Development of Antibacterial Biocomposites Based on Poly(lactic acid) with Spice Essential Oil (Pimpinella anisum) for Food Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Extraction of EO
2.2. Chemical Analysis of EO
2.3. Development of PLA Films
2.4. Physical Characterization
2.4.1. Thickness and Color Analysis
2.4.2. Fourier Transform Infrared Spectroscopy (FTIR)
2.4.3. Thermogravimetric Analysis (TGA)
2.4.4. Differential Scanning Calorimetry (DSC)
2.4.5. Water Vapor Permeability (WVP)
2.5. Mechanical Properties
2.6. Antibacterial Assay
2.6.1. Bacterial Strains
2.6.2. Antibacterial Properties of Films
2.7. Statistical Analysis
3. Results and Discussion
3.1. Chemical Composition of EO
3.2. PLA Film Characterization
3.2.1. Thickness and Color Analysis
3.2.2. FTIR Analysis and Confirmation of the Success of the Incorporation of EOs into the PLA
3.2.3. TGA
3.2.4. DSC
3.2.5. Water Vapor Permeability
3.3. Mechanical Properties
3.4. Antibacterial Properties of Films
4. Techno-Economic Challenges of the Developed Biocomposites
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Shavisi, N.; Khanjari, A.; Basti, A.A.; Misaghi, A.; Shahbazi, Y. Effect of PLA films containing propolis ethanolic extract, cellulose nanoparticle and Ziziphora clinopodioides essential oil on chemical, microbial and sensory properties of minced beef. Meat Sci. 2017, 124, 95–104. [Google Scholar] [CrossRef]
- Ganesh Saratale, R.; Cho, S.-K.; Dattatraya Saratale, G.; Kadam, A.A.; Ghodake, G.S.; Kumar, M.; Naresh Bharagava, R.; Kumar, G.; Su Kim, D.; Mulla, S.I.; et al. A comprehensive overview and recent advances on polyhydroxyalkanoates (PHA) production using various organic waste streams. Bioresour. Technol. 2021, 325, 124685. [Google Scholar] [CrossRef]
- Nampoothiri, K.M.; Nair, N.R.; John, R.P. An overview of the recent developments in polylactide (PLA) research. Bioresour. Technol. 2010, 101, 8493–8501. [Google Scholar] [CrossRef] [PubMed]
- Joo, M.J.; Merkel, C.; Auras, R.; Almenar, E. Development and characterization of antimicrobial poly(l-lactic acid) containing trans-2-hexenal trapped in cyclodextrins. Int. J. Food Microbiol. 2012, 153, 297–305. [Google Scholar] [CrossRef]
- Mascheroni, E.; Guillard, V.; Nalin, F.; Mora, L.; Piergiovanni, L. Diffusivity of propolis compounds in Polylactic acid polymer for the development of anti-microbial packaging films. J. Food Eng. 2010, 98, 294–301. [Google Scholar] [CrossRef]
- Malhotra, B.; Keshwani, A.; Kharkwal, H. Antimicrobial food packaging: Potential and pitfalls. Front. Microbiol. 2015, 6, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Jin, T.; Zhang, H. Biodegradable polylactic acid polymer with nisin for use in antimicrobial food packaging. J. Food Sci. 2008, 73, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Tawakkal, I.S.M.A.; Cran, M.J.; Miltz, J.; Bigger, S.W. A review of poly(lactic acid)-based materials for antimicrobial packaging. J. Food Sci. 2014, 79. [Google Scholar] [CrossRef]
