Mechanical Properties of PolyJet 3D-Printed Composites Inspired by Space-Filling Peano Curves
Abstract
:1. Introduction
2. Methods
2.1. Material Design and Fabrication
2.2. Mechanical Testings
2.3. Rule of Mixture for Composites
3. Results and Discussion
3.1. Tensile Test Results and Discussion
3.2. Compression Test Results and Discussions
4. Conclusions
- Compared to homogenous A30, all the hybrid tensile samples reinforced with VMV Peano curves yielded higher stiffness. This was attributed to the higher elastic modulus of VMV compared to A30. Consistent with the hypothesis, the elastic moduli obtained from tensile tests were within the range approximated from the rule of mixture (ROM) for composites.
- Hybrid tensile samples, which were designed with the second order Peano reinforcement, generally had a higher elastic modulus than tensile samples with the first order Peano reinforcement. It can be concluded that the second order reinforcement designs were more effective than the first order ones in terms of stiffness enhancement. For the hybrid tensile designs with the same reinforcement hierarchy, the pure horizontal alignment of reinforcement always provided a higher stiffness than the pure vertical designs owing to a higher ratio of reinforcement parallel to the tensile force.
- Regarding ultimate tensile strength, the improvement of hybrid designs compared to homogenous A30 was not obvious. Hierarchy and alignment of Peano reinforcements seemed to have little influence on the tensile strength as the stress could not be transferred effectively from matrix to reinforcement. However, an increasing trend of UTS could be witnessed with the growing ratio of reinforcements parallel to, and perpendicular to the loading direction. Experimental results were much lower than theoretical predictions due to the 3D manufacturing defects.
- The introduction of VMV Peano reinforcement in the A30 matrix resulted in higher stiffness and strength of the compression cubes. The first order reinforcement exhibited the best performance in all three directions among four different designs. The responses of three different second order designs were similar under compression.
- The second order compression cubes exhibited similar properties in loading direction two and loading direction three, due to the similar amount of reinforcement in all three cases along the compressive force.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mandelbort, B.B. Fractals: Form, Chance and Dimension; American Institute of Physics: San Francisco, CA, USA, 1977. [Google Scholar]
- Mandelbrot, B.B. Self-affine fractal sets, I: The basic fractal dimensions. In Fractals in Physics; Elsevier: Amsterdam, The Netherlands, 1986; pp. 3–15. [Google Scholar]
- Hutchinson, J.E. Fractals and self similarity. Univ. Math. J. 1981, 30, 713–747. [Google Scholar] [CrossRef]
- Gil’Mutdinov, A.K.; Ushakov, P.A.; El-Khazali, R. Fractal Elements and their Applications; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Puente, B.C.; Pous, A.R.; Romeu, R.J.; Garcia, F.X. Antenas Fractales o Multifractales. Spanish Patent 2,112,163, 19 May 1995. [Google Scholar]
- Puente, C.; Romeu, J.; Pous, R.; Garcia, X.; Benitez, F. Fractal multiband antenna based on the Sierpinski gasket. Electron. Lett. 1996, 32, 1–2. [Google Scholar] [CrossRef] [Green Version]
