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Abstract: Membrane properties are highly affected by the composition of the polymer solutions that
make up the membrane material and their influence in the filtration performance on the separation or
purification process. This paper studies the effects of the addition of pluronic (Plu) and patchouli oil
(PO) in a polyethersulfone (PES) solution on the membrane morphology, membrane hydrophilicity,
and filtration performance in the pesticide removal compound in the water sample. Three types of
membranes with the composition of PES, PES + Plu, and PES + Plu + patchouli oil were prepared
through a polymer phase inversion technique in an aqueous solvent. The resulting membranes were
then analyzed and tested for their mechanical properties, hydrophilicity, antimicrobial properties,
and filtration performance (cross-flow ultrafiltration). The results show that all of the prepared mem-
branes could reject 75% of the pesticide. The modification of the PES membrane with Plu was shown
to increase the overall pore size by altering the pore morphology of the pristine PES, which eventu-
ally increased the permeation flux of the ultrafiltration process. Furthermore, patchouli oil added
antimicrobial properties, potentially minimizing the biofilm formation on the membrane surface.

Keywords: polyethersulfone; pluronic; patchouli; pesticide; blending; ultrafiltrasi; cross-flow; mem-
brane; separation

1. Introduction

The selection of constituent materials for membrane development focuses on pro-
ducing membranes with strong mechanical properties, good anti-fouling ability, and high
chemical resistance. To achieve these ideal properties, a polymer is often modified with
other materials to produce a membrane with optimal filtration performance [1–4]. One of
the most common techniques is blending the polymer with hydrophilic additives in the
dope solution [5–7]. Besides acting as a structure modifying agent, the additive material
can minimize the propensity of biofouling during the filtration process by increasing the
membrane surface hydrophylicity. Alternatively, post-treatment through membrane sur-
face grafting with certain monomers can also be employed [8–11], or surface coating by a
specific polymers [12].
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Biofouling is typically caused by a biofilm formation of microorganisms on the mem-
brane surface [13]. Biofouling can be a serious problem because it can block the pores and
therefore reduce the membrane filtration performance. Consequently, it shortens the mem-
brane lifespan and increases the operating costs due to frequent chemical cleaning [14–16].
Therefore, additives with a good antimicrobial property that can prevent bacterial activity
on the membrane surface are needed.

One way to prevent biofouling is by adding antimicrobial substances into the mem-
brane matrix, such as titanium dioxide (TiO2) nanoparticles, nanosilver (Ag), nano-sized
hydrous manganese dioxide (HMO), and graphene oxide (GO) nanoparticles [17,18]. A
research group led by Qiblawey investigated the effect of blending a polysulfone (PSf)
poymer with a treated GO on the antibacterial activity of the PSf blend membrane [19]. The
experimental results show that nanosilver can kill up to 83.6% of bacteria on the membrane
surface and thus prevent a rapid decrease in permeate flux. Kumar et al. added an antimi-
crobial additive derived from biomass, namely curcumin [20]. The authors confirmed that
reducing microbe life on the casted membrane upgraded the hydrophilicity membrane
properties. Water permeability was shown to have been enhanced significantly, reaching
88.52%. Moreover, the addition of nano curcumin also increased the membrane mechanical
strength by 58%. Biomass-derived materials offer some advantages over their synthetic
counterparts as the former are renewable and more economical, hence more sustainable.

In this study, the improvement of the PES membranes’ anti-bacterial properties was
carried out by adding patchouli oil (PO) from patchouli plant extract (Pogostemon cablin
Benth Patchouli). The use of PO as a membrane additive is strongly supported by the avail-
ability of patchouli plants in Indonesia, especially in Aceh Province, the largest producer
of patchouli plants globally. PO as a general chemical structure, as shown in Figure 1a, con-
tains terpene compounds such as aromatic and phenolic compounds, which are known to
be anti-bacterial, antifungal, and antioxidant [21]. Therefore, it is expected to minimize bio-
fouling and thereby prolong the lifespan of the PES membrane. Despite numerous studies
that have been reported enhancing the antibacterial properties of ultrafiltration membranes,
as far as the literature is concerned, this is the first attempt to use PO for improving the
properties and filtration performance of PES membranes. To further increase the surface
hydrophilicity, porosity, and membrane pore size, a polymeric surfactant pluronic F127
(Plu) was also introduced in the polymer solution (Figure 1b). The combination of Plu and
PO is envisaged to give a synergistic effect to improve the hydrophilicity property, water
permeation, and membrane lifetime during the ultrafiltration processes.
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Figure 1. Chemical structure of (a) PO (Pogostone), and (b) Pluronic F127.

