Delamination Behaviour of Embedded Polymeric Sensor and Actuator Carrier Layers in Epoxy Based CFRP Laminates—A Study of Energy Release Rates
Abstract
:1. Introduction
2. Embedded Polymer Carrier Layers
2.1. Investigated Material and Embedding Configurations
- Polyimide (PI),
- Polyether-Ether-Ketone (PEEK),
- Polyamide (PA),
- Polyetherimide (PEI),
- additional Polyolefine (PO) layer.
- Embedding configuration I: The polymer layers are positioned in the mid plane of the composite lay-up to down select appropriate polymer layer materials.
- Embedding configuration II: Additional Polyolefine (PO) adhesive agent layers in combination with the PI layers are investigated to further enhance delamination resistance.
- Embedding configuration III: A combination of PI and PO layers are embedded in the mid plane of the CFRP lay up. PTFE crack initiation is positioned either between the PO and PI layer or the PI and CFRP layer to investigate the bonding behaviour of PI and PO in detail.
2.2. Manufacturing of CFRP Panels with Embedded Layers and Specimen Preparation
3. Determination of Delamination Characteristics
3.1. Experimental Programme and Setup
3.2. Data Analysis
4. Results and Discussion
4.1. Reference Configuration
4.2. Embedding Configuration I
4.3. Embedding Configuration II
4.4. Embedding Configuration III
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
CFRP | Carbon Fibre Reinforced Plastic |
DCB | Double-Cantilever Beam |
DIC | Digital Image Correlation |
ELS | End-Loaded Split |
PA | Polyamide |
PEEK | Polyether-Ether-Ketone |
PEI | Polyetherimide |
PI | Polyimide |
PO | Polyolefine |
PTFE | Polytetraflourethylene |
UD | Unidirectionally Reinforced |
References
- González, C.; Vilatela, J.; Molina-Aldareguía, J.; Lopes, C.; LLorca, J. Structural composites for multifunctional applications: Current challenges and future trends. Prog. Mater. Sci. 2017, 89, 194–251. [Google Scholar] [CrossRef] [Green Version]
- Friedrich, K. Polymer composites for tribological applications. Adv. Ind. Eng. Polym. Res. 2018, 1, 3–39. [Google Scholar] [CrossRef]
- Singh, A.; Afrin, S.; Karim, Z. Green Composites: Versatile Material for Future. In Green Energy and Technology; Springer: Cham, Switzerland, 2001; Volume 28, pp. 29–44. [Google Scholar] [CrossRef]
- Modler, N.; Hufenbach, W.; Cherif, C.; Ulbricht, V.; Gude, M.; Maron, B.; Weck, D.; Filippatos, A.; Wiemer, H.; Langkamp, A. Novel Hybrid Yarn Textile Thermoplastic Composites for Function-Integrating Multi-Material Lightweight Design. Adv. Eng. Mater. 2016, 18, 361–368. [Google Scholar] [CrossRef]
- Hufenbach, W.; Böhm, R.; Thieme, M.; Winkler, A.; Mäder, E.; Rausch, J.; Schade, M. Polypropylene/glass fibre 3D-textile reinforced composites for automotive applications. Mater. Des. 2011, 32, 1469–1476. [Google Scholar] [CrossRef]
- Rubino, F.; Nisticò, A.; Tucci, F.; Carlone, P. Marine Application of Fiber Reinforced Composites: A Review. J. Mar. Sci. Eng. 2020, 8, 26. [Google Scholar] [CrossRef] [Green Version]
- Jerkovic, I.; Koncar, V.; Grancaric, A. New Textile Sensors for In Situ Structural Health Monitoring of Textile Reinforced Thermoplastic Composites Based on the Conductive Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) Polymer Complex. Sensors 2017, 17, 2297. [Google Scholar] [CrossRef] [Green Version]
