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Abstract: In this paper, the interaction of imipramine hydrochloride (IMP, antidepressant drug) and
a non-ionic surfactant Triton X-100 (TX-100) mixture in five different ratios through the tensiometric
method in different solvents (aqueous/0.050 mol·kg−1 aqueous NaCl/0.250 mol·kg−1 aqueous
urea (U)) were examined thoroughly at a temperature of 298 K. UV–Visible studies in an aqueous
system of IMP + TX-100 mixtures were also investigated and discussed in detail. The pure (IMP and
TX-100) along with the mixtures’ critical micelle concentration (cmc) were assessed by a tensiometric
technique. The obtained deviation of the mixtures’ cmc values from their ideal values revealed
the nonideal behavior of IMP + TX-100 mixtures amongst IMP and TX-100. Compared to aqueous
systems, in the presence of aqueous NaCl, several changes in micelles/mixed micelles occurred,
and hence a synergism/attractive interaction amongst components was found increased while in
the existence of U, the synergism/attractive interaction between them decreased. The evaluated
interaction parameter (βRb) value of mixed micelles showed the attractive or synergism between the
IMP and TX-100. Various evaluated thermodynamic parameters in an aqueous system showed that
the mixed micellization of the IMP + TX-100 mixture was an entropically spontaneous phenomenon,
although the existence of salt in all studied systems can somewhat increase the spontaneity of the
micellization process and in the aqueous U system, the spontaneity of the micellization process
decreased. In an aqueous system, the interaction between IMP and TX-100 was also confirmed by
UV–Visible study.

Keywords: imipramine hydrochloride; tensiometry; mixed micelles; interaction parameter; micellar
composition

1. Introduction

Usually, amphiphilic compounds undergo self-association into certain solvents to a
rich diversity of phases liable upon their concentration as well as the solution environments,
for instance, pH, temperature, and additive concentration, and so on [1–5]. The assembly
of amphiphiles is called micelles and they have many applications in various fields such
as materials synthesis, detergency, solubilization, pharmaceutical formulations, and so
on [1,6–8]. The efficiency of surfactant implication for a certain utilization depends on their
interfacial activity as well as solution mechanical/physical parameters of the associates’
structure, for example, size, shape, micellar inter-molecular interactions, and so on [9,10].
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Hence, it is important to identify the basic as well as dynamic parameters of the amphiphile
systems under needed experimental situations for a specific function. Despite the implica-
tion of a singular surfactant for any particular application, almost in all cases, a mixture of
surfactants has been broadly used because the mixed system works show much improved
properties compared with singular constituents [1,11,12]. The properties of amphiphile
mixtures are generally vulnerable to the interaction amongst amphiphile monomers. These
amphiphile mixtures, consisting of outstanding properties, are generally concerning the
synergistic interaction amongst employed constituents, for example, the binary mixed
system of ionic–nonionic, ionic–ionic molecules [1,13–15]. Mahajan and Nandni [16] in-
vestigated the micellization and phase behavior of binary mixtures of anionic (sodium
alkyl phenol ether sulfate/sodiumbis(2-ethylhexyl) sulfosuccinate) and nonionic (poly-
oxyethylene alkyl ether surfactants) surfactants in aqueous media and found synergistic
interactions between the constituents. Sanan and Mahajan [17] studied the interactions
between mixed micelles of nonionic surfactant such as Tween and cationic surfactants such
as dodecylbenzyldimethylammonium chloride and detected that the cmc of cationic surfac-
tant decreased in the presence of Tween due to attractive interaction amongst employed
components, as Tween monomers are intercalated into the cationic micelles.

Among the different types of surfactants, nonionic surfactants are respected alike
as perfect candidates for the sheltered conveyance of the medication, not seeing wide
weakening in blood as they are physiologically progressively tolerable in contrast with
ionic surfactants and, attributable to their second-rate estimations of critical micelle con-
centration (cmc) along with nonionic surfactant, are found to be less toxic compared with
ionic surfactants [18,19]. Non-ionic surfactants consist of polar head groups that are not
electrically charged, and these types of surfactants are usually water-soluble by means of
the formation of hydrogen bonding of hydrophilic fractions through the water. Here, in the
current study, Triton X-100 (TX-100) (Figure 1a) was employed to examine their interaction
with the amphiphilic drug imipramine hydrochloride (IMP) (Figure 1b) in three different
mediums. TX-100 was found to be clear viscous fluid in their pure form as a result of
H-bonding of their hydrophilic polyethylene oxide fractions with water. TX-100 has found
numerous uses in pharmaceutical commerce as well as for cleaning and as a constituent in
a number of remedial products [20]. Prior to now, TX-100 has been utilized as a carrier in
numerous commercially available influenza vaccines such as flublok, fluarix, and fluzone.

Similar to the usual surfactants, a number of amphiphilic drugs have also formed
associate structures after crossing a certain concentration in an aqueous and nonaqueous
system called micelles, but at a much higher concentration [21–24]. However, the self-
association of singular amphiphilic drugs has been unfocused because usually their cmc
were found to be too high, therefore, a large amount of drug was needed for any certain
applications that may cause several side effects (due to high dose) as well as being cost-
effective compared with amphiphilic drugs and additive (surfactant, bile salts, hydrotropes,
etc.) mixtures that form mixed associates (mixed micelles). Amphiphilic drug and additive
mixtures have been found to show much higher efficiency, much lower cmc, and high
surface activity along with the mixture needing a very small amount for particular purposes
compared with a singular system [25]. Therefore, mixed micellar solutions are used to
upsurge the absorption of various drugs in human beings [21]. Imipramine hydrochloride
(IMP) is an amphiphilic antidepressant drug and its structure contains a tricyclic ring core
and alkylamine side chain (Figure 1b). This category of drug undergoes self-association
in a somewhat similar manner to the usual surfactant because of the presence of an
alkylamine side chain [21,26]. IMP is used to treat depression. This drug also shows
numerous side effects such as faintness, vomiting, sleepiness, and annoyance as well
as weight loss/gain, and these unwanted side effects will possibly lessen if the IMP is
appropriately marked to the organism through the assistance of a drug carrier. Surfactants,
especially non-ionic surfactants such as TX-100, may be one alternative as a drug carrier.
Various inorganic salts and U are found in human beings and their presence can alter their
micellization activity, henceforth, information of their results on the association behavior