2. Materials and Methods
2.1. Materials

To prepare the polymeric dope solution, polyethersulfone (PES Ultrason E6020, 99%,
BASF, Ludwigshafen, Germany), Pluronic F127 (99%, WAKO, Osaka, Japan), and patchouli
oil (Atsiri research center, USK, Banda Aceh, Indonesia) were dissolved in dimethyl for-
mamide (DMF 99.8%, -Sigma Aldrich, Burlington, MA, United States). Deionized water
(ultrapure milli-Q) was used for membrane solidification. Fipronil pesticide (50 g/L, BASF,
Ludwigshafen, Germany) was used as a model compound to test the ultrafiltration process
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and evaluate the membrane rejection property. Escherichia coli (ATCC 25922) and Mueller–
Hinton agar (OXOID, Ottawa, Canada) were employed to evaluate anti-bacterial activity
of membrane.

2.2. Membrane Fabrication

Three kinds of polymer solutions were prepared to fabricate three types of membranes
using DMF as the solvent. The proportions of all prepared membranes have been sum-
marized (shown in Table 1). A magnetic stirrer plate was used to stir the solution for 24 h
at room temperature to achieve a homogeneous and bubble-free blend polymer solution.
After ensuring that the polymer mixture solution’s air bubbles had completely disappeared,
the polymer was printed on a glass plate using an automatic membrane applicator, a
Yoshimitsu device from Japan, to achieve a 200 µm thickness. Next, a deionized water
coagulation vessel was used to immerse the glass plate and cast film as a non-solvent phase
inversion. The casted membrane was then rinsed in water to eliminate residual solvent
before it was characterized.

Table 1. Composition of the polymer solutions.

Membrane
Code

PES Plu PO DMF
(wt %) (wt %) (wt %) (wt %)

UF1 15 0 0 85
UF2 15 3 0 82
UF3 15 3 3 79

2.3. Membrane Properties and Morphology

The membrane mechanical properties (in terms of the tensile test) were evaluated
using the Autograph AGS J device, Japan, in line with ASTM D 638-14. A piece of mem-
brane fragment (5 cm length) was installed on the tensile tool panel. The tensile strength
value of each membrane was obtained from the average of 5 analyses. A goniometer (Drop
Master 300, Kyowa Interface Science Co., Japan) was used to determine the water drop
contact angle to analyze hydrophilic membrane properties. Five microliters of water was
dropped onto the membrane surface through a microneedle. The angle of the water droplet
atop the surface was automatically recorded. The measurements were done 10 times for
each sample, and the results are presented as average. A scanning Electron Microscopy
(SEM JSF-7500F, JEOL, Japan) was used to assess the membrane surface and cross-section
morphologies. For the cross-sectional structure, a piece of the membrane was immersed
and crushed into the liquid nitrogen. All membranes were coated with osmium powder
before scanning, and then underwent the scanning process. The structure of the membrane
in terms of surface roughness was analyzed using atomic force microscopy (AFM) with the
method described previously [22,23]. The functional groups of each membrane near the
surface were identified using a Fourier Transform Infrared Spectroscopy (FTIR spectropho-
tometer, Thermo Scientific, Japan). The drying of each membrane sample of 1 cm2 at 40 ◦C
was carried out for 1 h. This process aims to remove the moisture content before analysis.
Then the membrane was installed on the sample panel, and at the same time, the panel
recorded the absorbance spectrum in the maximum wavenumber range.

