N-Heterocyclic Carbene-Catalyzed Random Copolymerization of N-Carboxyanhydrides of α-Amino Acids
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis
2.2. Random Copolymerization
2.3. Characterization
3. Results and Discussion
3.1. [iPrNHC(H)][HCO3]-Mediated Copolymerization of Ala NCA with Bn-Glu NCA, Bn-Cys NCA, Bn-Ser NCA, and Phe NCA
3.2. Reactivity Ratios for the Copolymerization of Ala NCA with Bn-Glu NCA, Bn-Cys NCA, Bn-Ser NCA, and Phe NCA
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Deng, C.; Wu, J.; Cheng, R.; Meng, F.; Klok, H.-A.; Zhong, Z. Functional polypeptide and hybrid materials: Precision synthesis via α-amino acid N-carboxyanhydride polymerization and emerging biomedical applications. Prog. Polym. Sci. 2014, 39, 330–364. [Google Scholar] [CrossRef]
- Lu, H.; Wang, J.; Song, Z.; Yin, L.; Zhang, Y.; Tang, H.; Tu, C.; Lin, Y.; Cheng, J. Recent advances in amino acid N-carboxyanhydrides and synthetic polypeptides: Chemistry, self-assembly and biological applications. Chem. Commun. 2014, 50, 139–155. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.; Tan, Z.; Cheng, J. Recent advances and future perspectives of synthetic polypeptides from N-carboxyanhydrides. Macromolecules 2019, 52, 8521–8539. [Google Scholar] [CrossRef]
- Mazo, A.R.; Allison-Logan, S.; Karimi, F.; Chan, N.J.-A.; Qiu, W.; Duan, W.; O’Brien-Simpson, N.M.; Qiao, G.G. Ring opening polymerization of α-amino acids: Advances in synthesis, architecture and applications of polypeptides and their hybrids. Chem. Soc. Rev. 2020, 49, 4737–4834. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Lv, Y.; Li, J.; Feng, Z.; Ni, Y.; Hadjichristidis, N. Fast and selective organocatalytic ring-opening polymerization by fluorinated alcohol without a cocatalyst. Nature Commun. 2019, 10, 3590. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, T.P.; Easley, A.D.; Kang, N.; Khan, S.; Lim, S.M.; Rezenom, Y.H.; Wang, S.; Tran, D.K.; Fan, J.; Letteri, R.A.; et al. Polypeptide organic radical batteries. Nature 2021, 593, 61–66. [Google Scholar] [CrossRef] [PubMed]
- Deming, T.J. Facile synthesis of block copolypeptides of defined architecture. Nature 1997, 390, 386–389. [Google Scholar] [CrossRef] [PubMed]
- Dimitrov, I.; Schlaad, H. Synthesis of nearly monodisperse polystyrenepolypeptide block copolymers via polymerisation of Ncarboxyanhydrides. Chem. Commun. 2003, 23, 2944–2945. [Google Scholar] [CrossRef]
- Lu, H.; Cheng, J. Hexamethyldisilazane-mediated controlled polymerization of alpha-amino acid N-carboxyanhydrides. J. Am. Chem. Soc. 2007, 129, 14114–14115. [Google Scholar] [CrossRef] [PubMed]
