Numerical Study of Customized Artificial Cornea Shape by Hydrogel Biomaterials on Imaging and Wavefront Aberration
Abstract
:1. Introduction
2. Materials and Methods
2.1. The IPN Hydrogel Biomaterials Preparation
2.2. Optical Properties of the IPN Hydrogel Materials
2.3. Mechanical Properties of the IPN Hydrogel Biomaterials
2.4. Eye Model Construction in the Simulation
2.5. Design of the Artificial Cornea
2.6. The Diffractive Image Analysis Methodology of the Artificial Cornea
3. Results and Discussion
3.1. Optical Performance of the Eye Model in the Simulation
3.2. Optical Performance of the Eye Model with the Glasses after Replacing the Artificial Cornea
3.3. Optical Performance of the Eye Model without the Glasses after Replacing the Artificial Cornea
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kadakia, A.; Keskar, V.; Titushkin, I.; Djalilian, A.; Gemeinhart, R.A. Hybrid superporous scaffolds: An application for cornea tissue engineering. Crit. Rev. Biomed. Eng. 2008, 36, 5–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gross, H.; Blechinger, F.; Achtner, B. Handbook of Optical Systems: Volume 4 Survey of Optical Instruments; WILEY–VCH Verlag GmbH: Weinheim, Germany, 2008. [Google Scholar]
- Fariselli, C.; Toprak, I.; Al-Shymali, O.; Alio del Barrio, J.L.; Alio, J.L. Corneal transplantation outcomes after the extrusion of an intrastromal keratoprothesis: A pilot study. Eye Vis. 2020, 7, 26. [Google Scholar] [CrossRef] [PubMed]
- Robaei, D.; Watson, S. Corneal blindness: A global problem. Clin. Exp. Ophthalmol. 2014, 42, 213–214. [Google Scholar] [CrossRef]
- Hicks, C.R.; Crawford, G.J.; Dart, J.K.G.; Grabner, G.; Holland, E.J.; Stulting, R.D.; Tan, D.T.; Bulsara, M. AlphaCor: Clinical outcomes. Cornea 2006, 25, 1034–1042. [Google Scholar] [CrossRef] [PubMed]
- Khan, B.F. Boston Keratoprosthesis: Design, Materials, and Manufacturing in Keratoprostheses and Artificial Corneas. In Fundamentals and Surgical Applications; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Shah, R.; Stodulka, P.; Skopalova, K.; Saha, P. Dual crosslinked collagen/chitosan film for potential biomedical applications. Polymers 2019, 11, 2094. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, B.; Xue, Q.; Li, J.; Ma, L.; Yao, Y.; Ye, H.; Cui, Z.; Yang, H. 3D bioprinting for artificial cornea: Challenges and perspectives. Med. Eng. Phys. 2019, 71, 68–78. [Google Scholar] [CrossRef]
- Jiraskova, N.; Rozsival, P.; Burova, M.; Kalfertova, M. AlphaCor artificial cornea: Clinical outcome. Eye 2011, 25, 1138–1146. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Liu, Y.; Fu, W.; Yao, M.; Ding, Z.; Xuan, J.; Cao, M. Poly (N-isopropylacrylamide)-based thermoresponsive composite hydrogels for biomedical applications. Polymers 2020, 12, 580. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Li, Y.; Yuanyuan, D.; Shi, Z.; Cui, Z. An overview of the material and structure of the porous scaffold for artificial cornea. J. Nanoeng. Nanomanuf. 2014, 4, 279–288. [Google Scholar] [CrossRef]
- Rodriguez-Galan, A.; Franco, L.; Puiggali, J. Degradable poly (ester amide) s for biomedical applications. Polymers 2011, 3, 65–99. [Google Scholar] [CrossRef] [Green Version]
