Compression Behaviour of Bio-Inspired Honeycomb Reinforced Starfish Shape Structures Using 3D Printing Technology
Abstract
:1. Introduction
2. Material and Methods
2.1. Material
2.2. Methods
3. Results and Discussion
3.1. Effects of Cell Size on the Structure
3.2. Effects of Wall Thickness on the Structure
3.3. Effects of Bio-Inspired Structure on Energy Efficiency and Energy Absorption
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Birman, V.; Kardomateas, G.A. Review of current trends in research and applications of sandwich structures. Compos. Part B Eng. 2018, 142, 221–240. [Google Scholar] [CrossRef]
- Thomas, T.; Tiwari, G. Crushing behavior of honeycomb structure: A review. Int. J. Crashworthiness 2019, 24, 555–579. [Google Scholar] [CrossRef]
- Lalegani Dezaki, M.; Ariffin, M.K.A.M.; Appalanaidoo, D.; Wahid, Z.; Rage, A.M. 3D printed object’s strength-to-weight ratio analysis for M3 liquid material. Adv. Mater. Process. Technol. 2020, 1–15. [Google Scholar] [CrossRef]
- Sairajan, K.K.; Aglietti, G.S.; Mani, K.M. A review of multifunctional structure technology for aerospace applications. Acta Astronaut. 2016, 120, 30–42. [Google Scholar] [CrossRef]
- Sujiatanti, S.H.; Zubaydi, A.; Budipriyanto, A. Finite Element Analysis of Ship Deck Sandwich Panel. Appl. Mech. Mater. 2018, 874, 134–139. [Google Scholar] [CrossRef]
- Bodaghi, M.; Serjouei, A.; Zolfagharian, A.; Fotouhi, M.; Rahman, H.; Durand, D. Reversible energy absorbing meta-sandwiches by FDM 4D printing. Int. J. Mech. Sci. 2020, 173, 105451. [Google Scholar] [CrossRef] [Green Version]
- Sang, L.; Han, S.; Peng, X.; Jian, X.; Wang, J. Development of 3D-printed basalt fiber reinforced thermoplastic honeycombs with enhanced compressive mechanical properties. Compos. Part A Appl. Sci. Manuf. 2019, 125, 105518. [Google Scholar] [CrossRef]
- Audibert, C.; Chaves-Jacob, J.; Linares, J.-M.; Lopez, Q.-A. Bio-inspired method based on bone architecture to optimize the structure of mechanical workspieces. Mater. Des. 2018, 160, 708–717. [Google Scholar] [CrossRef]
- Tasdemirci, A.; Akbulut, E.F.; Guzel, E.; Tuzgel, F.; Yucesoy, A.; Sahin, S.; Guden, M. Crushing behavior and energy absorption performance of a bio-inspired metallic structure: Experimental and numerical study. Thin-Walled Struct. 2018, 131, 547–555. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, Y.; Jiefu, L. Comparison between five typical reinforced honeycomb structures. In Proceedings of the 5th International Conference on Advanced Engineering Materials and Technology, Guangzhou, China, 22–23 August 2015. [Google Scholar]
- Shan, J.; Xu, S.; Zhou, L.; Wang, D.; Liu, Y.; Zhang, M.; Wang, P. Dynamic fracture of aramid paper honeycomb subjected to impact loading. Compos. Struct. 2019, 223, 110962. [Google Scholar] [CrossRef]
- Ali, M.; Ohioma, E.; Kraft, F.; Alam, K. Theoretical, numerical, and experimental study of dynamic axial crushing of thin walled pentagon and cross-shape tubes. Thin-Walled Struct. 2015, 94, 253–272. [Google Scholar] [CrossRef]
- Crupi, V.; Epasto, G.; Guglielmino, E. Comparison of aluminium sandwiches for lightweight ship structures: Honeycomb vs. foam. Mar. Struct. 2013, 30, 74–96. [Google Scholar] [CrossRef]
