentage errors of 0.53%, 0.08%, and 0.83%, respectively.

The comparison of stiffness results in Figure 9 shows that the MMF performed better than
the other failure methods. However, for the strength prediction, soft layup [30, 60, 90, −60, −30]2S,
MMF, and other analysis methods, like HELIUS PFA, EST, BSAM/MIC, and EHM, have
higher percentage errors. For the other two layups, i.e., [0, 45, 90, −45]2S and [60, 0, −60]3S,
MMF performed reasonably well to predict the unnotched static strength.
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4.2. Unnotched Compression

The results of the unnotched compression static strength and stiffness are given in
Table 5. A comparison was performed between the experimental and simulated results for
static strength and stiffness for three different layups, which were [30, 60, 90, −60, −30]2S,
[0, 45, 90, −45]2S and [60, 0, −60]3S. For the UNC case, the comparison of MMF and other
analysis methods with experimental results for the three investigated layups is given in
Figure 11.

Table 5. Unnotched compression results.

Unnotched Compression Static Strength Unnotched Compression Stiffness

Team Static
Strength

[30, 60, 90,
−60, −30]2S

[0, 45, 90,
−45]2S

[60, 0,
−60]3S

Elastic
Modulus

[30, 60, 90,
−60, −30]2S

[0, 45, 90,
−45]2S

[60, 0,
−60]3S

Experiment σmax (MPa) 382 603 765 E (GPa) 33 48 49

MMF σmax (MPa) 427 547 548 E (GPa) 34.7 52.18 52.24

GENOA σmax (MPa) 439 610 479 E (GPa) 30.2 44.4 45.2

Helius PFA σmax (MPa) 531 619 622 E (GPa) 38.1 50.9 50.9

DCN σmax (MPa) 462 560 557 E (GPa) 36.5 53.8 51.4

MDS-C σmax (MPa) 405 625 836 E (GPa) 42.7 62.9 63.1

MAC/GMC σmax (MPa) 350 583 649 E (GPa) 33.3 51 51.2

EST σmax (MPa) 454 618 720 E (GPa) 35.2 52.3 52.3

NCYL σmax (MPa) 428 634 632 E (GPa) 34.8 52.7 52.3

BSAM/MIC σmax (MPa) 485 581 551 E (GPa) 35.2 52.8 52.4

EHM σmax (MPa) 425 605 602 E (GPa) 34.5 52.8 52.2
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compression static strength.

Examination of the values of static strength at failure for different configurations given
in Table 5, and Figure 11 reveals a good agreement between MMF and the experimental
results for [30, 60, 90, −60, −30]2S and [0, 45, 90, −45]2S with percentage errors of 11.78%
and 9.29%, respectively. However, for [60, 0, −60]3S, the results of MMF are underpredicted
with a percentage error of 28.37%. In addition, the comparison of simulated response by
MMF and experimental response in terms of the stress–strain curves for the UNC case for
all three layups is shown in Figure 12.



Polymers 2021, 13, 3491 16 of 22
Polymers 2021, 13, x FOR PEER REVIEW 17 of 23 
 

 

 

 

(a) (b) 

 
(c) 

Figure 12. Comparison of the experimental and simulation responses for UNC static strength of (a) [30/60/90/−60/−30]2S, 
(b) [0/45/90/−45]2S (c) [60/0/−60]3S coupons. 

On the other hand, for unnotched compression stiffness, the results of MMF are well 
aligned with the experimental results with the percentage errors of 5.15%, 8.71%, and 
6.61% for the [30, 60, 90, −60, −30]2S, [0, 45, 90, −45]2S, and [60, 0, −60]3S layups, respectively. 

For the stiffness comparison shown in Figure 11, the performance of MMF and other 
analysis methods is excellent except for the MDS-C, in which the percentage error is very 
high for all investigated layups. For the strength prediction in the UNC case, the 
comparison showed a good performance of MMF for the [30, 60, 90, −60, 30]2S and 0, 45, 
90, −45]2S layups. However, for the [60, 0, −60]3S laminate sequence, most of the analysis 
methods, including MMF, have higher percentage errors as shown in Figure 11. 

4.3. Notched Tension 
The experimental and simulated results for the notched pattern coupons are given in 

Table 6. The results show the comparison between the experimental and simulated results 
for three investigated multidirectional composite layups. The comparison of MMF and 
other failure criterion with MMF for open hole tension static strength at failure and 
stiffness is illustrated in the form of bar charts in Figure 13. 