- Melnykowycz, M.; Kornmann, X.; Huber, C.; Barbezat, M.; Brunner, A. Performance of integrated active fiber composites in fiber reinforced epoxy laminates. Smart Mater. Struct. 2006, 15, 204. [Google Scholar] [CrossRef]
- Winkler, A.; Modler, N.; Drossel, W.G.; Mäder, T.; Körner, C. High-Volume Production-Compatible Technologies for Light Metal and Fiber Composite-Based Components with Integrated Piezoceramic Sensors and Actuators. Adv. Eng. Mater. 2018, 20, 1801001. [Google Scholar] [CrossRef]
- Modler, N.; Winkler, A.; Filippatos, A.; Weck, D.; Dannemann, M. Function–integrative Lightweight Engineering—Design Methods and Applications. Chem. Ing. Tech. 2020, 92, 949–959. [Google Scholar] [CrossRef]
- Preumont, A. Vibration Control of Active Structures: An Introduction, 3rd ed.; Solid Mechanics and Its Applications; Springer: Berlin/Heidelberg, Germany, 2011; Volume 179. [Google Scholar]
- Elspass, W.; Flemming, M. Aktive Funktionsbauweisen: Eine Einführung in Die Struktronik; Springer: Berlin/Heidelberg, Germany, 1998. [Google Scholar] [CrossRef]
- Sodano, H.; Park, G.; Inman, D. An investigation into the performance of macro-fiber composites for sensing and structural vibration applications. Mech. Syst. Signal Process. 2004, 18, 683–697. [Google Scholar] [CrossRef]
- Holeczek, K.; Starke, E.; Winkler, A.; Dannemann, M.; Modler, N. Numerical and Experimental Characterization of Fiber-Reinforced Thermoplastic Composite Structures with Embedded Piezoelectric Sensor-Actuator Arrays for Ultrasonic Applications. Appl. Sci. 2016, 6, 55. [Google Scholar] [CrossRef] [Green Version]
- de Simone, M.E.; Cuomo, S.; Ciampa, F.; Meo, M.; Nitschke, S.; Hornig, A.; Modler, N. Acoustic emission localization in composites using the signal power method and embedded transducers. In Nondestructive Characterization and Monitoring of Advanced Materials, Aerospace, Civil Infrastructure, and Transportation XIII; International Society for Optics and Photonics: Bellingham, WA, USA, 2019; Volume 10971, p. 109711O. [Google Scholar] [CrossRef]
- Rocha, H.; Semprimoschnig, C.; Nunes, J. Sensors for process and structural health monitoring of aerospace composites: A review. Eng. Struct. 2021, 237, 112231. [Google Scholar] [CrossRef]
- Tuloup, C.; Harizi, W.; Aboura, Z.; Meyer, Y.; Khellil, K.; Lachat, R. On the manufacturing, integration, and wiring techniques of in situ piezoelectric devices for the manufacturing and structural health monitoring of polymer–matrix composites: A literature review. J. Intell. Mater. Syst. Struct. 2019, 30, 2351–2381. [Google Scholar] [CrossRef]
- Lin, M.; Chang, F.K. The manufacture of composite structures with a built-in network of piezoceramics. Compos. Sci. Technol. 2002, 62, 919–939. [Google Scholar] [CrossRef]
- Yang, S.; Hung, C.; Chen, K. Design and fabrication of a smart layer module in composite laminated structures. Smart Mater. Struct. 2005, 14, 315–320. [Google Scholar] [CrossRef]
- Weck, D.; Sauer, S.; Adam, F.; Starke, E.; Böhm, R.; Modler, N. Embedded Sensor Networks for Textile-Reinforced Thermoplastics: Sensor Network Design and Mechanical Composite Performance. Adv. Eng. Mater. 2016, 18, 444–451. [Google Scholar] [CrossRef]
- Khudiakova, A.; Brunner, A.; Wolfahrt, M.; Wettemann, T.; Godec, D.; Pinter, G. On the investigation of quasi-static crack resistance of thermoplastic tape layered composites with multiple delaminations: Approaches for quantification. Compos. Part A Appl. Sci. Manuf. 2021, 149, 106484. [Google Scholar] [CrossRef]