- Pickel, D.L.; Politakos, N.; Avgeropoulos, A.; Messman, J.M. A mechanistic study of alpha-(amino acid)-N-carboxyanhydride polymerization: Comparing initiation and termination events in high-vacuum and traditional polymerization techniques. Macromolecules 2009, 42, 7781–7788. [Google Scholar] [CrossRef]
- Peng, H.; Ling, J.; Shen, Z.Q. Ring opening polymerization of α-amino acid N-carboxyanhydrides catalyzed by rare earth catalysts: Polymerization characteristics and mechanism. Polym. Chem. 2012, 50, 1076–1085. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, R.; Jin, H.; Song, W.; Augustine, R.; Kim, I. Straightforward access to linear and cyclic polypeptides. Commun. Chem. 2018, 1, 40. [Google Scholar] [CrossRef]
- Xia, Y.; Song, Z.; Tan, Z.; Xue, T.; Wei, S.; Zhu, L.; Yang, Y.; Fu, H.; Jiang, Y.; Lin, Y.; et al. Accelerated polymerization of N-carboxyanhydrides catalyzed by crown ether. Nat. Commun. 2021, 12, 732. [Google Scholar] [CrossRef] [PubMed]
- Shalitin, Y.; Katchalski, E. Amine initiated copolymerization of N-carboxy-α-amino acid anhydrides. J. Am. Chem. Soc. 1960, 82, 1630–1636. [Google Scholar] [CrossRef]
- Nylund, R.E.; Miller, W.G. Synthesis and potentiometric titration of random copolymers of L-leucine and L-glutamic acid. J. Am. Chem. Soc. 1965, 87, 3537–3542. [Google Scholar] [CrossRef] [PubMed]
- Oya, M.; Uno, K.; Iwakura, Y. Polymerization of α-amino acid N-carboxy anhydride. IX. Copolymerization of α-amino acid N-carboxy anhydride in heterogeneous system. J. Polym. Sci. Part A-1 1972, 10, 613–623. [Google Scholar] [CrossRef]
- Deshmane, S.; Hayasahi, T.; Sedereland, W.; Anderson, J.M. The Influence of interchain compositional heterogeneity on the conformation in random copolymers of γ-benzyl-L-glutamate and L-Valine. Biopolymers 1978, 17, 2851–2864. [Google Scholar] [CrossRef]
- Ishiwari, K.; Hayashi, T.; Nakajima, A. Monomer reactivity ratios in copolymerization of γ-benzyl L-glutamate and L-valine N-carboxyanhydrides. Polym. J. 1978, 10, 87–91. [Google Scholar] [CrossRef] [Green Version]
- Atreyi, M.; Rao, M.V.R.; Kumar, S. Anionic copolymerization of N-carboxy anhydrides of tyrosine and alanine. J. Macromol. Sci. Part A–Chem. 1981, A15, 331–338. [Google Scholar] [CrossRef]
- Oya, M.; Takahashi, T. Copolymerization of N-carboxy Nε-carbobenzoxy L-lysine anhydride with N-carboxy β-benzyl L-aspartate anhydride in acetonitrile. J. Polymer Sci. Polym. Chem. Ed. 1982, 20, 529–539. [Google Scholar] [CrossRef]
- Iizuka, Y.; Endo, T.; Oya, M. Synthesis and properties of high molecular weight polypeptides containing of tryptophan. Bull. Chem. Soc. Jpn. 1991, 64, 1336–1341. [Google Scholar] [CrossRef] [Green Version]
- Uchida, C.; Iizuka, Y.; Ohta, E.; Wakamatsu, K.; Oya, M. Synthesis and properties of high-molecular-weight polypeptides containing tryptophan II. Copolypeptides of tryptophan with various amino acids. Bull. Chem. Soc. Jpn. 1996, 69, 791–796. [Google Scholar] [CrossRef]