- Puente, C.; Romeu, J.; Cardama, R. On the behavior of the Sierpinski multiband antenna. IEEE Trans. Antennas Propag. 1998, 46, 517–524. [Google Scholar] [CrossRef] [Green Version]
- Baliarda, C.P.; Romeu, J.; Cardama, A. The Koch monopole: A small fractal antenna. IEEE Trans. Antennas Propag. 2000, 48, 1773–1781. [Google Scholar] [CrossRef] [Green Version]
- Yu, Z.W.; Wang, G.M.; Gao, X.J.; Lu, K. A novel small-size single patch microstrip antenna based on Koch and Sierpinski fractal-shapes. Prog. Electromagn. Res. Lett. 2010, 17, 95–103. [Google Scholar] [CrossRef] [Green Version]
- Ali, J.K. A new microstrip-fed printed slot antenna based on Moore space-filling geometry. In Proceedings of the 2009 Loughborough Antennas & Propagation Conference, Loughborough, UK, 16–17 November 2009. [Google Scholar]
- Cohen, N.; Hohlfeld, R.G. Fractal loops and the small loop approximation. Commun. Q. 1996, 6, 77–81. [Google Scholar]
- Puente Baliarda, C. Fractal Antennas. Ph.D. Thesis, Technical University of Catalonia, Barcelona, Spain, 1997. [Google Scholar]
- Kim, Y.; Jaggard, D.L. The fractal random array. Proc. IEEE 1986, 74, 1278–1280. [Google Scholar] [CrossRef]
- McVay, J.; Hoorfar, A.; Engheta, N. Space-filling curve RFID tags. In Proceedings of the 2006 IEEE Radio and Wireless Symposium, San Diego, CA, USA, 17–19 October 2006. [Google Scholar]
- McVay, J.; Engheta, N.; Hoorfar, A. Radio Frequeacy Identification Utilizing Passive Space-Filling Carves. In Proceedings of the USNC-URSI National Radio Science Meeting, Washington, DC, USA, 3–8 July 2005. [Google Scholar]
- Fan, J.A.; Yeo, W.-H.; Su, Y.; Hattori, Y.; Lee, W.; Jung, S.-Y.; Zhang, Y.; Liu, Z.; Cheng, H.; Falgout, L.; et al. Fractal design concepts for stretchable electronics. Nat. Commun. 2014, 5, 3266. [Google Scholar] [CrossRef] [Green Version]
- El-Khouly, E.; Ghali, H.; Khamis, S.A. High Directivity Antenna Using a Modified Peano Space-Filling Curve. IEEE Antennas Wirel. Propag. Lett. 2007, 6, 405–407. [Google Scholar] [CrossRef]
- Zhu, J.; Hoorfar; Engheta. Peano antennas. IEEE Antennas Wirel. Propag. Lett. 2004, 3, 71–74. [Google Scholar]
- Romeu, J.; Blanch, S. A three dimensional Hilbert antenna. In Proceedings of the IEEE Antennas and Propagation Society International Symposium (IEEE Cat. No.02CH37313), San Antonio, TX, USA, 16–21 June 2002. [Google Scholar]
- Puente, C.; Romeu, J.; Pous, R.; Ramis, J.; Hijazo, A. Small but long Koch fractal monopole. Electron. Lett. 1998, 34, 9–10. [Google Scholar] [CrossRef] [Green Version]
- Vinoy, K.; Jose, K.; Varadan, V. Multi-band characteristics and fractal dimension of dipole antennas with Koch curve geometry. In Proceedings of the IEEE Antennas and Propagation Society International Symposium (IEEE Cat. No.02CH37313), San Antonio, TX, USA, 16–21 June 2002. [Google Scholar]
- Haji-Hashemi, M.R.; Moradian, M.; Mirmohammad-Sadeghi, H. Space-filling Patch Antennas with CPW Feed. PIERS Online 2006, 2, 69–73. [Google Scholar] [CrossRef]
- Spence, T.G.; Werner, D.H. Werner, and propagation, Generalized space-filling Gosper curves and their ap-plication to the design of wideband modular planar antenna arrays. IEEE Trans. Antennas Propag. 2010, 58, 3931–3941. [Google Scholar] [CrossRef]