2.4. Anti-Bacterial Test

In this study, the performance of the membrane in preventing biofouling was analyzed
by the investigated anti-bacterial activity. The anti-microbial test was carried against Gram-
negative bacteria, Escherichia coli (ATCC 25922). A 0.5 Mac Farland of E. coli solution was
swabbed onto Mueller–Hinton agar in a petri dish. Then, the sterile membrane sample was
put on the surface of agar containing of E. coli. The number of colonies that grew on the
membrane surface were counted under a magnifying glass after 24 h of incubation.



Polymers 2021, 13, 3872 4 of 13

2.5. Permeation Test

In determining the membrane flux, a cross-flow filtration module can be used (illus-
trated in Figure 2). Distilled water was fed to the cross-flow module at 0.1 L min−1 flow rate
with an applied pressure of 1.0 bar through the peristaltic pump. Filtration time recording
started when the water exited through the membrane wall, and the measurements of the
permeate flow rate were taken every 10 min starting from when the filtration began until
it reached a constant flux. The membrane flux was calculated using Equation (1). The
membrane flux measurement was repeated 3 times, and the average results from 3 trials
were taken as membrane filtration performance data.

Jm =
Vp

A × ∆t
. (1)

where Jm, Vp, ∆t, and A are the water flux (L m−2·h−1), volume of the filtrate (L), and the
effective area of membrane (m2), respectively.
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2.6. Pesticide Removal Test

The fipronil standard solution (BASF) was used as a model compound for the pesticide
removal test. An amount of 1 mL of fipronil at a concentration of 50 g/L was dissolved in
10 mL of 99% ethanol. The resulting solution was further dissolved in 1000 mL of distilled
water to make a 50 ppm fipronil solution. The pesticide removal test was carried out with
the same cross-flow ultrafiltration module used for the permeation test (Figure 1). The final
concentration of the pesticide solution was analyzed using a spectrophotometer (Shimadzu
Spectrophotometer UV-1800, Kyoto, Japan). The rejection of the pesticide (Equation (2)) was
evaluated by measuring the difference between the initial and final fipronil concentrations
(feed and permeate solutions), respectively.

Rm =

(
1 −

Cp

Cf

)
× 100% (2)

where Rm is the rejection of the pesticide (%), and Cp and Cf are the fipronil content in the
residue and filtrate (mg L−1), respectively.

3. Results and Discussion
3.1. Membrane Structure

The mechanism of fabricated membranes was affected by the non-solvent induced
phase separation (NIPS) method based on mass transfer. Mass transfer with non-solvent
reveals a substantial impact on obtaining porous asymmetric membranes [24]. The NIPS
method results in a dense skin layer and finger-like cross-section on the prepared mem-
brane [25]. The structure of membranes followed the NIPS method when the coagulation
water bath was at room temperature, as illustrated in Figure 3.
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Figure 3. SEM images of the prepared membranes: (a) membrane surface and (b) membrane
cross-section.

Figure 3 shows the surface and structure of the cross-section of all prepared mem-
branes. It can be seen in Figure 3a that the surface of the UF1 membrane (pristine PES)
had a dense structure with small nodules without pores. Blending PES polymer with
3 wt % Plu resulted in a membrane with a porous surface, with a pore size of less than
50 nm (UF2). Plu is a surfactant polymer that may act as a membrane pore-forming agent
through an irregular bonding scheme between the primary polymer and additive particles.
Due to the bond irregularity, the space between the particles opens, forming membrane
pores. Several studies reported that Plu as a membrane-modifying agent has successfully
changed the pore structure in membranes made of various polymers [7,26,27]. In particular,
the surface of the UF3 membrane depicts an aggregation of Plu and PO particles. The
dispersion of these aggregates/clusters of PO and Plu particles is related to the physical
group of polymer chains [28]. The detail surface morphology of the membrane might also
be confirmed by the roughness data obtained from AFM analysis. Figure 4 shows the 3D
AFM image of the membrane surface, in which the surface roughness has clearly increased
(Ra). It is confirmed that the Ra of the UF1, UF2, and UF3 membranes are 2.04, 4.75, and
4.92, respectively.
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The observation on the membrane cross-sectional structure further reveals the effect
of Plu and PO additions on membrane morphology (Figure 3b). In general, all of the
prepared membranes exhibited a dense selective layer at the top, which is supported by
the microporous layer underneath. It is evident that the addition of Plu (UF2) and PO
(UF3) created large, finger-like macrovoids, whereas the pristine PES membrane (UF1) is
dominated by sponge-like structures.