Polymers 2021, 13, 4025 3 of 18

of pure component micelles along with mixed system micelles will grant the exceptional
design of impressive remedial agents. Moreover, at lower concentrations, most of the
drugs exhibit their pharmacological results, so it is therefore probable that the occurrence
of additives such as electrolytes might reduce their cmc value and, thus start aggregation at
a lower concentration, which may prove fatal. Therefore, in the presence of additives, the
study of micellization and mixed micellization is also necessary.
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Figure 1. Molecular structure of (a) TX-100 (n = 9–10), (b) imipramine hydrochloride (IMP), and
(c) their interaction in mixed micelles.
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As an extension of our interest in drug and surfactant mixed system interactions [27–30],
herein, we investigated the interactions of IMP drug through the non-ionic surfactant TX-100
in five different ratios mixtures using the tensiometric method in aqueous, 0.050 mol·kg−1

NaCl, and 0.250 urea (U) medium. Earlier Alam and Siddiq [31] investigated the micelliza-
tion and interfacial behavior of an IMP and Triton X-100 mixture of varying mole fraction
of IMP in an aqueous system only. Mahajan et al. [32] studied the association and solution
surface interactions of nortriptyline hydrochloride along with the amitriptyline hydrochlo-
ride drug with non-ionic polyoxyethylene alkyl ether surfactants by means of different
techniques and they proposed a synergy between the drug and surfactant mixture having
enhanced surface properties that can be proficiently used for pharmaceutical applications.
Srivastava et al. [33] evaluated different parameters of the drug and anionic and non-ionic
surfactant mixture micelles and employed a mixed system to improve the solubility along
with a decrease in the cytotoxicity of poorly water-soluble pharmaceutical ingredients.
However, up until now, according to our information, the aggregation of the IMP drug
in the presence of TX-100 of various mole fraction in non-aqueous system (salt, urea) has
not been stated elsewhere. This would possibly show as pharmaceutically significant in
terms of unwanted side effects of the drug, which could be minimized if employed in
the form of mixed micelles. Interactions of amphiphilic drug and non-ionic surfactant
conceivably pictured as an alikeness for their interactions through the biomembrane, as a
result, delivering an understanding of the mechanism for a more complex biological system,
for example, the passing of drugs via cell membranes. The nature of IMP is amphiphilic
in nature, therefore, their interaction with TX-100 is explored in the outline of hypotheses
operated for a surfactant-surfactant mixed system. Numerous hypothetical models are
utilized to describe the formation of the mixed micelles of IMP + TX-100 mixtures [34,35].
Regardless of the tensiometry technique, UV–Visible analysis was also operated to check
the consistency in the interaction of the IMP drug with TX-100 in the aqueous system as a
means to gain several basic pieces of evidence regarding the nature of interactions amongst
the employed components [5,33,35].

2. Experimental Section
2.1. Materials

Each employed chemical was of analytical grade and treated for solution preparation
as collected from the company with no further purification. Imipramine hydrochloride
(IMP) drug and TX-100 were purchased from Sigma, St. Louis, Missouri, USA (≥98.0%
(purity)) and Sigma, Taufkichen, Germany, respectively. Inorganic salt-NaCl and urea
were purchased from BDH, Poole, England (98.0% (purity)), Sigma, Taufkichen, Germany
(98.0% (purity)), respectively. Deionized H2O was employed for the preparation of a stock
solution of the pure and mixed system. Solvent stock solutions (i.e., aqueous NaCl and
aqueous urea) were also prepared. Pure drug and surfactant stock solutions were prepared
beyond their corresponding cmc value in an aqueous system or aqueous NaCl/aqueous
urea solvent of the selected concentration. In the case of a mixed system, a prepared fixed
concentration of IMP and TX-100 was mixed in various ratios at 298 K, and stock solution
density was assumed to be constant in the case of the pure or mixed system.

2.2. Method
2.2.1. Surface Tension Method

A Sigma 701 (Drmstadt, Germany) Attension tensiometer was used to evaluate the
surface tension (γ) of a singular component (IMP and TX-100) as well as the IMP + TX-
100 mixture in three media through the means of the ring detachment process. A stock
solution of 250 mmol·kg−1 of IMP was prepared for the determination of their cmc in
aqueous and NaCl solvent, however, 300 mmol·kg−1 of IMP solution was prepared for the
determination of cmc in the U solvent. For determination of cmc of pure TX-100 as well
as IMP + TX-100 mixture, a stock solution of 12 mmol·kg−1 were prepared in all solvents.
Various mole fractions of solution mixtures were prepared from pure IMP and TX-100 stock
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solutions in three media (aqueous/aqueous NaCl/aqueous U). The surface tension (γ) of
singular components (IMP and TX-100) and the prepared different mole fraction of solution
mixtures were measured through consecutive adding of concentrated prepared solution in
aqueous/NaCl/U system at 298 K. The γ value reduced with every addition of solution
in the aqueous/NaCl/U system up to a certain value and then became constant. Every
reading of γ was taken three times and their mean value was considered as a final reading.
After that, a graph was plotted between the attained γ of IMP/TX-100/IMP + TX-100 in the
presence of different media versus log concentration (C) (log[IMP]/log[TX-100]/log[IMP +
TX-100]). A representative plot of γ versus log[IMP + TX-100] in different media is shown
in Figure 2. All obtained graphs showed a break spot called the cmc of the respective
solution. The temperature error was found below ±0.20 K and the error in γ was found to
be around ±0.20 mNm−1. It is clear from Figure 2 that no minima are shown nearby the
cmc value, which indicates the purity of the employed compounds [1]. The error in cmc
was found close to 3%.