- Woraprayote, W.; Kingcha, Y.; Amonphanpokin, P.; Kruenate, J.; Zendo, T.; Sonomoto, K.; Benjakul, S.; Visessanguan, W. Anti-listeria activity of poly(lactic acid)/sawdust particle biocomposite film impregnated with pediocin PA-1/AcH and its use in raw sliced pork. Int. J. Food Microbiol. 2013, 167, 229–235. [Google Scholar] [CrossRef]
- Ribeiro-Santos, R.; Andrade, M.; de Melo, N.R.; Sanches-Silva, A. Use of essential oils in active food packaging: Recent advances and future trends. Trends Food Sci. Technol. 2017, 61, 132–140. [Google Scholar] [CrossRef]
- Talebi, F.; Misaghi, A.; Khanjari, A.; Kamkar, A.; Gandomi, H.; Rezaeigolestani, M. Incorporation of spice essential oils into poly-lactic acid fi lm matrix with the aim of extending microbiological and sensorial shelf life of ground beef. LWT Food Sci. Technol. 2018, 96, 482–490. [Google Scholar] [CrossRef]
- Salmieri, S.; Islam, F.; Khan, R.A.; Hossain, F.M.; Ibrahim, H.M.M.; Miao, C.; Hamad, W.Y.; Lacroix, M. Antimicrobial nanocomposite films made of poly(lactic acid)–cellulose nanocrystals (PLA–CNC) in food applications—Part B: Effect of oregano essential oil release on the inactivation of Listeria monocytogenes in mixed vegetables. Cellulose 2014, 21, 4271–4285. [Google Scholar] [CrossRef]
- Van Haute, S.; Raes, K.; Van der Meeren, P.; Sampers, I. The effect of cinnamon, oregano and thyme essential oils in marinade on the microbial shelf life of fish and meat products. Food Control 2016, 68, 30–39. [Google Scholar] [CrossRef]
- Ehsani, A.; Hashemi, M.; Aminzare, M.; Raeisi, M.; Afshari, A.; Mirza Alizade, A.; Rezaeigolestani, M. Comparative evaluation of edible films impregnated with sage essential oil or lactoperoxidase system: Impact on chemical and sensory quality of carp burgers. J. Food Process. Preserv. 2019, 43, 1–10. [Google Scholar] [CrossRef]
- Ullah, H.; Honermeier, B. Fruit yield, essential oil concentration and composition of three anise cultivars (Pimpinella anisum L.) in relation to sowing date, sowing rate and locations. Ind. Crops Prod. 2013, 42, 489–499. [Google Scholar] [CrossRef]
- Gülçin, I.; Oktay, M.; Kireçci, E.; Küfrevioǧlu, Ö.I. Screening of antioxidant and antimicrobial activities of anise (Pimpinella anisum L.) seed extracts. Food Chem. 2003, 83, 371–382. [Google Scholar] [CrossRef]
- Sharififar, F.; Moshafi, M.H.; Mansouri, S.H.; Khodashenas, M.; Khoshnoodi, M. In vitro evaluation of antibacterial and antioxidant activities of the essential oil and methanol extract of endemic Zataria multiflora Boiss. Food Control 2007, 18, 800–805. [Google Scholar] [CrossRef]
- Abdulkhani, A.; Hosseinzadeh, J.; Ashori, A.; Dadashi, S.; Takzare, Z. Preparation and characterization of modified cellulose nanofibers reinforced polylactic acid nanocomposite. Polym. Test. 2014, 35, 73–79. [Google Scholar] [CrossRef]
- Liu, D.; Li, H.; Jiang, L.; Chuan, Y.; Yuan, M.; Chen, H. Characterization of active packaging films made from poly (lactic acid)/poly (trimethylene carbonate) incorporated with oregano essential oil. Molecules 2016, 21, 695. [Google Scholar] [CrossRef]