The results indicate that modification with additive materials affects the formation
of new pores and minimizes the dense structure of the PES membrane. The addition
of PO and Plu led to instant segregation during the phase separation in the coagulation
bath. This phenomenon occurs due to the unstable dope solution from a thermodynamic
perspective. The thermodynamics of the solvent-non-solvent system, polymer-patch/Plu,
and the segregation process kinetics significantly affect the themorphology of the formed
membranes. Furthermore, there is aggregation between PES polymers and PO and Plu
Particles, which removes the solvent from the system during the precipitation process in the
coagulation bath, and the result is an enlarged pore size that looks like a macro-finger void.
The large macro voids’ formation resulted from instant segregation in which the solvent
entered the membrane film through the crack formed by the skin-layer crack [28,29].

3.2. Chemical Compounds Indication

An energy-dispersive X-ray spectroscopy (EDXS) test was conducted to analyze the
elemental composition of the membrane surface. Figure 5 shows the EDXS spectrum of
the PES membrane (UF1), the PES membrane modified with Plu 3% (UF2), and the PES
membrane modified with Plu 3% and PO 3% (UF3). The result reveals that carbon (C),
oxygen (O), and sulfur (S) are present on all membrane surfaces. Similarly, Elcik et al.
reported that C, O, and S compositions were obtained in the PES membrane [30]. By adding
the pluronic and patchouli oil, the ratio of carbon atoms increases; however, oxygen and
sulfur atoms decrease (Figure 5).
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The results of the FTIR analysis for all samples are shown in Figure 6. All samples
contain aromatic ring groups (C=C) that appear at 1484 and 1577 cm−1. The sulfone groups
(O=S=O) were detected at 1147 cm−1, while aromatic ether groups (C-O-C) appeared
at a 1238 cm−1. Furthermore, aromatic C-H groups were detected at 835 cm−1. All of
these spectra are related to the presence of atomic vibrations in the material, which is a
characteristic of PES.
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The Plu functional clusters (C-O, O-H, and C-H) were detected at 1105, 1301, and
2854 cm−1, respectively. However, pure PO-characterizing groups, as reported by Fahmi
et al. [31], such as cis (C-CH), methyl (-CH3), methylene (-CH2), carbonyl (C=O), cis (C=C),
alcohol (C-O), ether (C-O), trans (-HC=CH), and cis (-HC=CH) are hardly noticeable in this
membrane. This phenomenon is presumed to be caused by leaching that most of the PO
particles undergo during the phase inversion process. It is worth noting that the peaks at
1105 and 1301 cm−1 cannot be exclusively attributed to Plu. They also corresponded to the
C-H bending and C-O stretching vibration that were available in the PES structure, as such
both peaks also presented in the UF1 membrane.

3.3. Hydrophilic Properties

The hydrophilic surface is an essential part in improving the membrane permeability
and properties of anti-fouling [32]. Meanwhile, the surface wettability of the membrane
can be analyzed from the water contact angle data, where a high membrane hydrophilicity
is associated with low contact angle values [33].