2.2.2. UV–Visible Study

To measure the UV–Visible absorbance spectra of the employed system, an Evolution
300 UV–Visible spectrometer (Thermo Scientific, Waltham, MA, USA) was used. First, the
UV–visible absorbance spectra of IMP drug of appropriate concentration were noted, after
that, the effect of increasing concertation of TX-100 on spectra of pure IMP was recorded in
the aqueous system means absorbance spectra were recorded after each addition of TX-100.
Deionized H2O was used throughout for the purpose of baseline correction. For UV–Visible
measurements, the stock solution of IMP and TX-100 was prepared as 0.10 mmol·kg−1 and
10 mmol·kg−1, respectively.

3. Results and Discussion

3.1. cmc and Ideal cmc (cmcid) Values in Various Media

A tensiometry method was applied to evaluate the surface tension (γ) value of the
solution of singular IMP, TX-100, and an IMP + TX-100 mixed system of five different ratios
(i.e., five different mole fraction (α1) of TX-100 (TX-100 (0.1):IMP (0.9); TX-100 (0.3):IMP
(0.7); TX-100 (0.5):IMP (0.5); TX-100 (0.7):IMP (0.3), and TX-100 (0.9):IMP (0.1)) to assess the
cmc in various media (aqueous/0.050 mol·kg−1 aqueous NaCl/0.250 mol·kg−1 aqueous
U) at 298 K. Throughout, the α1 and α2 = mole fraction of TX-100 and IMP, respectively,
and α1 + α2 = 1. The surface tension (γ) value decreased linearly with the addition of a
processed concentration (C) solution into the solvent until the pre-micellar region, and the
lessening in γ value remained while waiting for the saturation of the air–solvent interfacial
surface via added molecules, once the saturation of the interfacial surface occurred, the
further added monomers started to accumulate amongst themselves to form associate
structures called micelles [1]. Thus, the γ value did not change once touching a specific
concentration of amphiphiles in solution, and this concentration of amphiphile was named
the cmc. The acquired break point from the γ vs. log [C] report is shown in Figure 2 at
298 K (IMP + TX-100 mixture at different α1 of TX-100 in two media: (a) aqueous, and
(b) 0.05 mol·kg−1 aqueous NaCl. Obviously, the γ of singular and mixed amphiphiles
solutions reduces rapidly through rising concentration (C) until the curve achieves a
constant (almost) value at the concentration equivalent to cmc and continues at a nearly
constant value, as displayed in Figure 2.

The obtained cmc value of the studied system (IMP, TX-100, and IMP + TX-100 in three
media) is given in Table 1. In the aqueous solution, by the tensiometric method, the cmc
value of singular IMP was found to be 41.85 mmol·kg−1 at 298 K, which is considerable in
the acceptable agreement through earlier reported values (45.20 mmol·kg−1) [36]. A cmc
value of singular TX-100 was attained of 0.31 mmol·kg−1, also observing fine conformity
with the literature (0.33 mmol·kg−1) [37]. The cmc value of the IMP drug was found to be
much higher than the cmc value of TX-100. As the hydrophobic part of IMP is much smaller
compared with the TX-100 hydrophobic part (see Figure 1), IMP starts the formation of
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micelles at a higher concentration compared with TX-100, as TX-100 dislocates the water
structure to a larger level, which facilitates micelle formation at a lower concentration. Due
to the much lower cmc value of TX-100, it shows much better surface as well as micellar
properties [1]. Due to these advanced properties of TX-100, provoked us to explore the
mixed micellization as well as the air–solvent surface behaviors of this surfactant through
other less hydrophobic amphiphiles (such as amphiphilic ionic drugs).
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Table 1. Various physicochemical parameters for IMP+TX-100 mixture in several solvents at 298 K a.

α1
cmc

(mmol·kg−1)
cmcid

(mmol·kg−1) XRb
1 Xid

1 βRb ln(cmc1/cmc2)

Aqueous solution

0 41.85
0.1 2.25 2.86 0.8029 0.9384 −2.18
0.3 0.85 0.99 0.8745 0.9833 −2.85
0.5 0.48 0.61 0.8585 0.9928 −4.35 −4.92
0.7 0.34 0.43 0.8633 0.9969 −5.41
0.9 0.28 0.34 0.8913 0.9992 −6.42
1 0.31

0.050 mol·kg−1 aqueous NaCl

0 37.25
0.1 2.06 2.36 0.8518 0.9430 −1.51
0.3 0.80 0.82 0.9615 0.9846 −1.05
0.5 0.40 0.50 0.8652 0.9933 −4.31 −5.0
0.7 0.29 0.36 0.8774 0.9971 −5.15
0.9 0.19 0.28 0.8411 0.9993 −8.19
1 0.25

0.250 mol·kg−1 aqueous U

0 44.64
0.1 3.17 4.21 0.7712 0.9151 −2.15
0.3 1.29 1.50 0.8740 0.9765 −2.40
0.5 0.77 0.91 0.8796 0.9898 −3.43 −4.58
0.7 0.48 0.65 0.8406 0.9956 −5.53
0.9 0.38 0.51 0.8575 0.9989 −7.03
1 0.46

a Relative standard uncertainties (ur) are ur(cmc/cmcid) = ±3%, ur(XRub
1 /Xid

1 ) = ±3%, and ur(βRb) = ±3%.