- Tao, Y.; Duan, S.; Wen, W.; Pei, Y.; Fang, D. Enhanced out-of-plane crushing strength and energy absorption of in-plane graded honeycombs. Compos. Part B Eng. 2017, 118, 33–40. [Google Scholar] [CrossRef]
- Thomas, T.; Tiwari, G. Energy absorption and in-plane crushing behavior of aluminium reinforced honeycomb. Vacuum 2019, 166, 364–369. [Google Scholar] [CrossRef]
- Ivañez, I.; Fernandez-Cañadas, L.M.; Sanchez-Saez, S. Compressive deformation and energy-absorption capability of aluminium honeycomb core. Compos. Struct. 2017, 174, 123–133. [Google Scholar] [CrossRef]
- Zhang, L.; Feih, S.; Daynes, S.; Chang, S.; Wang, M.Y.; Wei, J.; Lu, W.F. Energy absorption characteristics of metallic triply periodic minimal surface sheet structures under compressive loading. Addit. Manuf. 2018, 23, 505–515. [Google Scholar] [CrossRef]
- Xu, M.; Xu, Z.; Zhang, Z.; Lei, H.; Bai, Y.; Fang, D. Mechanical properties and energy absorption capability of AuxHex structure under in-plane compression: Theoretical and experimental studies. Int. J. Mech. Sci. 2019, 159, 43–57. [Google Scholar] [CrossRef]
- Wang, Z.; Li, Z.; Zhou, W.; Hui, D. On the influence of structural defects for honeycomb structure. Compos. Part B Eng. 2018, 142, 183–192. [Google Scholar] [CrossRef]
- Kucewicz, M.; Baranowski, P.; Małachowski, J. A method of failure modeling for 3D printed cellular structures. Mater. Des. 2019, 174, 107802. [Google Scholar] [CrossRef]
- Zhang, Y.; Yan, L.; Zhang, W.; Su, P.; Han, B.; Guo, S. Metallic tube-reinforced aluminum honeycombs: Compressive and bending performances. Compos. Part B Eng. 2019, 171, 192–203. [Google Scholar] [CrossRef]
- Sun, Z.; Shi, S.; Guo, X.; Hu, X.; Chen, H. On compressive properties of composite sandwich structures with grid reinforced honeycomb core. Compos. Part B Eng. 2016, 94, 245–252. [Google Scholar] [CrossRef]
- Tuo, W.; Wei, P.; Chen, J.; Okabe, Y.; Zhang, X.; Xu, M. Experimental study of the edgewise compressive mechanical properties of biomimetic fully integrated honeycomb plates. J. Sandw. Struct. Mater. 2017, 21, 2735–2750. [Google Scholar] [CrossRef]
- Lei, H.; Yao, K.; Wen, W.; Zhou, H.; Fang, D. Experimental and numerical investigation on the crushing behavior of sandwich composite under edgewise compression loading. Compos. Part B Eng. 2016, 94, 34–44. [Google Scholar] [CrossRef]
- Kara, E.; Crupi, V.; Epasto, G.; Guglielmino, E.; Aykul, H. Flexural behaviour of glass fiber reinforced aluminium honeycomb sandwiches in flatwise and edgewise positions. In Proceedings of the 16th European Conference on Composite Materials, ECCM 2014, Seville, Spain, 22–26 June 2014. [Google Scholar]
- Zhang, F.; Liu, W.; Fang, H.; Jia, Z. Flexural behavior of composite sandwich beams with different kinds of GFRP ribs in flatwise and edgewise positions. Compos. Part B Eng. 2019, 156, 229–239. [Google Scholar] [CrossRef]
- Meng, L.; Liang, H.; Yu, H.; Yang, J.; Li, F.; Wang, Z.; Zeng, X. The energy absorption and bearing capacity of light-weight bio-inspired structures produced by selective laser melting. J. Mech. Behav. Biomed. Mater. 2019, 93, 170–182. [Google Scholar] [CrossRef]
- Lalegani Dezaki, M.; Mohd Ariffin, M.K.A.; Hatami, S. An overview of fused deposition modelling (FDM): Research, development and process optimisation. Rapid Prototyp. J. 2021, 27, 562–582. [Google Scholar] [CrossRef]