- Dhar, S.; Ghatak, R.; Gupta, B.; Poddar, D.R. A Wideband Minkowski Fractal Dielectric Resonator Antenna. IEEE Trans. Antennas Propag. 2013, 61, 2895–2903. [Google Scholar] [CrossRef]
- Abdul-Letif, A.M.; Habeeb MA, Z.; Jaafer, H.S. Performance characteristics of the Minkowski curve fractal antenna. J. Eng. Appl. Sci. 2006, 1, 323–328. [Google Scholar]
- Piskun, V. Fractal Antenna Based on Peano-Gosper Curve. U.S. Patent 7,541,981, 2 June 2009. [Google Scholar]
- Werner, D.; Kuhirun, W.; Werner, P. The Peano-Gosper fractal array. IEEE Trans. Antennas Propag. 2003, 51, 2063–2072. [Google Scholar] [CrossRef]
- Werner, D.H.; Kuhirun, W.; Werner, P.L. Fractile Antenna Arrays and Methods for Producing a Fractile Antenna Array. U.S. Patent 7,057,559, 6 June 2006. [Google Scholar]
- Chen, W.-L.; Wang, G.-M.; Zhang, C.-X. Small-Size Microstrip Patch Antennas Combining Koch and Sierpinski Fractal-Shapes. IEEE Antennas Wirel. Propag. Lett. 2008, 7, 738–741. [Google Scholar] [CrossRef]
- Maza, A.; Cook, B.; Jabbour, G.; Shamim, A. Paper-based inkjet-printed ultra-wideband fractal antennas. IET Microw. Antennas Propag. 2012, 6, 1366–1373. [Google Scholar] [CrossRef]
- Bangi, I.S.; Sivia, J.S. Minkowski and Hilbert curves based hybrid fractal antenna for wireless applications. AEU Int. J. Electron. Commun. 2018, 85, 159–168. [Google Scholar] [CrossRef]
- Fu, H.; Xu, S.; Xu, R.; Jiang, J.; Zhang, Y.; Rogers, J.A.; Huang, Y. Lateral buckling and mechanical stretchability of fractal interconnects partially bonded onto an elastomeric substrate. Appl. Phys. Lett. 2015, 106, 091902. [Google Scholar] [CrossRef] [Green Version]
- Ma, Q.; Zhang, Y. Mechanics of fractal-inspired horseshoe microstructures for applications in stretchable electronics. J. Appl. Mech. 2016, 83, 111008. [Google Scholar] [CrossRef]
- Alcheikh, N.; Shaikh, S.F.; Hussain, M. Ultra-stretchable Archimedean interconnects for stretchable electronics. Extrem. Mech. Lett. 2018, 24, 6–13. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Fu, H.; Xu, S.; Fan, J.A.; Hwang, K.C.; Jiang, J.; Rogers, J.A.; Huang, Y. A hierarchical computational model for stretchable interconnects with fractal-inspired designs. J. Mech. Phys. Solids 2014, 72, 115–130. [Google Scholar] [CrossRef]
- Huiskes, R.; Ruimerman, R.; Van Lenthe, G.H.; Janssen, J.D. Effects of mechanical forces on maintenance and adaptation of form in trabecular bone. Nature 2000, 405, 704–706. [Google Scholar] [CrossRef]
- Farr, R.S. Fractal design for efficient brittle plates under gentle pressure loading. Phys. Rev. E 2007, 76, 046601. [Google Scholar] [CrossRef] [Green Version]
- Farr, R.S. Fractal design for an efficient shell strut under gentle compressive loading. Phys. Rev. E 2007, 76, 056608. [Google Scholar] [CrossRef] [Green Version]
- Farr, R.; Mao, Y. Fractal space frames and metamaterials for high mechanical efficiency. EPL Europhys. Lett. 2008, 84, 14001. [Google Scholar] [CrossRef]
- Fan, H.; Jin, F.; Fang, D. Mechanical properties of hierarchical cellular materials. Part I: Analysis. Compos. Sci. Technol. 2008, 68, 3380–3387. [Google Scholar] [CrossRef]
- Chen, Q.; Pugno, N.M. In-plane elastic buckling of hierarchical honeycomb materials. Eur. J. Mech. A Solids 2012, 34, 120–129. [Google Scholar] [CrossRef]