Table 1 shows the variations in the cmc value of the IMP + TX-100 mixed system
with the changes in the α1 of TX-100. The results showed that the cmc value of the IMP +
TX-100 system reduced when the α1 of TX-100 enhanced in the solution. As specified in the
literature, amphiphilic drug and surfactant mixtures formed mixed micelles via interaction
through each other [33,38]. Here, the resulting cmc value of the mixtures showed that mixed
micelle formation occurred at inferior concentrations due to the diminution in electrostatic
repulsion among the constituent molecules in each used media variation. Table 1 also
reveals that the cmc values of the mixtures were much lower compared to the cmc value of
pure IMP and their value was achieved close to a cmc value of pure TX-100 at lower α1, and
found below the cmc of pure TX-100 at the highest studied α1 (= 0.9) of TX-100, regardless
of the employed solvent. The cmc of pure TX-100 was much lower compared to that of
pure IMP, which means that TX-100 inclined to display aggregation behavior at much
lower concentrations, therefore, the drug monomers only favorably pierced the micelles
formed by TX-100 and helped in mixed micelle formations. Hence, it is understood from
their obtained cmc that formed mixed micelles comprised mainly TX-100 constituents. The
interaction between IMP and TX-100 mainly occurs due to ion–dipole interaction between
the head group of both components and hydrophobic interaction between their chain
during mixed micelle formation (Figure 1c).

The interaction between components (IMP and TX-100) in all media was computed by
applying Clint’s theory [39]. Accordingly, for mixtures, the ideal cmc (cmcid) value of the
mixed micelles was assessed by employing the following equation [39].

1
cmcid =

α1

cmc1
+

α2

cmc2
(1)

In the above equation, cmc1 = cmc value of constituent 1 (TX-100) and cmc2 = the
cmc value of constituent 2 (IMP). In binary mixtures, the magnitude of nonideality was
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decided from the disparity amongst the value of experimental cmc and cmcid. As stated in
the literature [1], synergistic interaction amongst components existed when cmcid > cmc,
antagonistic interaction was leading when cmcid < cmc, whereas ideal mixing was observed
if the experimental cmc was found equal to cmcid, which means interaction between the
components and each other. Herein in our case, the condition cmcid > cmc was attained in
the mixed system, thereby suggesting nonideality irrespective of the different media used
(Table 1). Therefore, the binary mixtures in our cases experienced primarily synergistic
or attractive interactions. The considerable decline in the detected cmc value than the
value of cmcid was due to the increased hydrophobicity of the solution mixtures rife in
the interactions amongst the ingredients irrespective of all media employed. The types of
possible interaction between employed components were ion–dipole interactions amongst
ionic and non-ionic hydrophilic parts; steric interactions amongst bulky parts of molecules;
and van der Waals interactions amongst hydrophobic parts as well as H-bonding amongst
monomers [1].

In aqueous sodium chloride (NaCl) media, the cmc value of IMP, TX-100 as well as their
blended systems reduced more than the aqueous system (Table 1). The start of aggregation
in aqueous NaCl media occurred at much lower concentrations compared to those noticed
in the water due to enhanced interaction amongst the ingredients [40]. Overall, in aqueous
NaCl media, the reduction in the cmc value of the singular substance as well as the mixed
system was attributable to the screening enforcement put forth via the inorganic salt,
which monitored the electrostatic repulsion amid the molecules of the ionic micelles,
dipole interaction amid the monomers of the nonionic micelles, and ion–dipole interaction
amongst ionic and non-ionic monomers of the mixed micelles. In aqueous salt media,
the varying stability amongst the hydrophilic along with the hydrophobic interaction
may possibly apply to the narrative alteration in the physical attributes of the solution’s
components. A decrease in the cmc value may well be explained through the theory of
counterion binding [1,41]. The added electrolyte counterions were attached through the
hydrophilic portion of the components, obtaining a higher aggregation number (Nagg)
value and lower value of cmc [1]; this, consecutively, reduced the repulsive interactions
among the head fractions of the components that arouses the start of the association at
lower concentration [42]. Regardless of this, the add-on of salt to the pure and mixed
system interrupted the hydration layer, causing the establishment of an expanded double-
layer close to the hydrophilic portion. This ensuing falloff in the repulsive forces amongst
molecules assisted the association process more extensively at reduced concentrations.

In contrast to the behavior of NaCl, in the existence of U, the value of cmc of the indi-
vidual and mixed system generally enhanced, signifying that the formation of micelles and
mixed micelles, respectively, are favored to start at a greater concentration compared with
the aqueous solution. The occurrence of this behavior was accredited to fewer extensive
interactions amongst the component monomers in aqueous U media [43]. The obtained
higher cmc value here represented the familiar cosolvent consequence wielded by U. Herein,
U enhanced the crashing aptitude of the iceberg structure adopted via the micellar solution,
thus enhancing the solubility of the free monomers. Furthermore, amphiphilic molecules
are extra stabilized in the U medium compared with the aqueous solution [44]. Through
the adsorption of U on the exterior part of the charged/nonionic employed molecules,
the reduction in hydrophobic interactions occurred, which caused the rise in additional
electrostatic repulsive forces and in the cmc value. Herein, in the current study, the em-
ployed concentration of U (0.25 m·kg−1) was sufficient to stabilize the used constituents,
thus postponing the molecular aggregations that occurred to some extent, which changed
(increased) the cmc value of the IMP, TX-100, and IMP + TX-100 mixtures. Moreover, in
accordance with a distinct outlook, it was considered that U precisely intermingled through
the hydrophobic part of the molecules, lowering the molecules’ ability to play a part in
hydrophobic binding, leading to the large value of cmc detected [45]. There was no reason
for selecting 0.050 mol·kg−1 NaCl, and 0.250 mol·kg−1 U except to explore the impact of
the salt and U on the interaction of IMP and TX-100. Additionally, our main objective had
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been to show how both constituents interacted in water as well as in NaCl/U media with
the viewpoint of supplying further information for the essential and commonly used drug
and surfactant mixtures in aqueous/non-aqueous media in drug delivery.

