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Abstract: Heat generation in active/passive layer-based piezoelectric actuators is unavoidable due
to the mechanical, dielectric, and resistive losses in the material. In this work, a polyvinylidene
fluoride (PVDF)-based unimorph cantilever actuator is developed with simulation and experimental
studies on the effect of DC high voltages on heat production in the PVDF layer. A layer of one-way
shape memory polymers (1W-SMPs) is integrated in the actuator to exploit the heat produced to
increase the bending angle. The length and mounting location of the SMP layer impacts the bending
of the actuator; by using an SMP layer with a length equal to half of the PVDF layer at the center of
the unimorph actuator, the absolute bending angle is increased to 40◦ compared to the base piezo
bending angle of 4◦ at 20 V/µm.

Keywords: PVDF; unimorph; SMP; self-heat generation

1. Introduction

Polyvinylidene fluoride (PVDF) is a dielectric material that exhibits piezoelectric,
pyroelectric [1], and photoelectric [2] effects, making it a popular choice among electroactive
polymers [3–5]. The lower piezo coefficient (d31) of PVDF compared to widely used
lead zirconate titanate (PZT) material offers low actuation due to which copolymers and
terpolymers of PVDF have been used to enhance this effect [5–8]. The high operating
voltage, low electrical conductivity of PVDF, and mechanical and dielectric losses are
responsible for heat generation in piezoelectric materials [9–13]. The imaginary part of
the dielectric constant of a material, a function of frequency, accounts for conductance
and promotes self-heat generation [10,11]. In the case of active and passive layer-based
actuators, this generated heat is transferred to the surroundings by radiation and convection
from the active surface, while some of the heat is transferred to the adjacent passive layers
through conduction. The adhesive layers used for bonding are not perfect insulators either.
So, the heat can significantly contribute to the actuation process and cannot be neglected.

The current work investigates the amount of heat generated within the piezoelectric
layer and its contribution to the bending of the unimorph actuator. A method is also
proposed for utilization of this heat to improve actuator performance which usually affects
it adversely [10]. The use of temperature-sensitive deforming materials to enhance the
bending of the unimorph actuator would achieve an effective way to utilize this heat.
The shape memory polymers are stimuli-responsive materials where heat can be used
as an external stimulus to switch between the temporary and permanent shapes of the
material [14,15]. Polyurethane-based shape-memory materials with their unique crystal
structures provide high recovery strains at low transition temperatures (Tg) [16,17]. Poly
(caprolactone) (PCL)- and poly (ester urethane)-based SMPs with transition temperatures
near to atmospheric and human body temperatures have been widely used for many
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applications in recent works [18,19]. In the present work, a one-way shape-memory
polyurethane material is used to exploit the heat and enhance the bending of unimorph.
The methodology section ahead describes the preparation method for SMP films and the
fabrication of a layer-based cantilever actuator. The verification of heat generated in the
piezo layer and its effect on the bending of the actuator acting as thermal bimorph is
presented in the results section. A method to achieve maximum bending of the integrated
SMP/PVDF actuator for the applied DC field is also discussed.

2. Materials and Methods

For fabrication of cantilever unimorph, 50 µm metalized (80 nm Cu and 20 nm Ni)
PVDF film was purchased from PolyK Technologies, Philipsburg, PA, USA, to use as the
active layer. The bending in the case of unimorph configuration is achieved due to the
difference in the mechanical resistance offered by two layers to the deformation; hence,
the passive layer plays a vital role. Polyimide (Kapton tape), Scotch tape [7], and Teflon
were compared through the simulation study. Scotch tape was found to be the effective
choice, with its density, elastic modulus, and Poisson ratio close to that of PVDF. So, the
transparent type 60 µm thick Scotch tape by 3M Technologies was used as a passive layer.