- Chirila, T.V.; Vijayasekaran, S.; Horne, R.; Chen, Y.C.; Dalton, P.D.; Constable, I.J.; Crawford, G.J. Interpenetrating polymer network (IPN) as a permanent joint between the elements of a new type of artificial cornea. J. Biomed. Mater. Res. A 1994, 28, 745–753. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Su, K.; Chan-Park, M.B.; Wu, H.; Wang, D.; Xu, R. Development of high refractive ZnS/PVP/PDMAA hydrogel nanocomposites for artificial cornea implants. Acta Biomater. 2014, 10, 1167–1176. [Google Scholar] [CrossRef]
- Koetting, M.C.; Peters, J.T.; Steichen, S.D.; Peppas, N.A. Stimulus-responsive hydrogels: Theory, modern advances, and applications. Mat. Sci. Eng. R 2015, 93, 1–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pandolfi, A. Cornea modelling. Eye Vis. 2020, 7, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bradley, D.; Russell, D.; Ferguson, I.; Isaacs, J.; MacLeod, A.; White, R. The Internet of Things–The future or the end of mechatronics. Mechatronics 2015, 27, 57–74. [Google Scholar] [CrossRef]
- Maheswari, R.U.; Takaoka, H.; Homma, R.; Kadono, H.; Tanifuji, M. Implementation of optical coherence tomography (OCT) in visualization of functional structures of cat visual cortex. Opt. Commun. 2002, 202, 47–54. [Google Scholar] [CrossRef]
- Srivastava, V.; Nandy, S.; Mehta, D.S. High-resolution corneal topography and tomography of fish eye using wide-field white light interference microscopy. Appl. Phys. Lett. 2013, 102, 153701. [Google Scholar] [CrossRef] [Green Version]
- Poddar, R.; Zawadzki, R.J.; Cortés, D.E.; Mannis, M.J.; Werner, J.S. In vivo volumetric depth-resolved vasculature imaging of human limbus and sclera with 1 μm swept source phase-variance optical coherence angiography. J. Opt. 2015, 17, 065301. [Google Scholar] [CrossRef] [Green Version]
- Werkmeister, R.M.; Sapeta, S.; Schmidl, D.; Garhöfer, G.; Schmidinger, G.; dos Santos, V.A.; Aschinger, G.C.; Baumgartner, I.; Pircher, N.; Schwarzhans, F.; et al. Ultrahigh-resolution OCT imaging of the human cornea. Biomed. Opt. Express 2017, 8, 1221–1239. [Google Scholar] [CrossRef] [Green Version]
- Jaeken, B.; Lundström, L.; Artal, P. Fast scanning peripheral wave-front sensor for the human eye. Opt. Express 2011, 19, 7903–7913. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Y.C.; Chen, J.H.; Chang, R.J.; Wang, C.Y.; Hsu, W.Y.; Wang, P.J. Design and verifications of an eye model fitted with contact lenses for wavefront measurement systems. SPIE 2015, 9579, 95790S. [Google Scholar]
- Noll, R.J. Zernike polynomials and atmospheric turbulence. J. Opt. Soc. Am. 1976, 66, 207–211. [Google Scholar] [CrossRef]
- Salmon, T.O.; van de Pol, C. Normal-eye Zernike coefficients and root-mean-square wavefront errors. J. Cataract. Refr. Surg. 2006, 32, 2064–2074. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.-J.; Dai, C.-A.; Li, J.-H. Numerical study of tunable photonic nanojets generated by biocompatible hydrogel core-shell microspheres for surface-enhanced Raman scattering applications. Polymers 2019, 11, 431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, X.W.; Hartman, L.; Tan, K.P.; Poh, R.; Myung, D.; Zheng, L.L.; Waters, D.; Noolandi, J.; Beuerman, R.W.; Frank, C.W.; et al. In vivo biocompatibility of two PEG/PAA interpenetrating polymer networks as corneal inlays following deep stromal pocket implantation. J. Mater. Sci. Mater. Med. 2013, 24, 967–977. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Figueiredo, A.G.P.R.; Figueiredo, A.; Alonso-Varona, A.; Fernandes, S.C.M.; Palomares, T.; Rubio-Azpeitia, E.; Timmons, A.B.; Silvestre, A.; Neto, C.; Freire, C.S.R. Biocompatible bacterial cellulose-poly (2-hydroxyethyl methacrylate) nanocomposite films. BioMed Res. Int. 2013, 2013, 1–14. [Google Scholar] [CrossRef]
- Kopecek, J. Hydrogels: From soft contact lenses and implants to self–assembled nanomaterials. J. Polym. Sci. Part A Polym. Chem. 2009, 47, 5929–5946. [Google Scholar] [CrossRef]
- Chirila, T.V. An overview of the development of artificial corneas with porous skirts and the use of PHEMA for such an application. Biomaterials 2001, 22, 3311–3317. [Google Scholar] [CrossRef]
- Artal, P.; Tabernero, J. Optics of human eye: 400 years of exploration from Galileo’s time. Appl. Opt. 2010, 49, D123–D130. [Google Scholar] [CrossRef] [Green Version]
- Lotmar, W. Theoretical eye model with aspherics. J. Opt. Soc. Am. 1971, 61, 1522–1529. [Google Scholar] [CrossRef]
- Liou, H.L.; Brennan, N.A. Anatomically accurate, finite model eye for optical modeling. J. Opt. Soc. Am. A 1997, 14, 1684–1695. [Google Scholar] [CrossRef] [PubMed]
- Navarro, R.; Gonzalez, L.; Hernandez-Matamoros, J.L. On the prediction of optical aberrations by personalized eye models. Optom. Vis. Sci. 2006, 83, 371–381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tabernero, J.; Piers, P.; Benito, A.; Redondo, M.; Artal, P. Predicting the optical performance of eyes implanted with IOLs to correct spherical aberration. Investig. Ophthalmol. Vis. Sci. 2006, 47, 4651–4658. [Google Scholar] [CrossRef] [PubMed]
- Rosales, P.; Marcos, S. Customized computer models of eyes with intraocular lenses. Opt. Express 2007, 15, 2204–2218. [Google Scholar] [CrossRef] [Green Version]
- Polans, J.; Jaeken, B.; McNabb, R.P.; Artal, P.; Izatt, J.A. Wide-field optical model of the human eye with asymmetrically tilted and decentered lens that reproduces measured ocular aberrations. Optica 2015, 2, 124–134. [Google Scholar] [CrossRef] [Green Version]
- Stockman, A.; MacLeod, D.I.A.; Johnson, N.E. Spectral sensitivities of the human cones. JOSA A 1993, 10, 2491–2521. [Google Scholar] [CrossRef]
- Boettner, E.A.; Wolter, J.R. Transmission of the ocular media. Investig. Ophthalmol. Vis. Sci. 1962, 1, 776–783. [Google Scholar]
- Atchison, D.A.; Smith, G. Chromatic dispersions of the ocular media of human eyes. J. Opt. Soc. Am. A 2005, 22, 29–37. [Google Scholar] [CrossRef]
- Jaeken, B.; Lundström, L.; Artal, P. Peripheral aberrations in the human eye for different wavelengths: Off-axis chromatic aberration. J. Opt. Soc. Am. A 2011, 28, 1871–1879. [Google Scholar] [CrossRef]
- Goncharov, A.V.; Dainty, C. Wide-field schematic eye models with gradient-index lens. J. Opt. Soc. Am. A 2007, 24, 2157–2174. [Google Scholar] [CrossRef]
- Janunts, E.; Kannengießer, M.; Langenbucher, A. Parametric fitting of corneal height data to a biconic surface. Z. Med. Phys. 2015, 25, 25–35. [Google Scholar] [CrossRef]