  

Figure 12. Comparison of the experimental and simulation responses for UNC static strength of (a) [30/60/90/−60/−30]2S,
(b) [0/45/90/−45]2S, (c) [60/0/−60]3S coupons.

On the other hand, for unnotched compression stiffness, the results of MMF are well
aligned with the experimental results with the percentage errors of 5.15%, 8.71%, and 6.61%
for the [30, 60, 90, −60, −30]2S, [0, 45, 90, −45]2S, and [60, 0, −60]3S layups, respectively.

For the stiffness comparison shown in Figure 11, the performance of MMF and other
analysis methods is excellent except for the MDS-C, in which the percentage error is very
high for all investigated layups. For the strength prediction in the UNC case, the comparison
showed a good performance of MMF for the [30, 60, 90, −60, 30]2S and [0, 45, 90, −45]2S
layups. However, for the [60, 0, −60]3S laminate sequence, most of the analysis methods,
including MMF, have higher percentage errors as shown in Figure 11.

4.3. Notched Tension

The experimental and simulated results for the notched pattern coupons are given
in Table 6. The results show the comparison between the experimental and simulated
results for three investigated multidirectional composite layups. The comparison of MMF
and other failure criterion with MMF for open hole tension static strength at failure and
stiffness is illustrated in the form of bar charts in Figure 13.
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Table 6. Open hole tension results.

Open Hole Tension Static Strength Open Hole Tension Stiffness

Team Static
Strength

[30, 60, 90,
−60, −30]2S

[0, 45, 90,
−45]2S

[60, 0,
−60]3S

Elastic
Modulus

[30, 60, 90,
−60, −30]2S

[0, 45, 90,
−45]2S

[60, 0,
−60]3S

Experiment σmax (MPa) 409 554 543 E (GPa) 32 48 49

MMF σmax (MPa) 402 529 466 E (GPa) 32.4 48.3 48.8

GENOA σmax (MPa) 405 543 435 E (GPa) 38.6 56.4 57.2

Helius PFA σmax (MPa) 400 524 485 E (GPa) 35 50.6 50.9

DCN σmax (MPa) 386 458 428 E (GPa) 35.2 50.9 51.2

MDS-C σmax (MPa) 425 550 558 E (GPa) 34.7 51.8 51

MAC/GMC σmax (MPa) 378 464 433 E (GPa) 33.7 49.1 48.9

EST σmax (MPa) 409 528 489 E (GPa) 35.4 51.1 51.1

NCYL σmax (MPa) 373 557 502 E (GPa) 34.5 50.3 50.9

BSAM/MIC σmax (MPa) 388 553 551 E (GPa) 34.1 48.7 49.3

EHM σmax (MPa) 449 558 502 E (GPa) 34.6 50.8 50.8
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Figure 13. Comparison of simulation with experimental results for (a) open hole tension stiffness and (b) open hole tension
static strength.

From the results presented in Table 6 and Figure 13, it is concluded that the MMF
model correlated better to experimental findings for the open hole tension static strength
for the soft layup [30, 60, 90, 60, −30]2S and quasi-isotropic lay [0, 45, 90,−45]2S with a
percentage error of 1.71% and 4.51%, respectively. However, for the [60, 0, −60]3S, the
results of static strength at failure are underpredicted with a percentage error of 14.18%. To
clearly recognize the overall progressive damage simulation response and accumulated
simulated damage at failure, Figure 14 shows a comparison of stress–strain curves obtained
by MMF and experimental results for the OHT case for all three layups along with the
images of simulated fiber and matrix damage distribution at failure.
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On the other hand, the results of MMF for notched tension stiffness are well aligned
with the experimental results for [30, 60, 90, −60, −30]2S, [0, 45, 90, −45]2S, and [60, 0, −60]3S
layups with percentage errors of 1.25%, 0.62%, and 0.41%, respectively.

Like the previous two cases of UNT and UNC, MMF performed well compared to
the other analysis methods for OHT stiffness. For the strength prediction case, the MMF
showed good agreement for the [30, 60, 90, −60, −30]2S and [0, 45, 90, −45]2S layups.
However, for the [60, 0, −60]3S layup, like the UNC case, nine out of ten analysis methods,
including MMF, showed high percentage errors, as shown in Figure 13.