3.2. Mixed Micellization Behavior of IMP+TX-100 Mixed System

The decrease in the cmc compared with the cmcid value of the IMP+TX-100 mixture
revealed nonideality, and the fact this took place was confirmation of synergism or attractive
interactions amongst the compounds [1]. The model regarding the verdict of interaction
amongst components of the mixed micelles was first given via Rubingh’s [46] and then
on regular solution theory (RST), which allows for the valuation of the micellar content of
TX-100 (first constituent) (XRb

1 ). Equation (2) was resolved to obtain the XRb
1 value.(

XRb
1
)2

ln
[(

α1cmc/XRb
1 cmc1

)]
(1− XRb

1 )
2 ln
[
(1− α1)cmc/

(
1− XRb

1
)
cmc2

] = 1 (2)

In the ideal condition, micellar composition of the TX-100 ingredient in the ideal
system (Xid

1 ) was evaluated by Motomura theory [47] using Equation (3).

Xid
1 =

α1cmc2

α1cmc2 + α2cmc1
(3)

For the entire system, the values of XRb
1 and Xid

1 of TX-100 achieved from Equations (2)
and (3) are depicted in Table 1. The value of XRb

1 attained was always greater than the
employed α1 of TX-100, despite the value recorded at the α1 = 0.9 [48,49]. The achieved Xid

1
value was found to be less than the Xid

1 value at all α1 of TX-100 in all solvents, signifying
that the involvement of the surfactant in mixed micelles was found to be less, as expected
from ideal behavior, resulting in more IMP monomers taking part in mixed micelles than
expected ideally, but much less than TX-100. The increase in Xid

1 value was observed with
an increase in α1 value in each media, but the value of XRb

1 did not view any fixed trend
with α1 in all media, however, there was an increase observed. Based on the results, we
theorized that the formed mixed micelles were comprised of higher than 77% TX-100 and
that the IMP simply intermingled with TX-100 micelles by penetrating in their micelles and
forming mixed micelles, which advocated the enhancing of a hydrophobic atmosphere.
In the aqueous salt or aqueous U solvent, the XRb

1 value did not show any trend with an
increase in α1 in the IMP + TX-100 mixed system, however, the average value of XRb

1 in
a different solvent were attained in the subsequent order: XRb

1 (NaCl) > XRb
1 (aqueous

system) > XRb
1 (U) (Table 1).

The attained value of XRb
1 by means of Equation (2) was further applied to determine

the degree of interaction (interaction parameter (βRb)) amongst the utilized ingredients
in the mixed system (IMP + TX-100). The value of βRb was assessed through operating
Equation (4) [1,46].

βRb =
ln(cmcα1/cmc1XRb

1 )

(1− XRb
1 )

2 (4)

The βRb value informs the extent of interaction (attractive) between thee amphiphiles
along with the deviation of the micellar real mixed system with ideal behavior. According
to this theory (Rubinghs [46]), the βRb should be constant for a binary mixed micellar
system within the change of mole fraction of the component. However, in most cases, the
βRb value does not remain constant despite the variations in α1 due to the limitation of
this model. The entire attained values of βRb of the IMP + TX-100 mixture in all media
are presented in Table 1. Regarding the value of βRb, three possibilities are reported
in the literature [1]: (i) βRb value close to zero for the case of ideal mixed system; (ii)
βRb > 0 for solution mixtures categorized via repulsive interactions; and (iii) βRb < 0 for
the mixed system wherein principally attractive interactions amongst the constituents are
detected [1]. Table 1 shows that all obtained βRb values in our case were negative, denoting
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that synergistic or attractive interactions occurred during mixed micelle formation and
the βRb value increased through an increase in α1 with one exception at α1 = 0.3 in the
presence of NaCl. The obtained βRb value for IMP + TX-100 mixtures were between−1 and
−8 in all of the studied media (Table 1), while for the mixed micelle formation, generally
the interaction amongst components is either attractive interactions or synergism. The
synergism is ordinarily settled in whichever mixtures the subsequent two requirements
are accomplished: (a) βRb < zero, and (b)

∣∣ βRb
∣∣ > |ln(cmc1/cmc2)|. If only the first term is

present, then attractive interaction is noticed. In our case, at a lower α1 value (i.e., α1 = 0.1,
0.3, and 0.5), only the first condition was attained, therefore, attractive interactions existed
at α1 = 0.1, 0.3, and 0.5. However, at the higher α1 of TX-100 (α1 = 0.7, and 0.9), an indication
of synergism was observed because both terms were fulfilled at higher α1 of TX-100. The
reason for the achieved βRb negative value can be attributed to the hydrophobic interactions
among the hydrophobic part of IMP and TX-100 [49]. The interaction amongst components
grew from the ion–dipole interactions amongst the polar fraction of the surfactant and
the positively charged head group of IMP along with the interaction due to H-bonding
was also detected amongst the hydroxyl groups of the TX-100 surfactant and cationic IMP
drug. Moreover, cation–π interactions occurred amongst the cyclic rings of employed
constituents [50]. The βRb value of the IMP + TX-100 + NaCl mixture was predictable to
be additionally negative when compared to that obtained for the IMP + TX-100 + H2O
mixtures and their values for IMP + TX-100 + U mixtures were expected to be less negative
compared with the aqueous system, but this was not detected practically (Table 1).