- Biswal, A.K.; Vashisht, I.; Khan, A.; Sharma, S.; Saha, S. Synthesis, characterization and antibacterial activity of thymol-loaded polylactic acid microparticles entrapped with essential oils of varying viscosity. J. Mater. Sci. 2019, 54, 9745–9758. [Google Scholar] [CrossRef]
- Özge Erdohan, Z.; Çam, B.; Turhan, K.N. Characterization of antimicrobial polylactic acid based films. J. Food Eng. 2013, 119, 308–315. [Google Scholar] [CrossRef]
- Abdel-Reheem, M.A.T.; Oraby, M.M. Anti-microbial, cytotoxicity, and necrotic ripostes of Pimpinella anisum essential oil. Ann. Agric. Sci. 2015, 60, 335–340. [Google Scholar] [CrossRef]
- Moradi, J.; Abbasipour, F.; Zaringhalam, J.; Maleki, B.; Ziaee, N.; Khodadoustan, A.; Janahmadi, M. Anethole, a medicinal plant compound, decreases the production of pro-inflammatory TNF-α and IL-1β in a rat model of LPS-induced periodontitis. Iran. J. Pharm. Res. 2014, 13, 1319–1325. [Google Scholar]
- Preedy, V.R. Essential Oils in Food Preservation, Flavor and Safety; Elsevier: Amsterdam, The Netherlands, 2015; ISBN 978-0-12-416641-7. [Google Scholar]
- Javidi, Z.; Hosseini, S.F.; Rezaei, M. Development of flexible bactericidal films based on poly(lactic acid) and essential oil and its effectiveness to reduce microbial growth of refrigerated rainbow trout. LWT Food Sci. Technol. 2016, 72, 251–260. [Google Scholar] [CrossRef]
- Sharma, S.; Barkauskaite, S.; Duffy, B.; Jaiswal, A.K.; Jaiswal, S. Characterization and Antimicrobial Activity of Biodegradable Active Packaging Enriched with Clove and Thyme Essential Oil for Food Packaging Application. Foods 2020, 9, 1117. [Google Scholar] [CrossRef] [PubMed]
- Czaja-Jagielska, N.; Praiss, A.; Walenciak, M.; Zmyślona, D.; Sankowska, N. Biodegradable packaging based on pla with antimicrobial properties. Logforum 2020, 16, 9. [Google Scholar] [CrossRef]
- Rezaeigolestani, M.; Misaghi, A.; Khanjari, A.; Basti, A.A.; Abdulkhani, A.; Fayazfar, S. Antimicrobial evaluation of novel poly-lactic acid based nanocomposites incorporated with bioactive compounds in-vitro and in refrigerated vacuum-packed cooked sausages. Int. J. Food Microbiol. 2017, 260, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Anuar, H.; Nur Fatin Izzati, A.B.; Sharifah Nurul Inani, S.M.; Siti Nur E’zzati, M.A.; Siti Munirah Salimah, A.B.; Ali, F.B.; Manshor, M.R. Impregnation of Cinnamon Essential Oil into Plasticised Polylactic Acid Biocomposite Film for Active Food Packaging. J. Packag. Technol. Res. 2017, 1, 149–156. [Google Scholar] [CrossRef]
- Qin, Y.; Li, W.; Liu, D.; Yuan, M.; Li, L. Development of active packaging film made from poly (lactic acid) incorporated essential oil. Prog. Org. Coat. 2017, 103, 76–82. [Google Scholar] [CrossRef]
- Llana-Ruiz-Cabello, M.; Pichardo, S.; Bermúdez, J.M.; Baños, A.; Núñez, C.; Guillamón, E.; Aucejo, S.; Cameán, A.M. Development of PLA films containing oregano essential oil (Origanum vulgare L. virens) intended for use in food packaging. Food Addit. Contam. Part A Chem. Anal. Control. Expo. Risk Assess. 2016, 33, 1374–1386. [Google Scholar] [CrossRef] [PubMed]