- Montazerian, H.; Rahide, A.; Milani, A.S.; Hoorfar, M. Integrated Sensors in Advanced Composites: A Critical Review. Crit. Rev. Solid State Mater. Sci. 2019, 44, 1–52. [Google Scholar] [CrossRef]
- Chilles, J.; Croxford, A.; Bond, I. Design of an embedded sensor, for improved structural performance. Smart Mater. Struct. 2015, 24, 115014. [Google Scholar] [CrossRef] [Green Version]
- Winkler, A.; Modler, N.; Weber, T.; Täger, O. Development of a Series Capable Production Process for Fiber-Reinforced Composites with Thermoplastic Matrices and Material-Integrated Piezoceramic Modules. Adv. Eng. Mater. 2018, 20, 1800588. [Google Scholar] [CrossRef]
- Filippatos, A.; Höhne, R.; Kliem, M.; Gude, M. A composite-appropriate integration method of thick functional components in fibre-reinforced plastics. Smart Mater. Struct. 2016, 25, 035026. [Google Scholar] [CrossRef]
- Weber, T.; Winkler, A.; Gude, M. Experimental Investigation of the Frequency-Dependent Performance of Thermoplastic-Compatible Piezoceramic Modules (TPM). Adv. Eng. Mater. 2018, 20, 1800568. [Google Scholar] [CrossRef]
- Butler, S.; Gurvich, M.; Ghoshal, A.; Welsh, G.; Attridge, P.; Winston, H.; Urban, M.; Bordick, N. Effect of embedded sensors on interlaminar damage in composite structures. J. Intell. Mater. Syst. Struct. 2011, 22, 1857–1868. [Google Scholar] [CrossRef]
- Konka, H.P.; Wahab, M.A.; Lian, K. The effects of embedded piezoelectric fiber composite sensors on the structural integrity of glass-fiber–epoxy composite laminate. Smart Mater. Struct. 2012, 21, 015016. [Google Scholar] [CrossRef]
- ASTM D5528-13. Standard Test Method for Mode I Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites; ASTM International: West Conshehoken, PA, USA, 2013. [Google Scholar] [CrossRef]
- ISO 15114:2014. Fibre-Reinforced Plastic Composites—Determination of the Mode II Fracture Resistance for Unidirectionally Reinforced Materials Using the Calibrated End-Loaded Split C-ELS) Test and an Effective Crack Length Approach; 2014; Available online: https://www.iso.org/standard/55357.html (accessed on 4 March 2020).
- Kuhtz, M.; Hornig, A.; Gude, M.; Jäger, H. A method to control delaminations in composites for adjusted energy dissipation characteristics. Mater. Des. 2017, 123, 103–111. [Google Scholar] [CrossRef]
- Davies, P.; Blackman, B.; Brunner, A. Mode II delamination. In Fracture Mechanics Testing Methods for Polymers, Adhesives and Composites; Moore, D., Pavan, A., Williams, J., Eds.; Elsevier: Amsterdam, The Netherlands, 2001; Volume 28, pp. 307–333. [Google Scholar] [CrossRef]
- Brunner, A.; Blackman, B.; Davies, P. Mode I delamination. In Fracture Mechanics Testing Methods for Polymers, Adhesives and Composites; Moore, D., Pavan, A., Williams, J., Eds.; Elsevier: Amsterdam, The Netherlands, 2001; Volume 28, pp. 277–305. [Google Scholar] [CrossRef]
- Hansen, P.; Martin, R. DCB, 4ENF and MMB Delamination Characterisation of S2/8552 and IM7/8552; Materials Engineering Research Lab Report; European Research Office of the US Army: London, UK, 1999. [Google Scholar]
- Sebaey, T.; Blanco, N.; Costa, J.; Lopes, C. Characterization of crack propagation in mode I delamination of multidirectional CFRP laminates. Compos. Sci. Technol. 2012, 72, 1251–1256. [Google Scholar] [CrossRef]