The self-heat generation within the piezo layer by resistive heating was analyzed in
COMSOL Multiphysics to obtain the temperature corresponding to the applied electric field
(DC). Properties of materials used in the simulations are listed in Table 1. Convective type
heat flux with a coefficient of 5 W/m2K (natural heat convection) and surface-to-ambient
radiation coefficient of 0.8 (1 being the ideal case) with an ambient temperature of 300 K
were used in the study. The surface temperature of the unimorph actuator was measured
experimentally by using FLIR camera imaging, with surrounding temperature of 27 ◦C.
Since the PVDF is pyroelectric and photoelectric, high-temperature and high-intensity light
sources were avoided in the surroundings.

Table 1. Properties of active and passive layers under study.

PVDF Scotch Tape [7]

Density (g/cc) 1.78 1.06
Elastic Modulus (GPa) 2.8 1.6

Poisson’s ratio 0.34 0.30
Electrical Conductivity (S/m) 5.56 × 10−9 -

Coefficient of thermal expansion (/K) 120 × 10−6 80 × 10−6

For SMP/PVDF integration study, MS-4520 solution type shape-memory polyurethane
with 45 ◦C Tg was purchased from SMP Technologies, Tokyo, Japan. The SMP solution
was diluted with DMF to produce 100 µm thin films by a screen-casting technique and
cast films were cured at 120 ◦C for 4 h. The developed SMP film was programmed
with 30% strain and was mounted on the PVDF/Scotch tape unimorph using adhesive
transfer tape. 3M 467MP adhesive transfer tape was used for layer bonding. This flexible
adhesive does not offer mechanical resistance and there is a lack of heat transfer in the
structure. The SMP programming was carried out by first heating the SMP to Tg, applying
a tensile load, followed by cooling down the SMP to room temperature under the load. The
prebending of unimorph was observed after mounting the SMP layer at no voltage due to
the stress induced during the programming. The bending of the cantilever actuator was
captured by a video camera system (DFK33UX252 by Imaging Source) and performance
was characterized by the bending angle of the actuator, as explained in the discussion
section.

3. Results and Discussion
3.1. Temperature vs. Electric Field

The effect of the applied electric field on the surface temperature of unimorph is
shown in Figure 1. The amount of heat generated in the PVDF layer is dependent on the
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electrical resistance offered by the polymer crystalline structures. This intrinsic resistance
(inversely proportional to its electric conductivity) combined with the naturally occurring
small leakage current is suspected to be the cause in of this small joule heat generated in
the PVDF, which ended up increasing proportionally with the applied electric field. The
minor deviations in the temperature values obtained by simulation and experiment results
might be due to the fact that the conduction effect between the layers during the simulation
was ruled out, as were the actual heat convection coefficient and imperfect surrounding
conditions that increase the temperature of the layer due to photo and pyroelectric effects,
and calibration errors in IR imaging system. The increase in the surface temperature of the
actuator at lower electric fields is comparatively less than the higher field regions. After
the curve fitting, the increase in temperature is proportional to the square of the applied
electric field as power loss is always proportional to the square of applied voltage [9].
According to the simulation study, when heat is distributed over the surface of the layer,
the temperature is maximum at the center, whereas, in the experimental study, most of the
heat is concentrated at the fixed end of the cantilever near the electrical contacts due to
nonideal electrode techniques. To avoid errors in the experimental results, the temperature
at the different locations on the actuator surface was measured and an average value was
obtained.
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Figure 1. (a) Schematic representation of cantilever unimorph actuator used for self-heat generation study, l = 20 mm, w = 
2.5 mm, t1 = 60 µm, t2 = 50 µm. (b) A plot of average surface temperature as a function of applied E field. (c) The polyvi-
nylidene fluoride (PVDF)/Scotch tape unimorph experiment setup. Polyimide (PI) tape was applied at the wire and PVDF 
connections to provide additional heat and electrical insulation. 

Figure 1. (a) Schematic representation of cantilever unimorph actuator used for self-heat generation study, l = 20 mm,
w = 2.5 mm, t1 = 60 µm, t2 = 50 µm. (b) A plot of average surface temperature as a function of applied E-field. (c) The
polyvinylidene fluoride (PVDF)/Scotch tape unimorph experiment setup. Polyimide (PI) tape was applied at the wire and
PVDF connections to provide additional heat and electrical insulation.