- Sun, H.Y.; Lee, C.H.; Chuang, C.C. Reconstruction of the optical system of personalized eye models by using magnetic resonance imaging. Appl. Opt. 2016, 55, 9145–9153. [Google Scholar] [CrossRef] [PubMed]
- Coch, D.D.; Ali, S.F.; Weikert, M.P.; Shirayama, M.; Jenkins, R.; Wang, L. Contribution of posterior corneal astigmatism to total corneal astigmatism. J. Cataract. Refr. Surg. 2012, 38, 2080–2087. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Williams, D.R. Aberrations and retinal image quality of the normal human eye. J. Opt. Soc. Am. A 1997, 14, 2873–2883. [Google Scholar] [CrossRef] [PubMed]
- Porter, J.; Guirao, A.; Cox, L.G.; Williams, D.R. Monochromatic aberrations of the human eye in a large population. J. Opt. Soc. Am. A 2001, 18, 1793–1803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sabesan, R.; Jeong, T.M.; Carvalho, L.; Cox, I.G.; Williams, D.R.; Yoon, G. Vision improvement by correcting higher-order aberrations with customized soft contact lenses in keratoconic eyes. Opt. Lett. 2007, 32, 1000–1002. [Google Scholar] [CrossRef] [PubMed]
- Childs, A.; Li, H.; Lewittes, D.M.; Dong, B.; Liu, W.; Shu, X.; Sun, C.; Zhang, H.F. Fabricating customized hydrogel contact lens. Sci. Rep. 2016, 6, 34905. [Google Scholar] [CrossRef] [PubMed]
- Coughlan, M.F.; Goncharov, A.V. Nonpupil adaptive optics for visual simulation of a customized contact lens. Appl. Opt. 2018, 57, E57–E63. [Google Scholar] [CrossRef] [PubMed]
Transmittance (%) | Refractive Index (at 589 nm) | |
---|---|---|
P407DA | 95.1 | 1.3531 |
PAA | 97.21 | 1.5270 |
PHEMA | 99.57 | 1.5119 |
P407DA/PAA | 95.45 | 1.3574 |
P407DA/PHEMA | 91.92 | 1.4232 |
Surface | Radius (Ry, Rx) (mm) | Thickness (mm) | Conic (ky, kx) |
---|---|---|---|
Cornea | 7.480, 7.517 | 0.500 | −0.130, −0.136 |
Anterior chamber | 6.287, 6.704 | 3.639 | −0.005, −0.303 |
Pupil | Inf. | 0 | 0 |
Crystalline lens | ) | 3.690 | ) |
Vitreous humor | ) | 16.000 | ) |
Retina | ) | - | ) |
Notation | Range | Weight |
---|---|---|
Radius (anterior) | 7.00~8.16 (mm) | 1 × 106 |
Radius (posterior) | 6.00~6.90 (mm) | 1 × 106 |
Conic constant (anterior) | −0.3~0 | 1 |
Conic constant (posterior) | −0.3~0 | 1 |
Cornea’s thickness | 0.5~0.56 (mm) | 1 × 106 |
Anterior chamber thickness | 2.91~3.65 (mm) | 1 × 106 |
Surface | Radius (Ry, Rx) (mm) | Thickness (mm) | Conic (ky, kx) |
---|---|---|---|
Glasses anterior surface | −15.399, −15.936 | 0.600 | ) |
Glasses posterior surface | −16.340, −17.026 | 5.000 | ) |
Surface | Notation | Radius (Ry, Rx) (mm) | Thickness (mm) | Conic (ky, kx) | |
---|---|---|---|---|---|
P407DA/PHEMA | Biconic | Cornea A | 7.408, 7.407 | 0.532 | −0.112, −0.092 |
Cornea P | 6.505, 6.572 | 3.567 | 2.3 × 10−4, −0.033 | ||
Aspherical | Cornea A | ) | 0.551 | ) | |
Cornea P | ) | 3.520 | ) | ||
Spherical | Cornea A | ) | 0.554 | ) | |
Cornea P | ) | 3.633 | ) | ||
P407DA/PAA | Biconic | Cornea A | 7.516, 7.516 | 0.507 | −0.144, −0.130 |
Cornea P | 6.052, 6.284 | 3.646 | −0.065, −0.300 | ||
Aspherical | Cornea A | ) | 0.500 | ) | |
Cornea P | ) | 3.633 | ) | ||
Spherical | Cornea A | ) | 0.500 | ) | |
Cornea P | ) | 3.650 | ) |
Surface | Tolerance (%) | Anterior Radius (Ry) (mm) | Posterior Radius (Ry) (mm) | Strehl Ratio | |
---|---|---|---|---|---|