- Gordić, M.; Djordjević, I.; Sekulić, D.; Petrović, Z.; Stevanović, M. Delamination Strain Energy Release Rate in Carbon Fiber/Epoxy Resin Composites. In Research Trends in Contemporary Materials Science; Trans Tech Publications Ltd.: Freinbach, Switzerland, 2007; Volume 555, pp. 515–519. [Google Scholar] [CrossRef]
- Hufenbach, W.; Hornig, A.; Gude, M.; Böhm, R.; Zahneisen, F. Influence of interface waviness on delamination characteristics and correlation of through-thickness tensile failure with mode I energy release rates in carbon fibre textile composites. Mater. Des. 2013, 50, 839–845. [Google Scholar] [CrossRef]
- Giannaros, E.; Kotzakolios, A.; Sotiriadis, G.; Kostopoulos, V. A multi-stage material model calibration procedure for enhancing numerical solution fidelity in the case of impact loading of composites. J. Compos. Mater. 2021, 55, 39–56. [Google Scholar] [CrossRef]
Material Configuration | Polymer Layer | Embedding Configuration | Layer Thickness [m] | Crack Initiation between |
---|---|---|---|---|
1 | PI | I | 125 | CFRP |
2 | PEEK | I | 100 | CFRP |
3 | PA | I | 100 | CFRP |
4 | PEI | I | 100 | CFRP |
5 | PI-PO-PI | II | 350 (125 + 100 + 125) | CFRP |
6 | PI-PO-PI * | II | 150 (25 + 100 + 25) | CFRP |
7 | PO-PI-PO | II | 325 (100 + 125 + 100) | CFRP |
8 | PI-PO-PI | III | 350 (125 + 100 + 125) | PI and PO |
9 | PI-PO-PI | III | 350 (125 + 100 + 125) | PI and CFRP |
10 | none | reference | - | CFRP |
Specimen | Dimensions [mm] | Total Quantity (per Material Configuration) |
---|---|---|
DCB | 277 × 25 × 3.8 | 40 (4) |
ELS | 277 × 25 × 3.8 | 40 (4) |
Mat. | Polymer | Emb. | Mode I | Mode II | ||||
---|---|---|---|---|---|---|---|---|
Conf. | Layer | Conf. | in kJ/m | S in % | in % | in kJ/m | S in % | in % |
1 | PI | I | 0.19 | 17 | −32 | 2.78 | 22 | 281 |
2 | PEEK | I | 0 ** | 0 | −100 | 0 ** | 0 | −100 |
3 | PA | I | 0.05 | 69 | −82 | 6.21 * | 0 | 749 |
4 | PEI | I | 0.07 | 18 | −76 | 5.68 * | 0 | 677 |
5 | PI−PO−PI | II | 0.69 | 16 | 144 | 4.87 | 30 | 567 |
6 | PI−PO−PI | II | 0.15 | 5 | −46 | 1.1 | 9 | 51 |
7 | PO−PI−PO | II | 0.05 * | 0 | −83 | 2.15 | 27 | 194 |
8 | PI−PO−PI | III | 2.27 | 4 | 704 | 7.96 * | 0 | 989 |
9 | PI−PO−PI | III | 0.72 | 10 | 154 | 3.02 | 32 | 313 |
10 | reference | ref. | 0.28 | 13 | 0 | 0.73 | 10 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hornig, A.; Winkler, A.; Bauerfeind, E.; Gude, M.; Modler, N. Delamination Behaviour of Embedded Polymeric Sensor and Actuator Carrier Layers in Epoxy Based CFRP Laminates—A Study of Energy Release Rates. Polymers 2021, 13, 3926. https://doi.org/10.3390/polym13223926
Hornig A, Winkler A, Bauerfeind E, Gude M, Modler N. Delamination Behaviour of Embedded Polymeric Sensor and Actuator Carrier Layers in Epoxy Based CFRP Laminates—A Study of Energy Release Rates. Polymers. 2021; 13(22):3926. https://doi.org/10.3390/polym13223926
Chicago/Turabian StyleHornig, Andreas, Anja Winkler, Eric Bauerfeind, Maik Gude, and Niels Modler. 2021. "Delamination Behaviour of Embedded Polymeric Sensor and Actuator Carrier Layers in Epoxy Based CFRP Laminates—A Study of Energy Release Rates" Polymers 13, no. 22: 3926. https://doi.org/10.3390/polym13223926
APA StyleHornig, A., Winkler, A., Bauerfeind, E., Gude, M., & Modler, N. (2021). Delamination Behaviour of Embedded Polymeric Sensor and Actuator Carrier Layers in Epoxy Based CFRP Laminates—A Study of Energy Release Rates. Polymers, 13(22), 3926. https://doi.org/10.3390/polym13223926