The contact angle of water analysis results for all prepared membranes can be seen
in Figure 7. The UF1 membrane (pristine PES) has the highest water contact angle
(76.1 ± 0.4◦). Blending 3 wt % of Plu with polymer solution (UF2) resulted in a mem-
brane with a lower water contact angle (68.2 ± 1.1◦), indicating higher hydrophilicity. Plu
is a non-ionic surfactant formed by polyethylene oxide (PEO) and polypropylene oxide
compounds (PPO) with a PEO- PPO- PEO block structure. The dominant EO group in
Plu is a carrier of hydrophilic properties, lowering the UF2 surface contact angle. The
addition of PO (UF3) did not cause a significant change in the hydrophilicity as it has a
similar water contact angle (68.7 ± 2.1◦) to that of UF2. During the phase inversion, the
relative polarity of the PES, Plu and PO is very important, as this governs the membrane
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matric bulk structure. The non-polar Plu and PO are likely to move toward the water
phase in the internal pore or to the top surface. The mobility of the non-polar compounds
also contributes to the surface hydrophilicity. The water contact angle also relates to the
surface roughness of the membrane. As can be seen in Figure 7, the water contact angle
was lower at the higher membrane surface roughness (see Figure 4). It is worth noting that
the hydrophilicity of the membrane surface can be attributed to the residual fraction of PO
and Plu in the membrane matric. The impact may diminish when those chemicals leach
out during the filtration operation, which can be a topic of a future work.
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3.4. Membrane Strength

The profile of the tensile strength of the prepared membranes is presented in Figure 8.
Mechanical strength indicates the ability of a membrane to withstand feed pressure during
the filtration process. A tighter membrane structure and intermolecular molecules which
are not spaced apart are directly proportional to excellent tensile strength. Figure 8 shows
that the UF1 membrane had the highest tensile strength of 4.40 MPa. PES polymers are
known to have strong mechanical properties. Modifying the polymer solution with Plu
(UF2) and PO (UF3) only slightly decreased the tensile strength to 4.26 and 4.09 MPa,
respectively, which is closely related to changes in the morphological structure dominated
by finger-like macro voids, as shown in Figure 2. Therefore, it shows that the introduction of
Plu and PO overall maintained the mechanical strength of the PES membrane. In addition,
using One-way ANOVA with post-hoc Tukey HSD analysis, all prepared membranes
are systematically significant for water contact value with p < 0.01 and systematically
significant for tensile strength value (p < 0.05).

Polymers 2021, 13, x FOR PEER REVIEW 9 of 13 
 

 

of Plu and PO overall maintained the mechanical strength of the PES membrane. In addi-
tion, using One-way ANOVA with post-hoc Tukey HSD analysis, all prepared mem-
branes are systematically significant for water contact value with p < 0.01 and systemati-
cally significant for tensile strength value (p < 0.05). 

 
Figure 8. Membrane mechanical strength of the prepared PES membranes. 

3.5. Anti-Bacterial Performances 
Since biofouling can reduce membrane performance permanently [34], the preven-

tion of biofouling is highly needed. In this study, the qualitative and quantitative data of 
membrane anti-microbial performance are shown in Figure 9 and Table 2, respectively. 
The qualitative results show the visual performance of the growth colony on the mem-
brane surface, while the quantitative data shows the number of colonies counted. 

  

UF1 UF2 

 
UF3 

1

1.5

2

2.5

3

3.5

4

4.5

5

UF1 UF2 UF3

M
em

br
an

e 
St

re
ng

ht
 (M

Pa
)

Membranes

Figure 8. Membrane mechanical strength of the prepared PES membranes.



Polymers 2021, 13, 3872 9 of 13

3.5. Anti-Bacterial Performances

Since biofouling can reduce membrane performance permanently [34], the prevention
of biofouling is highly needed. In this study, the qualitative and quantitative data of
membrane anti-microbial performance are shown in Figure 9 and Table 2, respectively. The
qualitative results show the visual performance of the growth colony on the membrane
surface, while the quantitative data shows the number of colonies counted.
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Figure 9. Anti-bacterial activity investigated by colony counting on membrane surface.

Table 2. Antimicrobial activity of the prepared membranes.

No Membrane Microbe Count Unit

1 UF1 390 Colony
2 UF2 360 Colony
3 UF3 36 Colony

Figure 9 clearly shows that the colony of E. coli proliferates vigorously on the surface
of the membrane without containing PO. The UF1 and UF2 membranes have similar results,
in which the number of colonies counted were 390 and 360, respectively (Table 2). After the
addition of 3% PO, the number of colonies is significantly reduced from 360 to 36 colonies.
This is also supported by the visual performance of UF3 membrane surface in Figure 9,
which shows the membrane surface has less colonies.