4.4. Notched Compression

Table 7 shows a comparison of overall open hole compression static strength and
stiffness responses of simulation with the experimental results for the specimen of soft
layup [30, 60, 90, −60, −30]2S, quasi-isotropic layup [0, 45, 90, −45]2S, and [60, 0, −60]3S
layup. For the OHC case, Figure 15 compares percentage errors for the MMF and other
analysis methods with experimental results for the three investigated composite layups.
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Table 7. Open hole compression results.

Open Hole Compression Static Strength Open Hole Compression Stiffness

Team Static
Strength

[30, 60, 90,
−60, −30]2S

[0, 45, 90,
−45]2S

[60, 0,
−60]3S

Elastic
Modulus

[30, 60, 90,
−60, −30]2S

[0, 45, 90,
−45]2S

[60, 0,
−60]3S

Experiment σmax (MPa) 295 341 358 E (GPa) 30 44 44

MMF σmax (MPa) 308 366 388 E (GPa) 32.3 46.3 46.8

GENOA σmax (MPa) 323 363 380 E (GPa) 27.4 38.4 39.1

Helius PFA σmax (MPa) 283 308 299 E (GPa) 30.5 43.4 43.6

DCN σmax (MPa) 297 329 296 E (GPa) 36.1 52.2 52.5

MDS-C σmax (MPa) 271 317 352 E (GPa) 34.7 34.1 45.3

MAC/GMC σmax (MPa) 330 368 320 E (GPa) 29.2 41.6 41.9

EST σmax (MPa) 296 347 331 E (GPa) 30.9 43.9 43.7

NCYL σmax (MPa) 304 341 299 E (GPa) 29.8 41.9 41.9

BSAM/MIC σmax (MPa) 336 380 388 E (GPa) 29.6 41.7 41.9

EHM σmax (MPa) 360 393 368 E (GPa) 31.8 45.2 44.8
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Figure 15. Comparison of simulation with experimental results for (a) open hole compression stiffness and (b) open hole
compression static strength.

The results given in Table 7 and Figure 15 show that the MMF exhibited good agreement
with the obtained experimental results for all the experimentally investigated composite layups.
For open hole compression static strength, the percentage errors for [30, 60, 90, 60, −30]2S,
[0, 45, 90, −45]2S, and [60, 0, −60]3S layups are 4.41%, 7.33%, and 8.38%, respectively. On
the other hand, for the open hole compression stiffness, the percentages for the layups
are 7.67%, 5.23%, and 6.36%, respectively. In addition, the comparison of the stress–strain
curves obtained by MMF and the experimental results for the OHC case for all three layups
along with the images of simulated fiber and matrix damage distribution at failure is shown
in Figure 16.
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The comparison given in Figure 15 showed that the MMF performed reasonably well
to predict the notched compression static strength and stiffness compared to most of the
other analysis methods. For OHC stiffness prediction, the GENOA, DCN, and MDS-C
analysis methods had high average percentage errors. For the OHC strength prediction,
there was no clear pattern for the prediction of the result, as shown in Figure 15. However,
MMF performed well for the prediction of strength for all three investigated layups.

5. Conclusions

In this study, a micromechanics-based progressive damage model MMF was used
to predict the ultimate strength at failure and stiffness of four different multi-directional
laminated composite test specimens, i.e., UNT, UNC, OHT, and OHC. For each case, three
different composite laminate layups were used: [30, 60, 90, −60, −30]2S, [0, 45, 90, −45]2S,
and [60, 0, −60]3S. The results of MMF were then compared with the experimental results
provided by AFRL and the results of nine different analysis methods that participated in
the DTDP program.

The simulations were performed using ABAQUS, and the numerical implementation
of MMF was done using the user subroutine USDFLD. The simulated results of stiffness
for all 12 specimens/layups accurately aligned with the experimental results. For the
ultimate strength at failure predictions, the simulated results agreed extremely well with
the experimental results for the quasi-isotropic [0, 45, 90, −45]2S layup with the percentage
errors within 10% of the measured failure loads.

For the [60, 0, −60]3S configuration, the findings of MMF were underpredicted with
percentage errors of 28.37% and 14.18% for the UNC and OHT, respectively. For the soft
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layup [30, 60, 90, −60, −30]2S, the simulated results underpredicted the strength of the
UNT specimen by 18.82%. For this specific laminate, the experimentally detected failure
pattern observed substantial delamination during investigation. The proposed modeling
technique does not take into consideration the delamination, which resulted in the higher
percentage error. We concluded that MMF demonstrated the ability to correctly predict the
ultimate strength at failure for a range of laminates under tensile and compressive loading.
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