- Elkordy, A.; Gregorova, A. Application of Differential Scanning Calorimetry to the Characterization of Biopolymers; IntechOpen: Rijeka, Croatia, 2013. [Google Scholar]
- Yahyaoui, M.; Gordobil, O.; Herrera Díaz, R.; Abderrabba, M.; Labidi, J. Development of novel antimicrobial films based on poly(lactic acid) and essential oils. React. Funct. Polym. 2016, 109, 1–8. [Google Scholar] [CrossRef]
- Martínez-abad, A.; Maria, J.; Jose, M.; Lagarón, J.M.; Ocio, M.J. Antimicrobial beeswax coated polylactide films with silver control release capacity. Int. J. Food Microbiol. 2014, 174, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Qin, Y.; Yuan, M.; Li, L.; Chen, H.; Cao, J.; Yang, J. Characterization of an antimicrobial poly(lactic acid) film prepared with poly(ε-caprolactone) and thymol for active packaging. Polym. Adv. Technol. 2014, 25, 948–954. [Google Scholar] [CrossRef]
- Arrieta, M.P.; López, J.; Ferrándiz, S.; Peltzer, M.A. Characterization of PLA-limonene blends for food packaging applications. Polym. Test. 2013, 32, 760–768. [Google Scholar] [CrossRef]
- Guillaume, C.; Schwab, I.; Gastaldi, E.; Gontard, N. Biobased packaging for improving preservation of fresh common mushrooms (Agaricus bisporus L.). Innov. Food Sci. Emerg. Technol. 2010. [Google Scholar] [CrossRef]
- Rhim, J.W.; Mohanty, A.K.; Singh, S.P.; Ng, P.K.W. Effect of the processing methods on the performance of polylactide films: Thermocompression versus solvent casting. J. Appl. Polym. Sci. 2006, 101, 3736–3742. [Google Scholar] [CrossRef]
- Khanjari, A.; Bahonar, A.; Noori, N.; Rahimi Siahkalmahaleh, M.; Rezaeigolestani, M.; Asgarian, Z.; Khanjari, J.; Ali Khanjari, C. In vitro antibacterial activity of Pimpinella anisum essential oil and its influence on microbial, chemical, and sensorial properties of minced beef during refrigerated storage. J. Food Saf. 2019, 39, 1–8. [Google Scholar] [CrossRef]
- Friedman, M.; Xu, A.; Lee, R.; Nguyen, D.N.; Phan, T.A.; Hamada, S.M.; Panchel, R.; Tam, C.C.; Kim, J.H.; Cheng, L.W.; et al. The Inhibitory Activity of Anthraquinones against Pathogenic Protozoa, Bacteria, and Fungi and the Relationship to Structure. Molecules 2020, 25, 3101. [Google Scholar] [CrossRef] [PubMed]
- Golestani, M.R.; Rad, M.; Bassami, M.; Afkhami-Goli, A. Analysis and evaluation of antibacterial effects of new herbal formulas, AP-001 and AP-002, against Escherichia coli O157:H7. Life Sci. 2015, 135, 22–26. [Google Scholar] [CrossRef]
- Burt, S. Essential oils: Their antibacterial properties and potential applications in foods—A review. Int. J. Food Microbiol. 2004, 94, 223–253. [Google Scholar] [CrossRef]
- Ahmed, J.; Hiremath, N.; Jacob, H. Antimicrobial, Rheological, and Thermal Properties of Plasticized Polylactide Films Incorporated with Essential Oils to Inhibit Staphylococcus aureus and Campylobacter jejuni. J. Food Sci. 2016, 81, E419–E429. [Google Scholar] [CrossRef] [PubMed]