- Sun, Y.; Pugno, N.M. In plane stiffness of multifunctional hierarchical honeycombs with negative Poisson’s ratio sub-structures. Compos. Struct. 2013, 106, 681–689. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Chen, Q.; Pugno, N. Elastic and transport properties of the tailorable multifunctional hierarchical honeycombs. Compos. Struct. 2014, 107, 698–710. [Google Scholar] [CrossRef] [Green Version]
- Ajdari, A.; Jahromi, B.H.; Papadopoulos, J.; Nayeb-Hashemi, H.; Vaziri, A. Hierarchical honeycombs with tailorable properties. Int. J. Solids Struct. 2012, 49, 1413–1419. [Google Scholar] [CrossRef] [Green Version]
- Haghpanah, B.; Oftadeh, R.; Papadopoulos, J.; Vaziri, A. Self-similar hierarchical honeycombs. Proc. R. Soc. A: Math. Phys. Eng. Sci. 2013, 469, 20130022. [Google Scholar] [CrossRef] [Green Version]
- Oftadeh, R.; Haghpanah, B.; Papadopoulos, J.; Hamouda, A.M.; Nayeb-Hashemi, H.; Vaziri, A. Mechanics of anisotropic hierarchical honeycombs. Int. J. Mech. Sci. 2014, 81, 126–136. [Google Scholar] [CrossRef]
- Zhang, Y.; Lu, M.; Wang, C.-H.; Sun, G.; Li, G. Out-of-plane crashworthiness of bio-inspired self-similar regular hierarchical honeycombs. Compos. Struct. 2016, 144, 1–13. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, J.; Wang, C.-H.; Zeng, Y.; Chen, T. Crashworthiness of bionic fractal hierarchical structures. Mater. Des. 2018, 158, 147–159. [Google Scholar] [CrossRef]
- Zhang, D.; Fei, Q.; Jiang, D.; Li, Y. Numerical and analytical investigation on crushing of fractal-like honeycombs with self-similar hierarchy. Compos. Struct. 2018, 192, 289–299. [Google Scholar] [CrossRef]
- Meza, L.; Zelhofer, A.J.; Clarke, N.; Mateos, A.J.; Kochmann, D.; Greer, J.R. Resilient 3D hierarchical architected metamaterials. Proc. Natl. Acad. Sci. USA 2015, 112, 11502–11507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Zhang, Y.; He, N.; Wang, C.-H. Crashworthiness behavior of Koch fractal structures. Mater. Des. 2018, 144, 229–244. [Google Scholar] [CrossRef]
- Li, Y.; Ortiz, C.; Boyce, M.C. Bioinspired, mechanical, deterministic fractal model for hierarchical suture joints. Phys. Rev. E 2012, 85, 031901. [Google Scholar] [CrossRef] [PubMed]
- Khoshhesab, M.M.; Li, Y. Mechanical behavior of 3D printed biomimetic Koch fractal contact and interlocking. Extrem. Mech. Lett. 2018, 24, 58–65. [Google Scholar] [CrossRef]
- Dattelbaum, D.M.; Ionita, A.; Patterson, B.M.; Branch, B.A.; Kuettner, L. Shockwave dissipation by interface-dominated porous structures. AIP Adv. 2020, 10, 075016. [Google Scholar] [CrossRef]
- Li, F.; Macdonald, N.P.; Guijt, R.M.; Breadmore, M.C. Increasing the functionalities of 3D printed microchemical devices by single material, multimaterial, and print-pause-print 3D printing. Lab Chip 2018, 19, 35–49. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Wang, J.; Liu, T. 3D printing of polycaprolactone-based composites with diversely tunable mechanical gradients via multi-material fused deposition modeling. Compos. Commun. 2020, 23, 100600. [Google Scholar] [CrossRef]
- Skylar-Scott, M.A.; Mueller, J.; Visser, C.W.; Lewis, J.A. Voxelated soft matter via multimaterial multinozzle 3D printing. Nature 2019, 575, 330–335. [Google Scholar] [CrossRef]