The obtained XRb
1 and βRb values were further used to evaluate values of the activity

coefficients ( f Rb
1 (TX-100) and f Rb

2 (IMP)) of amphiphiles using the subsequent equations.

f Rb
1 = exp[βRb

(
1− XRb

1 )2
]

(5)

f Rb
2 = exp[βRb

(
XRb

1 )2
]

(6)

The f Rb
1 and f Rb

2 values are shown in Table 2. In all cases, both component activity
coefficient values were achieved under unity, showing positive interactions amongst IMP
and TX-100, and the mixed micellar solution also showed non-ideal behavior in various
media. In each case, the f Rb

1 value was found to be higher than the f Rb
2 value, confirming

that mixed micelles include a higher proportion of TX-100 compared with IMP. Moreover,
through an increase in the α1, the f Rb

2 value decreased, revealing that the contribution of
IMP in mixed micelles decreased through the surge of α1 (Table 2). The values of f Rb

1 and
f Rb
2 displayed no dependence on the nature of the solvent employed.

Table 2. Thermodynamic parameters and activity coefficient for IMP + TX-100 mixture in several
solvents at 298 K a.

α1
∆G0

Maeda
(kJ·mol−1)

∆Gm
ex

(kJ·mol−1) fRb
1 fRb

2

Aqueous system

0.1 −18.51 −0.85 0.9188 0.2453
0.3 −19.30 −0.78 0.9560 0.1128
0.5 −19.64 −1.31 0.9166 0.0405
0.7 −19.97 −1.58 0.9039 0.0178
0.9 −20.27 −1.54 0.9270 0.0061

0.050 mol·kg−1 aqueous NaCl

0.1 −19.18 −0.47 0.9674 0.3342
0.3 −20.17 −0.10 0.9984 0.3777
0.5 −20.12 −1.25 0.9246 0.0397
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Table 2. Cont.

α1
∆G0

Maeda
(kJ·mol−1)

∆Gm
ex

(kJ·mol−1) fRb
1 fRb

2

0.7 −20.40 −1.37 0.9255 0.0189
0.9 −21.29 −2.71 0.8132 0.0030
1

0.250 mol·kg−1 aqueous U

0.1 −17.38 −0.94 0.8936 0.2785
0.3 −18.27 −0.66 0.9626 0.1597
0.5 −18.57 −0.90 0.9515 0.0705
0.7 −19.07 −1.84 0.8689 0.0201
0.9 −19.55 −2.13 0.8670 0.0057

a Relative standard uncertainties (ur) are ur(∆Go
Maeda) = ±4%, ur(∆Gm

ex) = ±5%, and ur( f Rb
1 / f Rb

2 ) = ±3%.

3.3. Thermodynamic Parameter

The proclivity of amphiphilic molecules to self-aggregates can also be used to evaluate
the different thermodynamic parameters. One of the thermodynamic parameters, known
as Gibbs free energy (∆Go

m), was assessed for the association of singular components (IMP
and TX-100) along with their blended system in different ratios using Equation (7) [51–53].

∆Go
m = RT ln Xcmc (7)

In Equation (7), Xcmc symbolizes the cmc in mole fractions. Here, the value of ∆Go
m

attained for each system of all media was negative, showing that pure/mixed association
was a spontaneous process (Figure 3). Higher negative value of ∆Go

m was found for the
case of mixture (IMP + TX-100) micellization than for the ∆Go

m value of the pure IMP
micellization phenomena, demonstrating that spontaneity was greater in binary solution
mixtures. The ∆Go

m value of pure TX-100 was attained in a higher magnitude than the ∆Go
m

value of pure IMP, showing that TX-100 had more spontaneity as well as hydrophobicity
than IMP (Figure 3). Consequently, the association was smoothed in TX-100 than in IMP.
Additionally, with enhanced α1 in mixed systems, an increase in the negative ∆Go

m value oc-
curred, thus endorsing the spontaneity of the mixtures through an increase in α1 value and
at the highest α1, their values were beyond the ∆Go

m value of both components (Figure 3).
In the aqueous solution, the ∆Go

m value for singular IMP was −17.82 kJ·mol–1, which
well agreed with an earlier report (−17.90 kJ·mol–1) [54]. Additionally, the ∆Go

m value by
singular TX-100 was also found to be similar to the previously reported value [55].

The ∆Go
m became increasingly negative for singular and binary mixtures in the aque-

ous NaCl media compared with the aqueous system. Hence, micellization initiated at
an inferior concentration in the aqueous NaCl media, a connotation that the process also
becomes spontaneous (Figure 3). However, the negative value of ∆Go

m for pure and mixed
system was reduced in the U medium, which revealed delayed association to some extent
and decreased spontaneity compared with the aqueous medium.

Excess free energy (∆Gm
ex (mixed micelles)) for the current system is another thermo-

dynamic parameter that can be calculated by the subsequent equations [56–58].