Most of the previous studies ignore the effect on the actuation of the cantilever uni-
morph due to the heat generated in the piezo layer. Due to the difference in coefficients of
thermal expansion, these layers exhibit a thermal bimorph effect. Through the simulation
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studies as depicted in Table 2, it was found that this heat effect significantly contributes
to the deformation of actuators; therefore, in reality, all the achieved deformations are a
combined result of the piezoelectric and thermal induced stress effects.

Table 2. Simulation results of deformation produced by unimorph due to piezoelectric and thermal
effects separately.

Piezoelectric Effect Thermal Effect

E-field (V/µm) Tip Deflection (mm) Temperature at
Given E-Field (K) Tip Deflection (mm)

4 0.22 300.4 0.34
10 0.54 302.7 0.45
18 0.88 306.9 0.66
20 1.09 310.7 0.84

3.2. Integration of SMP with PVDF Unimorph

In this section, use of the SMP layer for the exploitation of heat generated in the
PVDF/Scotch tape unimorph is discussed. Though the transition temperature of SMP is
45 ◦C, the memory effect could be observed at a steadily increasing rate, starting 7◦ below
the Tg. From the temperature measurement, it is safe to assume that the heat generated
within PVDF is enough to actuate the programmed SMP layer mounted on the unimorph.
When the applied field reached 20 V/µm, and after 60 s, a temperature of around 37 ◦C
was achieved, which is capable of inducing the memory effect. This effect was utilized to
increase the deformation of the unimorph actuator. As noted in Table 3, the bending of the
actuator due to the piezoelectric effect alone was not more than 4◦ at 20 V/µm. However,
the additional actuation from the SMP was found to be due to the heat from the PVDF, and
it is highly dependent on the dimension and placement of the SMP relative to the overall
structure (Figure 2). Samples 1, 2, and 3 depict the location and length of the SMP used on
an earlier developed unimorph. The length and location of the SMP layer affect the weight
of the structure and blocking force developed in the actuator responsible for the bending.

Table 3. Bending angle measured for the different samples under study.

Sample No.
Bending Angles (◦)

Unactuated
(0 V/µm)

Piezo Actuation
(Immediately after 20 V/µm Is Applied to PVDF)

Enhancement by SMP Actuation 1

(60 s after 20 V/µm Is Applied to PVDF)

1 3 7 (∆θ = 4) 15 (∆θ = 12)
2 8 12 (∆θ = 4) 13 (∆θ = 5)
3 80 84 (∆θ = 4) 120 (∆θ = 40)

1 Enahncement = Total Effect − Piezo Effect − Unactuated.

In Sample 1, as shown in Figure 2, when the length of the SMP layer is equal to the
length of the PVDF, the self-weight of the structure increases. This results in a bending angle
of 4◦ at 20 V/µm due to piezoelectric effect and 12◦ with combined SMP enhancement
(shown in Table 3). Rather than using SMP over the full layer, the SMP can only be
mounted near the fixed end to reduce the weight of the actuator. In Sample 2, the SMP
was fabricated with a length half of the PVDF layer and mounted at a fixed end (Figure 2).
The enhancement in bending of the unimorph was low (4◦ with piezo effect and 13◦ with
combined SMP and piezo effect) due to the shorter SMP active length (Table 3). To achieve
the maximum bending, Sample 3 was fabricated where the SMP layer was equal to half
of the length of PVDF and mounted at the center of the PVDF layer. The force developed
at the center of the layer induces a larger bending (∆θ = 40◦) due to SMP, while the piezo
effect remains the same (∆θ = 4◦) (Table 3).
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Figure 2. Different configurations utilized for maximum tip deflection of cantilever actuator (Table 
3). lp = length of PVDF layer = 20 mm, ls = length of SMP layer, (a) Sample 1  ls = lp, (b) Sample 2 
 ls = lp/2 at lp = 0 (at fixed end), and (c) Sample 3  ls = lp/2 at lp/2 (at center). 