- Yuan, C.; Wang, F.; Qi, B.; Ding, Z.; Rosen, D.W.; Ge, Q. 3D printing of multi-material composites with tunable shape memory behavior. Mater. Des. 2020, 193, 108785. [Google Scholar] [CrossRef]
- Haneef, M.; Rahman, J.F.; Yunus, M.; Zameer, S.; Patil, S.; Yezdani, T. Hybrid polymer matrix composites for biomedical applications. Int. J. Modern. Eng. Res. 2013, 3, 970–979. [Google Scholar]
- Naskar, A.K.; Keum, J.; Boeman, R.G. Polymer matrix nanocomposites for automotive structural components. Nat. Nanotechnol. 2016, 11, 1026–1030. [Google Scholar] [CrossRef] [PubMed]
- Balakrishnan, P.; John, M.J.; Pothen, L.; Sreekala, M.S.; Thomas, S. Natural Fibre and Polymer Matrix Composites and Their Applications in Aerospace Engineering. In Advanced Composite Materials for Aerospace Engineering; Woodhead Publishing: Sawston, UK, 2016. [Google Scholar]
- Tee, Y.L.; Peng, C.; Pille, P.; Leary, M.; Tran, P. PolyJet 3D Printing of Composite Materials: Experimental and Modelling Approach. JOM 2020, 72, 1105–1117. [Google Scholar] [CrossRef]
- Lumpe, T.S.; Mueller, J.; Shea, K. Tensile properties of multi-material interfaces in 3D printed parts. Mater. Des. 2018, 162, 1–9. [Google Scholar] [CrossRef]
- Soe, S.P.; Martindale, N.; Constantinou, C.; Robinson, M. Mechanical characterisation of Duraform® Flex for FEA hyperelastic material modelling. Polym. Test. 2014, 34, 103–112. [Google Scholar] [CrossRef]
Loading Direction 1 | Loading Direction 2 | Loading Direction 3 |
---|---|---|
Material | Homogeneous | Composites | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
A30 | VMV | Case 1 | Case 2 | Case 3 | Case 4 | Case 5 | Case 6 | |||
Ratio of reinforcements parallel and perpendicular to the loading direction | - | - | 6.00 | 0.40 | 2.35 | 0.34 | 1.21 | 0.68 | ||
Approximate volume fraction of reinforcement parallel to the loading direction | - | - | 4.28% | 1.43% | 3.51% | 1.27% | 2.73% | 2.02% | ||
E (MPa) | Experiment | 0.56~1.18 | 858 | 5.14 | 1.64 | 7.21 | 5.62 | 7.23 | 6.95 | |
ROM | Voigt’s (upper bound) | - | - | 37.31~37.91 | 12.81~13.42 | 30.65~31.25 | 11.47~12.09 | 23.99~24.60 | 17.87~18.48 | |
Reuss’ (lower bound) | - | - | 0.59~1.22 | 0.59~1.20 | 0.58~1.22 | 0.57~1.19 | 0.57~1.21 | 0.57~1.20 | ||
UTS (MPa) | Experiment | 0.90 | 57.50 | 1.0340 | 0.79 | 0.91 | 0.89 | 0.93 | 0.94 | |
ROM | - | - | 3.32 | 1.71 | 2.89 | 1.62 | 2.45 | 2.04 | ||
Discrepancy | - | - | 68.86% | 53.57% | 68.65% | 45.31% | 61.88% | 54.12% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, C.; Do, T.T.; Tran, P. Mechanical Properties of PolyJet 3D-Printed Composites Inspired by Space-Filling Peano Curves. Polymers 2021, 13, 3516. https://doi.org/10.3390/polym13203516
Wu C, Do TT, Tran P. Mechanical Properties of PolyJet 3D-Printed Composites Inspired by Space-Filling Peano Curves. Polymers. 2021; 13(20):3516. https://doi.org/10.3390/polym13203516
Chicago/Turabian StyleWu, Changlang, Truong Tho Do, and Phuong Tran. 2021. "Mechanical Properties of PolyJet 3D-Printed Composites Inspired by Space-Filling Peano Curves" Polymers 13, no. 20: 3516. https://doi.org/10.3390/polym13203516
APA StyleWu, C., Do, T. T., & Tran, P. (2021). Mechanical Properties of PolyJet 3D-Printed Composites Inspired by Space-Filling Peano Curves. Polymers, 13(20), 3516. https://doi.org/10.3390/polym13203516