∆Gm
ex = RT

[
XRb

1 ln f Rb
1 +

(
1− XRb

1

)
ln f Rb

2

]
(8)

The ∆Gm
ex values computed for the IMP + TX-100 mixed system in various media

are depicted in Table 2. The ∆Gm
ex value attained for the mixed micelles was negative,

which veiled the raised stability of both mixed micelles corresponding to their individual
component’s micelles. Generally, with an enhanced of α1, the ∆Gm

ex value was attained
to increase with the exception in some α1 also specifying that stability of mixed system
increased with α1.
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The thermodynamic stability of IMP+TX-100 mixtures mixed micelles can also be
calculated through the Maeda model [59]. By this method, the thermodynamic stability
in the form of Gibb’s free energy of association (∆G0

Maeda) which was stand on the phase
separation model is evaluated by following equation [59].

∆G0
Maeda = RT (B0 + B1XRb

2 + B2

(
XRb

2 )2
)

(9)

In the above equation, terms B0, B1, and B2 are self-governing, and their values can be
defined through the subsequent relationships [59,60]:

B0 = ln cmc1 (10)

B2 = −βm (11)

ln
cmc2

cmc1
= B1 + B2 (12)

where βm is the interaction parameter and their values were evaluated using Equation (4).
The Maeda model is valid when one of the ingredients in the binary mixtures is non-ionic
in nature as the stability of the ingredients in mixed micelles are principally reliant on
(a) the interactions amongst the head groups as well as (b) the interactions amongst the
hydrophobic portions. Fewer negative βm values and positive B1 values revealed the
repulsive interaction amongst the head groups. In reverse, a negative value of B1 showed
hydrocarbon part interactions amongst the ingredients was greater, which had the main
effects on the mixed micellar systems’ stability. This suggests that less transformation of the
ionic constituents occurred into micellar form from their monomeric form, which means
that the non-ionic ingredient was dominant in the formed mixed micelles. Herein, B1 was
found to be positive at lower α1 of TX-100 (0.1, 0.3, and 0.5) and negative at higher α1 of
TX-100 (0.7 and 0.9), showing that at lower α1 repulsive forces amongst the head group–
head group prevailed in the mixture, due to which the formation of the mixed micelle was
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deferred to some level, which means that it occurred at elevated concentration. Negative
B1 value showed that the chain–chain interactions amongst the employed components
dominated for the stability of the formed mixed micelles. However, the obtained B1 value
is not given in the manuscript. From the structure of IMP and TX-100, it can be found that
their chain lengths were unlike, and chain–chain interactions assisted in stabilizing the
mixed micellar solutions.

Table 2 showed that the value of ∆G0
Maeda in our cases were negative and their value

enhanced via the increase in the α1 value of surfactant [54]. This showed that the stability of
mixed micelles was enhanced via an increase in the α1 value of the surfactant. Table 2 also
shows that in aqueous NaCl solvent, the negative value of ∆G0

Maeda increased for all α1 of
TX-100. This phenomenon again proved that the stability of the mixed micelles improved
in the NaCl system rather than the aqueous system because the effect of added NaCl in the
micellar solution was based on the fact of “salting-out”, electrostatic screening, along with
lessened steric effects. On the other hand, in the aqueous U solvent, the negative value
of ∆G0

Maeda observed was low for all α1 (Table 2). Urea destabilized the mixed micellar
solution due to the increase in repulsive interactions amongst the constituent’s head groups.
It was also shown that the ∆G0

m and ∆G0
Maeda value differed greatly, which was supposed to

be induced via the counterion fraction that occurred close to the mixed micelles. Therefore,
as specified via the Maeda model, if the chain lengths of both ingredients are dissimilar,
then interactions among the chain–chain take part in the stability of the mixed micelle.

3.4. UV–Visible Study

To further investigate the molecular interaction of the employed drug IMP with TX-
100, another spectroscopic method—UV–visible was used [61]. The aromatic ring of the
IMP drug is liable for their considerable absorption characteristic. The absorption spectra
of the drug were noted through increasing TX-100 concentration and the obtained results
are given in Figure 4 for an aqueous system. The solution of TX-100 was prepared in the
presence of 0.10 mmol·kg−1 IMP to avoid a dilution effect during titration. The spectra
of IMP (0.10 mmol·kg−1) depicted one clear maximum absorption wavelength (λmax) at
249 nm in the aqueous system, which was ascribed to π–π* transition. Effect of increasing
the TX-100 concentration is noted on the absorption spectra of IMP of fixed concentration
(concentration of TX-100 varies from 0.05 mmol·kg−1 to 0.65 mmol·kg−1 in IMP solutions)
(Figure 4). With the addition of TX-100 in the solution of IMP, the absorption strength of
drug enhanced (i.e., hyperchromic effect occurred due to the H-bonding and electrostatic
interaction) between the employed components [22,62]. At a lower concentration of TX-100,
that the spectral peak of IMP (249 nm) shifted toward the higher wavelength means that
in the mixtures, red shifting occurred, authorizing the interaction between IMP and the
TX-100 mixture. Some of the initially added concentration of TX-100 into the IMP solution
exist in their monomer form and after further addition of TX-100 into the solution of IMP,
TX-100 monomeric forms turn into the micellar form and the initially obtained peak (near
to 249 nm) disappeared due to complex formation between the components. A new peak
appeared at a higher wavelength (above 275 nm) and showed higher wavelengths with the
addition of more TX-100. At higher concentrations of the surfactant, the intercalation of
IMP molecules inside the palisade layer of the surfactant micelles took place and possibly
a new peak (above 275 nm) mainly occurred due to TX-100 [63]. Therefore, the overall
results of titration specify the strong interaction of IMP with TX-100 as the absorption
increased with an increase in TX-100 concentration. Red shift (more than 25 nm) was also
detected (obtained redshift showed a rise in the wavelength and related reduction in the
frequency along with photon energy of electromagnetic emission), due to the IMP–TX-100
complex formation. Attraction between IMP and TX-100 could also be due to no charge
being present on the head group of non-ionic TX-100, attracting positively charged IMP
drug monomers. Therefore, complexation was detected between IMP and TX-100.