- Wamsley, A.; Jasti, B.; Phiasivongsa, P.; Li, X. Synthesis of random terpolymers and determination of reactivity ratios of N-carboxyanhydrides of leucine, β-benzyl aspartate, and valine. J. Polym. Sci. Part A Polym. Chem. 2004, 42, 317–325. [Google Scholar] [CrossRef]
- Goury, V.; Jhurry, D.; Bhaw-Luximon, A.; Novak, B.M.; Belleney, J.I. Synthesis and characterization of random and block copolypeptides derived from γ-methylglutamate and leucine N-carboxyanhydrides. Biomacromolecules 2005, 6, 1987–1991. [Google Scholar] [CrossRef] [PubMed]
- Katchalski, E.; Sela, M. Synthesis and chemical properties of poly-alpha-amino acids. Adv. Protein Chem. 1958, 13, 243–492. [Google Scholar] [PubMed]
- Harlow, K.J.; Hill, A.F.; Welton, T. Convenient and general synthesis of symmetrical N,N’-disubstituted imidazolium halides. Synthesis 1996, 6, 697–698. [Google Scholar] [CrossRef]
- Kelen, T.; Tüdos, F. Analysis of the linear methods for determining copolymerization reactivity ratios. I. A New Improved linear graphic method. J. Macromol. Sci. Part A–Chem. 1975, 9, 1–27. [Google Scholar] [CrossRef]
- Fineman, M.; Ross, S.D. Linear method for determining monomer reactivity ratios in copolymerization. J. Polym. Sci. 1950, 5, 259–265. [Google Scholar] [CrossRef]
- Tüdos, F.; Kelen, T.; Földes-berezsnich, T.; Turcsányi, B. Analysis of linear methods for determining copolymerization reactivity Ratios. III. Linear graphic method for evaluating data obtained at high conversion levels. J. Macromol. Sci. Part A–Chem. 1976, 10, 1513–1540. [Google Scholar] [CrossRef]
- Atreyi, M.; Rao, M.V.R.; Kumar, S. Copolymerization kinetics of N-carboxyanhydrides of some α-amino acids: Influence of nature of amino acids. Biopolymers 1983, 22, 747–753. [Google Scholar] [CrossRef]
Entry | NCA1 | NCA2 | Composition in Feed | Composition in Polymer 1 | Time (min) | w2 (%) | Mn 1 (kg·mol−1) | ||
---|---|---|---|---|---|---|---|---|---|
NCA1 | NCA2 | NCA1 | NCA2 | ||||||
1 | Bn-Glu | Ala | 0.9 | 0.1 | 0.58 | 0.42 | 3 | 2.9 | 6200 |
2 | Bn-Glu | Ala | 0.8 | 0.2 | 0.49 | 0.51 | 3 | 2.9 | 6000 |
3 | Bn-Glu | Ala | 0.7 | 0.3 | 0.45 | 0.55 | 3 | 3.1 | 5400 |
4 | Bn-Glu | Ala | 0.6 | 0.4 | 0.42 | 0.58 | 3 | 3.3 | 4900 |
5 | Bn-Glu | Ala | 0.5 | 0.5 | 0.38 | 0.62 | 3 | 3.3 | 4800 |
6 | Bn-Glu | Ala | 0.4 | 0.6 | 0.35 | 0.65 | 3 | 3.4 | 4500 |
7 | Bn-Glu | Ala | 0.3 | 0.7 | 0.30 | 0.70 | 3 | 3.6 | 3200 |
8 | Bn-Glu | Ala | 0.2 | 0.8 | 0.21 | 0.79 | 3 | 3.5 | 2600 |
9 | Bn-Glu | Ala | 0.1 | 0.9 | 0.12 | 0.88 | 3 | 3.9 | 1700 |
10 | Bn-Cys | Ala | 0.9 | 0.1 | 0.67 | 0.33 | 3 | 2.3 | 4000 |
11 | Bn-Cys | Ala | 0.8 | 0.2 | 0.52 | 0.48 | 3 | 2.3 | 3300 |