- Jayasena, D.D.; Jo, C. Essential oils as potential antimicrobial agents in meat and meat products: A review. Trends Food Sci. Technol. 2013, 34, 96–108. [Google Scholar] [CrossRef]
- Shojaii, A.; Abdollahi Fard, M. Review of Pharmacological Properties and Chemical Constituents of Pimpinella anisum. ISRN Pharm. 2012, 2012, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Llana-Ruiz-Cabello, M.; Pichardo, S.; Bãnos, A.; Núñez, C.; Bermúdez, J.M.; Guillamón, E.; Aucejo, S.; Cameán, A.M. Characterisation and evaluation of PLA films containing an extract of Allium spp. to be used in the packaging of ready-to-eat salads under controlled atmospheres. LWT Food Sci. Technol. 2015, 64, 1354–1361. [Google Scholar] [CrossRef]
- Shameli, K.; Ahmad, M.B.; Yunus, W.M.Z.W.; Ibrahim, N.A.; Rahman, R.A.; Jokar, M.; Darroudi, M. Silver/poly (lactic acid) nanocomposites: Preparation, characterization, and antibacterial activity. Int. J. Nanomed. 2010, 5, 573–579. [Google Scholar] [CrossRef]
- Theinsathid, P.; Visessanguan, W.; Kruenate, J.; Kingcha, Y.; Keeratipibul, S. Antimicrobial Activity of Lauric Arginate-Coated Polylactic Acid Films against Listeria monocytogenes and Salmonella Typhimurium on Cooked Sliced Ham. J. Food Sci. 2012, 77. [Google Scholar] [CrossRef] [PubMed]
Compounds | RT a (min) | GC Area (%) b |
---|---|---|
Anethole | 22.791 | 80.84 |
Piperitenone oxide | 20.408 | 5.76 |
p-Allylanisole | 17.517 | 2.9 |
Acet-isoeugenol | 40.343 | 2.05 |
trans-Caryophyllene | 27.49 | 2.05 |
Germacrene-D | 29.693 | 0.76 |
Pulegone | 19.489 | 0.52 |
1,8-Cineole | 9.973 | 0.33 |
Camphene | 30.217 | 0.29 |
Linalool | 13. 06 | 0.23 |
Menthone | 15.853 | 0.21 |
L-Menthone | 15.391 | 0.2 |
trans-beta-Farnesene | 28.928 | 0.14 |
alpha-Humulene | 28.697 | 0.13 |
alpha-Terpineol | 17.122 | 0.07 |
Spathulenol | 34.463 | 0.06 |
trans-beta-Ocimene | 10.348 | 0.05 |
3-Octanol | 8.607 | 0.04 |
p-Allylanisole | 24.434 | 0.04 |
Camphene | 24.814 | 0.04 |
Benzene, 1-methyl-3-(1-methylethyl)- | 9.737 | 0.03 |
2-beta-Pinene | 7.847 | 0.03 |
alpha-Pinene | 6.358 | 0.02 |
Sabinene | 7.739 | 0.02 |
Color Parameters | |||||
---|---|---|---|---|---|
Films | Thickness (mm) | L* | a* | b* | ΔE |
PLA | 0.078 ± 0.01 a | 83.11 ± 0.67 a | 0.75 ± 0.06 d | 15.23 ± 0.12 a | 0 |
PLA/0.5AE | 0.079 ± 0.03 b | 82.26 ± 0.54 a | 1.06 ±0.03 c | 14.51 ± 0.09 ab | 1.15 |
PLA/1AE | 0.084 ± 0.04 a | 80.92 ± 0.88 ab | 1.21 ± 0.03 b | 13.84 ± 0.15 bc | 2.63 |
PLA/1.5AE | 0.087 ± 0.02 a | 79.15 ± 0.71 b | 1.37 ±0.04 a | 13.15 ± 0.18 c | 4.51 |
Films | Tensile Strength (MPa) | Elastic Module (GPa) | Elongation at Break (%) |
---|---|---|---|
PLA | 18.6 ± 0.73 a | 0.96 ± 0.12 a | 52.47 ± 1.35 d |
PLA/0.5AE | 15.23 ± 0.52 b | 0.85 ± 0.08 a | 56.25 ± 0.75 c |
PLA/1AE | 10.19 ± 0.47 c | 0.59 ± 0.13 b | 61.19 ± 2.21 b |
PLA/1.5AE | 6.51 ± 0.24 d | 0.41 ± 0.05 c | 67.21 ± 1.44 a |
Inhibition Zone Diameter (mm) * | |||||
---|---|---|---|---|---|
Films | E. coli | V. parahaemolyticus | S. aureus | L. monocytogenes | Ref. |
PLA | _ | _ | _ | _ | Present study |
PLA/0.5AE | 14.2 ± 0.6 aA | 15.46 ± 0.11 aA | 14.90 ± 0.17 aA | 15.55 ± 0.05 aA | Present study |