Polymers 2021, 13, 4025 14 of 18

Polymers 2021, 13, x FOR PEER REVIEW 14 of 18 
 

 

the TX-100 mixture. Some of the initially added concentration of TX-100 into the IMP so-
lution exist in their monomer form and after further addition of TX-100 into the solution 
of IMP, TX-100 monomeric forms turn into the micellar form and the initially obtained 
peak (near to 249 nm) disappeared due to complex formation between the components. A 
new peak appeared at a higher wavelength (above 275 nm) and showed higher wave-
lengths with the addition of more TX-100. At higher concentrations of the surfactant, the 
intercalation of IMP molecules inside the palisade layer of the surfactant micelles took 
place and possibly a new peak (above 275 nm) mainly occurred due to TX-100 [63]. There-
fore, the overall results of titration specify the strong interaction of IMP with TX-100 as 
the absorption increased with an increase in TX-100 concentration. Red shift (more than 
25 nm) was also detected (obtained redshift showed a rise in the wavelength and related 
reduction in the frequency along with photon energy of electromagnetic emission), due to 
the IMP–TX-100 complex formation. Attraction between IMP and TX-100 could also be 
due to no charge being present on the head group of non-ionic TX-100, attracting posi-
tively charged IMP drug monomers. Therefore, complexation was detected between IMP 
and TX-100. 

240 250 260 270 280 290 300
0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8
increasing 

concentration 

of TX-100 in 

IMP solution

Pure IMP

Ab
so

rb
an

ce

Wavelength / nm

TX-100/ 
mmol.kg-1

 0
 0.05
 0.10
 0.17
 0.24
 0.31
 0.38
 0.45
 0.52
 0.59
 0.65

 
Figure 4. UV–Visible spectra of the drug in the absence along with the existence of a growing con-
centration of TX-100. 

Herein, for quantitative assessment of the surfactant TX-100 binding or interaction 
with the IMP drug, the attained absorbance value was utilized in the equation of Benesi–
Hildebrand [64]. 1𝐴 − 𝐴 = 1𝐾(𝐴௫ − 𝐴)[TX − 100]ଶ + 1𝐴௫ − 𝐴 (13)

Figure 4. UV–Visible spectra of the drug in the absence along with the existence of a growing
concentration of TX-100.

Herein, for quantitative assessment of the surfactant TX-100 binding or interaction
with the IMP drug, the attained absorbance value was utilized in the equation of Benesi–
Hildebrand [64].

1
A− A0

=
1

K(Amax − A0)[TX− 100]2
+

1
Amax − A0

(13)

In Equation (13), symbols K and A0 depict the binding constant and IMP absorbance
value in pure form, respectively. A and Amax showed the IMP absorbance value in the
presence and infinite concentration of TX-100, correspondingly. The 1

A−A0
vs. 1/[TX-100]2

plot displayed the straight line, which validates the 1 (drug):2 (TX-100) complex formation
and their achieved plot was graphically displayed in Figure 5. On the other hand, the
Benesi–Hildebrand plot assuming a 1:1 stoichiometry gave rise to a clearly curvilinear fit,
indicating that this is an incorrect hypothesis and therefore, the actual stoichiometric ratio
for complexes of IMP–TX-100 is principally 1:2 [62].

In the current study, the K value (attained from the ratio of intercept/slope) of IMP
+ TX-100 complex was attained as 1.40 × 106 mol−2·kg2. In Figure 5, the value of the
correlation coefficient acquired of 0.9995 recommends the excellent linear fit. The evaluated
K value of the IMP + TX-100 complex was further exploited to assess the value of free
energy change (∆G) using Equation (14) [65].

∆G = −RT ln K (14)
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From Equation (14), the attained ∆G value was found to be −35.14 kJ·mol−1, which
showed that the IMP + TX-100 complex formation is thermodynamically favorable (nega-
tive ∆G) (i.e., the reaction is spontaneous) [66]. The acquired negative ∆G value illustrates
the decrease in self-electrostatic repulsion amongst the head group of molecules, which
revealed desirable binding between IMP and TX-100.
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4. Conclusions

Non-ionic surfactants are suitable for drug delivery and are a very auspicious group
of penetration enhancers; therefore, the current analysis is valued in terms of the awareness
of the interactions of the drug and surfactant. Herein, the interaction between imipramine
hydrochloride (IMP) and TX-100 mixtures were investigated in detail by the tensiometric
method in five different ratios in three solvents (aqueous/aqueous NaCl/aqueous U). The
interaction between the IMP + TX-100 mixture in the aqueous system was also evaluated by
means of UV–Visible study. Tensiometric measurements showed that the IMP and TX-100
mixtures in aqueous and other employed solvents go through numerous physicochemical
variations due to several interactions amongst components, and therefore, the mixtures
showed improved micellar and surface assets compared with the singular IMP or TX-100.
The entire mixed system (IMP + TX-100) provided a lower cmc value compared with ideal
cmc values along with negative βRb values signifying attractive attraction or synergism in
the mixed system (IMP + TX-100). The negative ∆G◦mic values indicate that the micellization
process was spontaneous phenomena, while the obtained negative ∆Gm

ex values confirmed
the stability of mixed micelles of the IMP and TX-100 mixture. That the obtained activity
coefficients showed deviation from unity specifies that the mixed systems act nonideally.
The outcomes suggest that non-ionic surfactants will possibly assist as a skilled drug
delivery agent and enlighten the bioavailability of the drug.
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