12 | Bn-Cys | Ala | 0.7 | 0.3 | 0.43 | 0.57 | 3 | 2.5 | 3100 |
13 | Bn-Cys | Ala | 0.6 | 0.4 | 0.36 | 0.64 | 3 | 2.4 | 2500 |
14 | Bn-Cys | Ala | 0.5 | 0.5 | 0.32 | 0.68 | 3 | 2.3 | 2500 |
15 | Bn-Cys | Ala | 0.4 | 0.6 | 0.29 | 0.71 | 3 | 2.6 | 2400 |
16 | Bn-Cys | Ala | 0.3 | 0.7 | 0.24 | 0.76 | 3 | 2.8 | 2300 |
17 | Bn-Cys | Ala | 0.2 | 0.8 | 0.18 | 0.82 | 3 | 2.8 | 2200 |
18 | Bn-Cys | Ala | 0.1 | 0.9 | 0.10 | 0.90 | 3 | 3.3 | 4000 |
19 | Phe | Ala | 0.8 | 0.2 | 0.49 | 0.51 | 5 | 1.5 | 2600 |
20 | Phe | Ala | 0.7 | 0.3 | 0.39 | 0.61 | 5 | 1.5 | 2600 |
21 | Phe | Ala | 0.6 | 0.4 | 0.28 | 0.72 | 5 | 1.5 | 2400 |
22 | Phe | Ala | 0.5 | 0.5 | 0.20 | 0.80 | 5 | 1.7 | 2200 |
23 | Phe | Ala | 0.4 | 0.6 | 0.14 | 0.86 | 5 | 1.6 | 2200 |
24 | Phe | Ala | 0.3 | 0.7 | 0.09 | 0.91 | 5 | 1.7 | 1700 |
25 | Bn-Ser | Ala | 0.7 | 0.3 | 0.36 | 0.64 | 5 | 1.2 | 4400 |
26 | Bn-Ser | Ala | 0.6 | 0.4 | 0.26 | 0.74 | 5 | 1.5 | 4100 |
27 | Bn-Ser | Ala | 0.5 | 0.5 | 0.18 | 0.82 | 5 | 1.5 | 2900 |
28 | Bn-Ser | Ala | 0.4 | 0.6 | 0.13 | 0.87 | 5 | 1.7 | 2700 |
29 | Bn-Ser | Ala | 0.3 | 0.7 | 0.09 | 0.91 | 5 | 1.6 | 2400 |
Monomer 1 1 | r1 | r2 | Solvent | Catalyst | Conditions | Reference |
---|---|---|---|---|---|---|
Leu NCA | 0.35 | 1.7 | Acetonitrile | No catalyst | 30 °C, 2 h | [16] |
Gly NCA | 0.46–0.60 | 0.21–0.23 | Acetonitrile | No catalyst | 30 °C, 2 h | [16] |
Val NCA | 0.09–0.13 | 2.4–2.6 | Acetonitrile | No catalyst | 30 °C, 2 h | [16] |
O-Acetyl Tyr NCA | 0.12 | 2.7 | Ethyl acetate | No catalyst | 25 °C, 2 h | [30] |
Trp NCA | 0.2 | 10.5 | Dioxane | No catalyst | 30 °C, 15 d | [21] |
Bn-Glu NCA | 0.04 | 0.65 | DMF | NHC | 25 °C, 5 min | This study |
Bn-Cys NCA | 0.06 | 0.98 | DMF | NHC | 25 °C, 5 min | This study |
Bn-Ser NCA | 0,25 | 4.43 | DMF | NHC | 25 °C, 5 min | This study |
Phe NCA | 0.30 | 4.17 | DMF | NHC | 25 °C, 5 min | This study |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eom, K.H.; Baek, S.; Kim, I. N-Heterocyclic Carbene-Catalyzed Random Copolymerization of N-Carboxyanhydrides of α-Amino Acids. Polymers 2021, 13, 3674. https://doi.org/10.3390/polym13213674
Eom KH, Baek S, Kim I. N-Heterocyclic Carbene-Catalyzed Random Copolymerization of N-Carboxyanhydrides of α-Amino Acids. Polymers. 2021; 13(21):3674. https://doi.org/10.3390/polym13213674
Chicago/Turabian StyleEom, Kuen Hee, Seokhyeon Baek, and Il Kim. 2021. "N-Heterocyclic Carbene-Catalyzed Random Copolymerization of N-Carboxyanhydrides of α-Amino Acids" Polymers 13, no. 21: 3674. https://doi.org/10.3390/polym13213674
APA StyleEom, K. H., Baek, S., & Kim, I. (2021). N-Heterocyclic Carbene-Catalyzed Random Copolymerization of N-Carboxyanhydrides of α-Amino Acids. Polymers, 13(21), 3674. https://doi.org/10.3390/polym13213674