Figure 2. Different configurations utilized for maximum tip deflection of cantilever actuator (Table 3). lp = length of PVDF
layer = 20 mm, ls = length of SMP layer, (a) Sample 1→ ls = lp, (b) Sample 2→ ls = lp/2 at lp = 0 (at fixed end), and (c)
Sample 3→ ls = lp/2 at lp/2 (at center).

The location of the SMP layer also affects the initial stage of the actuator. For Samples
1 and 2, the prebending angles are small (3◦ and 8◦, respectively). However, Sample 3 has a
higher prebending angle of 80◦. Figure 3 shows the results of all three samples, where the
initial and final bending angles (with both piezo and SMP effects are included) are shown.
The corresponding bending angles are summarized in Table 3. It is obvious from the results
of the experiment that the first two designs do not display any larger tip deflections or
bending angles. On the other hand, the design of Sample 3 shows a large improvement
of the bending angle, by 40◦ (Table 3), and a relatively large (0.83 mm) tip displacement
(Table 4) after SMP/piezo actuation.
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Table 4. Comparison of different PVDF-based bending actuators.

Reference Materials
Active/Passive

Dimensions of
PVDF Layer

(l × w × t in mm)

Moment of
Inertia (m4)

Max
E-Field
(V/µm)

Tip
Deflection

(mm)

Bending
Curvature

(1/m)

Mahale et al. [4] PVDF 2 × 0.5 × 0.02 3.33 × 10−19 15 0.1 -
Liu et al. [8] PVDF 60 × 20 × 0.16 6.83 × 10−15 3.75 0.3 -

Zhang et al. [7] PVDF Terpolymer/Scotch tape 30 × 20 × 0.03 4.50 × 10−17 70 - 140
Ahmed et al. [6] PVDF Terpolymer/Scotch tape 30 × 10 × 0.035 3.57 × 10−17 100 - 150

Present Work PVDF/Scotch tape/SMP 20 × 2.5 × 0.05 2.60 × 10−17 20 0.83 104

The tip deflection and bending curvature of different cantilever PVDF actuators, along
with reference, are summarized in Table 4. The proposed Scotch tape–PVDF–SMP layer-
based actuator shows a much better bending performance than other reported PVDF
actuator designs [4,6–8]. With the proposed Sample 3 design, the actuator produces a larger
tip deflection (0.83 mm) and a smaller 104 m−1 bending curvature. In terms of tip deflection,
a 20 µm thick PVDF unimorph with smaller geometry and moment of inertia that operates
at 15 V/µm (reported in reference [4]) produces only a 0.1 mm tip displacement. Though
a 0.3 mm deflection is obtained with relatively smaller E-field of 3.75 V/µm (shown in
reference [8]), the actuation is performed with a much larger geometry. For bending
curvature, the actuators developed by [6] and [7] with about the same order of moment of
inertia demand much higher operating electric fields (>70 V/µm) and larger geometries to
produce much larger bending curvatures (140 and 150 m−1, respectively).

Since the enhancement of the bending angle only occurs in a single direction, after
the removal of the electrical field, it is hard to return the actuator to its initial position. To
solve this problem, a two-way SMP can be implemented, where with an increase in the
temperature (by increase in DC bias) up to the Tg, the actuator is bent in one direction, and
with a decrease in temperature to below the Tg (removal of bias), the actuator returns back
to its initial position or rest.

4. Conclusions

The study involves the integration of a PVDF-based unimorph actuator with a shape-
memory polymer to achieve maximum bending of the cantilever actuator. From the
simulation study, it was observed that the heat generated in the piezoelectric PVDF layer
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cannot be neglected and this heat quite significantly contributes to the total deformation of
piezo-electric-based actuators. This heat is utilized to increase the maximum bending of
the actuator using a prestrained SMP layer. The material properties and thickness of all the
layers, the transition temperature of SMP, and the length and location of the SMP layer affect
the bending of the actuator. After the experimental study, it was observed that the SMP
layer mounted at the center of the actuator with a length half of the PVDF layer exhibits
a maximum bending angle of 40◦ at a DC field of 20 V/µm after 60 s. This developed
structure could be used for high unidirectional bending piezo-electric microactuators.
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