- Paolini, A.; Kollmannsberger, S.; Rank, E. Additive manufacturing in construction: A review on processes, applications, and digital planning methods. Addit. Manuf. 2019, 30, 100894. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, Y.; Wu, B.; Cui, C.; Guo, Y.; Yan, C. A critical review of fused deposition modeling 3D printing technology in manufacturing polylactic acid parts. Int. J. Adv. Manuf. Technol. 2019, 102, 2877–2889. [Google Scholar] [CrossRef]
- Płaczek, M.; Ariffin, M.K.A.; Baharudin, B.T.H.T.; Lalegani Dezaki, M. The Effects of 3D Printing Structural Modelling on Compression Properties for Material Jetting and FDM Process. In Experiments and Simulations in Advanced Manufacturing; Kyratsis, P., Davim, J.P., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 171–194. [Google Scholar]
- Bourell, D.; Kruth, J.P.; Leu, M.; Levy, G.; Rosen, D.; Beese, A.M.; Clare, A.J.C.A. Materials for additive manufacturing. CIRP Ann. 2017, 66, 659–681. [Google Scholar] [CrossRef]
- Avinc, O.; Khoddami, A. Overview of Poly(lactic acid) (PLA) Fibre. Fibre Chem. 2009, 41, 391–401. [Google Scholar] [CrossRef]
- Singh, S.K.; Ahmed, S.U.; Pandey, A. Metabolic engineering approaches for lactic acid production. Process Biochem. 2006, 41, 991–1000. [Google Scholar] [CrossRef]
- Rebelo, H.B.; Lecompte, D.; Cismasiu, C.; Jonet, A.; Belkassem, B.; Maazoun, A. Experimental and numerical investigation on 3D printed PLA sacrificial honeycomb cladding. Int. J. Impact Eng. 2019, 131, 162–173. [Google Scholar] [CrossRef]
- Chen, Y.; Li, T.; Jia, Z.; Scarpa, F.; Yao, C.-W.; Wang, L. 3D printed hierarchical honeycombs with shape integrity under large compressive deformations. Mater. Des. 2018, 137, 226–234. [Google Scholar] [CrossRef] [Green Version]
- Kucewicz, M.; Baranowski, P.; Małachowski, J.; Popławski, A.; Płatek, P. Modelling, and characterization of 3D printed cellular structures. Mater. Des. 2018, 142, 177–189. [Google Scholar] [CrossRef]
- Sahu, S.K.; Badgayan, N.D.; Samanta, S.; Sahu, D.; Sreekanth, P.S.R. Influence of cell size on out of plane stiffness and in-plane compliance character of the sandwich beam made with tunable PCTPE nylon honeycomb core and hybrid polymer nanocomposite skin. Int. J. Mech. Sci. 2018, 148, 284–292. [Google Scholar] [CrossRef]
- Wang, D.; Abdalla, M.M.; Zhang, W. Buckling optimization design of curved stiffeners for grid-stiffened composite structures. Compos. Struct. 2017, 159, 656–666. [Google Scholar] [CrossRef]
- Khan, M.K. Compressive and lamination strength of honeycomb sandwich panels with strain energy calculation from ASTM standards. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2006, 220, 375–386. [Google Scholar] [CrossRef]
- Mah, C. Starfish: Biology & Ecology of the Asteroidea; Lawrence, J., Ed.; JHU Press: Baltimore, MD, USA, 2013; Volume 53, pp. 871–873. [Google Scholar] [CrossRef]
- Yuan, Y.; Yao, X.; Niu, K.; Liu, B.; Wuyun, Q. Compressive failure of fiber reinforced polymer composites by imperfection. Compos. Part A Appl. Sci. Manuf. 2019, 118, 106–116. [Google Scholar] [CrossRef]
- Jerez-Mesa, R.; Travieso-Rodriguez, J.A.; Llumà-Fuentes, J.; Gomez-Gras, G.; Puig, D. Fatigue lifespan study of PLA parts obtained by additive manufacturing. Procedia Manuf. 2017, 13, 872–879. [Google Scholar] [CrossRef] [Green Version]