PLA/1AE | 14.17 ± 0.13 aA | 16.33 ± 0.35 aA | 15.13 ± 0.52 aA | 26.09 ± 1.79 bB | Present study |
PLA/1.5AE | 15.19 ± 0.63 aA | 19.20 ± 0.63 bB | 14.5 ± 0.34 aA | 34.34 ± 4.01 cC | Present study |
GM (10 μg) | 19.5 | Not reported | 25 | 22 | [40,41] |
Film Composition | Method of Active Film Manufacturing | Inhibition Zone Diameter (mm) | Bacterial Strain | Antibacterial Effectiveness Factor (AEF) | Ref. |
---|---|---|---|---|---|
PLA/6.25 wt% olive leaf extract (OLE) | Solvent casting | 9.1 | S. aureus | 1.456 | [21] |
PLA/18.75 wt% OLE | 13.5 | 0.72 | |||
PLA/37.5 wt% OLE | 16.2 | 0.432 | |||
PLA/0.5 wt% oregano EO | Solvent casting | 3 | S. aureus | 6 | [25] |
- | E. coli | - | |||
PLA/1 wt% oregano EO | 11.7 | S. aureus | 11.7 | ||
3.7 | E. coli | 3.7 | |||
PLA/1.5 wt% oregano EO | 15.2 | S. aureus | 10.13 | ||
10.6 | E. coli | 7.06 | |||
PLA-PEG 1/80 v/w% garlic EO | Solvent casting | 5 | S. aureus | 0.06 | [43] |
PLA-PEG/80 v/w% garlic EO | 45 | Campylobacter jejuni | 0.56 | ||
PLA-PEG/80 v/w% clove EO | 10 | S. aureus | 0.12 | ||
PLA-PEG/80 v/w% clove EO | 80 (complete) | Campylobacter jejuni | 1 | ||
PLA/2, 5, 6.5 wt% Allium spp. extract | Melt blending | - | E. coli O157:H7 | - | [46] |
- | S. aureus | - | |||
PLA/8 wt% Ag | Solvent casting | 4 | S. aureus | 0.5 | [47] |
1.43 | E. coli | 0.17 | |||
PLA/16 wt% Ag | 8 | S. aureus | 0.5 | ||
2.33 | E. coli | 0.14 | |||
PLA/32 wt% Ag | 9.33 | S. aureus | 0.29 | ||
2.33 | E. coli | 0.07 | |||
PLA-CNF 2/20 v/w% Zataria multiflora EO | Solvent casting | 31 | S. aureus | 1.55 | [28] |
28 | E. coli | 1.4 | |||
PLA-CNF/33 v/w% Zataria multiflora EO | 39 | S. aureus | 1.18 | ||
32 | E. coli | 0.96 | |||
PLA/28 wt% lauric arginate (LAE) | Melt blending/coating | 4 | L. monocytogenes | 0.14 | [48] |
4 | S. Typhimurium | 0.14 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Noori, N.; Khanjari, A.; Rezaeigolestani, M.; Karabagias, I.K.; Mokhtari, S. Development of Antibacterial Biocomposites Based on Poly(lactic acid) with Spice Essential Oil (Pimpinella anisum) for Food Applications. Polymers 2021, 13, 3791. https://doi.org/10.3390/polym13213791
Noori N, Khanjari A, Rezaeigolestani M, Karabagias IK, Mokhtari S. Development of Antibacterial Biocomposites Based on Poly(lactic acid) with Spice Essential Oil (Pimpinella anisum) for Food Applications. Polymers. 2021; 13(21):3791. https://doi.org/10.3390/polym13213791
Chicago/Turabian StyleNoori, Negin, Ali Khanjari, Mohammadreza Rezaeigolestani, Ioannis K. Karabagias, and Sahar Mokhtari. 2021. "Development of Antibacterial Biocomposites Based on Poly(lactic acid) with Spice Essential Oil (Pimpinella anisum) for Food Applications" Polymers 13, no. 21: 3791. https://doi.org/10.3390/polym13213791
APA StyleNoori, N., Khanjari, A., Rezaeigolestani, M., Karabagias, I. K., & Mokhtari, S. (2021). Development of Antibacterial Biocomposites Based on Poly(lactic acid) with Spice Essential Oil (Pimpinella anisum) for Food Applications. Polymers, 13(21), 3791. https://doi.org/10.3390/polym13213791