P407DA/PHEMA | Biconic | +1 | 7.48208 | 6.57005 | 0.139 |
±0 | 7.408 | 6.505 | 0.857 | ||
−1 | 7.33392 | 6.43995 | 0.142 | ||
Aspherical | +1 | 7.48107 | 6.59833 | 0.029 | |
±0 | 7.407 | 6.533 | 0.496 | ||
−1 | 7.33293 | 6.46767 | 0.046 | ||
Spherical | +1 | 7.50228 | 6.54379 | 0.034 | |
±0 | 7.428 | 6.479 | 0.403 | ||
−1 | 7.35372 | 6.41421 | 0.084 | ||
P407DA/PAA | Biconic | +1 | 7.59116 | 6.11252 | 0.14 |
±0 | 7.516 | 6.052 | 0.86 | ||
−1 | 7.44084 | 5.99148 | 0.142 | ||
Aspherical | +1 | 7.64772 | 6.92052 | 0.031 | |
±0 | 7.572 | 6.852 | 0.499 | ||
−1 | 7.49628 | 6.78348 | 0.051 | ||
Spherical | +1 | 7.67095 | 6.88618 | 0.033 | |
±0 | 7.595 | 6.818 | 0.371 | ||
−1 | 7.51905 | 6.74982 | 0.092 |
Surface | Notation | Radius (Ry, Rx) (mm) | Thickness (mm) | Conic (ky, kx) | |
---|---|---|---|---|---|
P407DA/PHEMA | Biconic | Cornea A | 7.483, 7.482 | 0.560 | −0.283, −0.285 |
Cornea P | 6.050, 6.050 | 3.650 | −0.326, −0.325 | ||
Aspherical | Cornea A | ) | 0.500 | ) | |
Cornea P | ) | 3.645 | ) | ||
Spherical | Cornea A | ) | 0.500 | ) | |
Cornea P | ) | 3.638 | ) | ||
P407DA/PAA | Biconic | Cornea A | 7.793, 7.792 | 0.560 | −0.278, −0.283 |
Cornea P | 6.050, 6.051 | 3.650 | −0.308, −0.309 | ||
Aspherical | Cornea A | ) | 0.500 | ) | |
Cornea P | ) | 3.650 | ) | ||
Spherical | Cornea A | ) | 0.500 | ) | |
Cornea P | ) | 3.650 | ) |
Surface | Tolerance (%) | Anterior Radius (Ry) (mm) | Posterior Radius (Ry) (mm) | Strehl Ratio | |
---|---|---|---|---|---|
P407DA/PHEMA | Biconic | +1 | 7.55783 | 6.1105 | 0.149 |
±0 | 7.483 | 6.05 | 0.958 | ||
−1 | 7.40817 | 5.9895 | 0.168 | ||
Aspherical | +1 | 7.60126 | 6.32058 | 0.048 | |
±0 | 7.526 | 6.258 | 0.94 | ||
−1 | 7.45074 | 6.19542 | 0.048 | ||
Spherical | +1 | 7.57601 | 6.13676 | 0.032 | |
±0 | 7.501 | 6.076 | 0.629 | ||
−1 | 7.42599 | 6.01524 | 0.079 | ||
P407DA/PAA | Biconic | +1 | 7.87093 | 6.1105 | 0.147 |
±0 | 7.793 | 6.05 | 0.954 | ||
−1 | 7.71507 | 5.9895 | 0.166 | ||
Aspherical | +1 | 7.88002 | 6.9286 | 0.047 | |
±0 | 7.802 | 6.86 | 0.986 | ||
−1 | 7.72398 | 6.7914 | 0.049 | ||
Spherical | +1 | 7.9285 | 6.89527 | 0.033 | |
±0 | 7.85 | 6.827 | 0.609 | ||
−1 | 7.7715 | 6.75873 | 0.081 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, Y.-C.; Hsieh, C.-T.; Lin, Y.-H.; Dai, C.-A.; Li, J.-H. Numerical Study of Customized Artificial Cornea Shape by Hydrogel Biomaterials on Imaging and Wavefront Aberration. Polymers 2021, 13, 4372. https://doi.org/10.3390/polym13244372
Ma Y-C, Hsieh C-T, Lin Y-H, Dai C-A, Li J-H. Numerical Study of Customized Artificial Cornea Shape by Hydrogel Biomaterials on Imaging and Wavefront Aberration. Polymers. 2021; 13(24):4372. https://doi.org/10.3390/polym13244372
Chicago/Turabian StyleMa, Yu-Chi, Chang-Tsung Hsieh, Yu-Hsiang Lin, Chi-An Dai, and Jia-Han Li. 2021. "Numerical Study of Customized Artificial Cornea Shape by Hydrogel Biomaterials on Imaging and Wavefront Aberration" Polymers 13, no. 24: 4372. https://doi.org/10.3390/polym13244372
APA StyleMa, Y. -C., Hsieh, C. -T., Lin, Y. -H., Dai, C. -A., & Li, J. -H. (2021). Numerical Study of Customized Artificial Cornea Shape by Hydrogel Biomaterials on Imaging and Wavefront Aberration. Polymers, 13(24), 4372. https://doi.org/10.3390/polym13244372