- Lubombo, C.; Huneault, M.A. Effect of infill patterns on the mechanical performance of lightweight 3D-printed cellular PLA parts. Mater. Today Commun. 2018, 17, 214–228. [Google Scholar] [CrossRef]
- Papka, S.D.; Kyriakides, S. In-plane compressive response and crushing of honeycomb. J. Mech. Phys. Solids 1994, 42, 1499–1532. [Google Scholar] [CrossRef]
- Xiang, J.; Du, J. Energy absorption characteristics of bio-inspired honeycomb structure under axial impact loading. Mater. Sci. Eng. A 2017, 696, 283–289. [Google Scholar] [CrossRef]
Cell Size (mm) | Sample No. | Height (mm) | Length (mm) | Width (mm) | Wall Thickness (mm) | Weight (g) |
---|---|---|---|---|---|---|
20 | S1 | 57.96 | 56.06 | 15 | 1.5 | 23 |
S2 | 57.96 | 56.06 | 23 | |||
S3 | 57.96 | 56.06 | 23 | |||
S4 | 59.96 | 58.08 | 2.0 | 31 | ||
S5 | 59.96 | 58.08 | 31 | |||
S6 | 59.96 | 58.08 | 31 | |||
S7 | 61.96 | 60.11 | 2.5 | 38 | ||
S8 | 61.96 | 60.11 | 39 | |||
S9 | 61.96 | 60.11 | 38 | |||
25 | S10 | 70.94 | 68.56 | 1.5 | 28 | |
S11 | 70.94 | 68.56 | 29 | |||
S12 | 70.94 | 68.56 | 29 | |||
S13 | 72.94 | 70.58 | 2.0 | 39 | ||
S14 | 72.94 | 70.58 | 39 | |||
S15 | 72.94 | 70.58 | 39 | |||
S16 | 74.94 | 72.61 | 2.5 | 49 | ||
S17 | 74.94 | 72.61 | 48 | |||
S18 | 74.94 | 72.61 | 48 | |||
30 | S19 | 83.94 | 81.06 | 1.5 | 34 | |
S20 | 83.94 | 81.06 | 34 | |||
S21 | 83.94 | 81.06 | 34 | |||
S22 | 85.94 | 83.08 | 2.0 | 46 | ||
S23 | 85.94 | 83.08 | 47 | |||
S24 | 85.94 | 83.08 | 47 | |||
S25 | 87.94 | 85.11 | 2.5 | 57 | ||
S26 | 87.94 | 85.11 | 57 | |||
S27 | 87.94 | 85.11 | 59 |
Stage | 20 mm Cell Size 2.0 mm Wall Thickness | 25 mm Cell Size 2.0 mm Wall Thickness |
---|---|---|
I (Initial stage) | ||
II (Max peak) | ||
III (Plateau region) | ||
IV (Densification) |
Stage | 20 mm Cell Size and 2.5 mm Wall Thickness |
---|---|
I (Initial stage) | |
II (Max peak) | |
III (Plateau region) | |
IV (Densification) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saufi, S.A.S.A.; Zuhri, M.Y.M.; Dezaki, M.L.; Sapuan, S.M.; Ilyas, R.A.; As’arry, A.; Ariffin, M.K.A.; Bodaghi, M. Compression Behaviour of Bio-Inspired Honeycomb Reinforced Starfish Shape Structures Using 3D Printing Technology. Polymers 2021, 13, 4388. https://doi.org/10.3390/polym13244388
Saufi SASA, Zuhri MYM, Dezaki ML, Sapuan SM, Ilyas RA, As’arry A, Ariffin MKA, Bodaghi M. Compression Behaviour of Bio-Inspired Honeycomb Reinforced Starfish Shape Structures Using 3D Printing Technology. Polymers. 2021; 13(24):4388. https://doi.org/10.3390/polym13244388
Chicago/Turabian StyleSaufi, S. A. S. A., M. Y. M. Zuhri, M. Lalegani Dezaki, S. M. Sapuan, R. A. Ilyas, A. As’arry, M. K. A. Ariffin, and M. Bodaghi. 2021. "Compression Behaviour of Bio-Inspired Honeycomb Reinforced Starfish Shape Structures Using 3D Printing Technology" Polymers 13, no. 24: 4388. https://doi.org/10.3390/polym13244388
APA StyleSaufi, S. A. S. A., Zuhri, M. Y. M., Dezaki, M. L., Sapuan, S. M., Ilyas, R. A., As’arry, A., Ariffin, M. K. A., & Bodaghi, M. (2021). Compression Behaviour of Bio-Inspired Honeycomb Reinforced Starfish Shape Structures Using 3D Printing Technology. Polymers, 13(24), 4388. https://doi.org/10.3390/polym13244388