This anti-bacterial test proves that the phenolic compound of PO can mitigate the at-
tachment of microbial cells and may disrupting the quorum sensing (QS) system of bacteria.
QS is known to signal molecules that play roles in microbial cell-to-cell communication [35].
If the QS are interrupted by anti-microbial substances, then the number of microbial cells
that grow in a current area can be reduced. In this study, PO acts as a quorum sensing
inhibition (QSI) agent of the PES membrane.
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3.6. Ultrafiltration Performance

Table 3 shows the water permeation results showing that the Plu addition to the poly-
mer solution increased the membrane permeation (UF2) from 72.23 to 75.63 L m−2·h−1·bar,
resulting from the presence of a large macro void and finger-like pore structures, as shown
in Figure 2. However, the addition of PO (UF3) further increased the membrane flux to
85.87 m−2·h−1·bar. This significant permeation enhancement is believed to increase the
hydrophilicity and antimicrobial properties induced by PO, which eventually leads to
minimal fouling.

Table 3. One-way ANOVA with post hoc Tukey HSD test calculator.

Treatments Pair Tukey HSD
Q Statistic

Tukey HSD
p-Value

Tukey HSD
Inferfence

Membranes
(UF1;UF2;UF3)

Water Contact 36.7491 0.0010053 ** p < 0.01
Tensile Strength 5.4501 0.0182416 * p < 0.05

Water Permeability 25.9326 0.0010053 ** p < 0.01
Fipronil Rejection 36.2145 0.0010053 ** p < 0.01

** Approach at set significance level (p < 0.01). * Below set significance level (p < 0.05).

Table 4 also shows the effectiveness of the ultrafiltration process in removing fipronil
pesticide solution. The highest pesticide rejection was obtained by the UF1 membrane,
which was 85%. The rejection of pesticide solution using the UF2 and UF3 membranes
was 84% and 75%, respectively. This is in agreement with other studies where the rejection
is inversely proportional to the flux. A membrane with a high flux has a low rejection
rate and vice versa. In this study, the highest rejection of fipronil pesticide was obtained
through the UF1 membrane, which exhibits smaller pores than UF2 and UF3, leading to
higher molecular retention. On the other hand, all prepared membranes are systematically
significant for water permeability and fipronil rejection values with One-way ANOVA with
post hoc Tukey HSD test p value less than 0.01 (Table 3). The permeate of fipronil filtration
produced by the UF1 membrane filtration process is shown in Figure 10. The permeate is
shown to be transparent, indicating that the membrane has retained the fipronil molecules.

Table 4. Prepared membrane performance in terms of permeability and selectivity.

No Membrane Water Permeability (L/m2.hr.bar) Fipronil Rejection (%)

1 UF1 72.23 85.20
2 UF2 75.63 84.00
3 UF3 85.87 75.50
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Research on pesticide removal using membrane filtration has previously been reported
by the team of Jung et al. By using commercial hollow-fiber nanofiltration membranes,
pesticides can be removed from water samples in the range of 41.0% to 88.4% [36]. Another
study on pesticide removal by membrane filtration was reported by Mukherjee et al.
By using laboratory-scale polyamide RO membrane, researchers succeeded in removing
pesticides in water in the range of 37.82% to 100% [37]. The pesticide rejection achieved in
this study was generally high. This cannot be compared with the achievements of other
studies because the types of membranes and pesticides used are different.

4. Conclusions

This study reveals the characteristics and performance of a modified hydrophobic PES
membrane with pluronic and patchouli oil. The results establish that the incorporation of
pluronic and patchouli oil in the PES membrane promoted the establishment of large macro
voids and the number of finger-like structures by increasing length. The ultrafiltration
test shows that the PES/Plu/PO membrane exhibited the highest flux and accomplished
a rejection rate of fipronil pesticide solution up to 75%. The addition of Plu and PO
in the membrane matrix enhanced the membrane hydrophilicity and the anti-bacterial
property significantly.
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