Viscosity-Regulated Control of RNA Microstructure Fabrication
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Calculation of Viscosity Containing Different Glycerol Contents
2.3. Fabrication of RNA Microstructures
2.4. Formation of Magnesium Pyrophosphate Crystals
2.5. Analysis of RNA Polymerization Rate
2.6. Characterization of Fabricated RNA Microstructures
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jasinski, D.; Haque, F.; Binzel, D.W.; Guo, P. Advancement of the Emerging Field of RNA Nanotechnology. ACS Nano 2017, 11, 1142–1164. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Park, Y.; Kim, J.; Jeong, J.; Han, S.; Lee, J.S.; Lee, J.B. Nucleic Acid Engineering: RNA Following the Trail of DNA. ACS Comb. Sci. 2016, 18, 87–99. [Google Scholar] [CrossRef] [PubMed]
- Grabow, W.W.; Jaeger, L. RNA Self-Assembly and RNA Nanotechnology. Acc. Chem. Res. 2014, 47, 1871–1880. [Google Scholar] [CrossRef] [PubMed]
- Kole, R.; Krainer, A.R.; Altman, S. RNA Therapeutics: Beyond RNA Interference and Antisense Oligonucleotides. Nat. Rev. Drug Discov. 2012, 11, 125–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, H.; Jeong, J.; Kim, D.; Kwak, G.; Kim, S.H.; Lee, J.B. Bubbled RNA-Based Cargo for Boosting RNA Interference. Adv. Sci. 2017, 4, 1600523. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.; Lee, E.; Kang, Y.Y.; Song, J.; Mok, H.; Lee, J.B. Enzymatically Produced MiR34a Nanoparticles for Enhanced Antiproliferation Activity. Adv. Biosyst. 2018, 2, 1700158. [Google Scholar] [CrossRef]
- Kim, H.; Lee, Y.K.; Han, K.H.; Jeon, H.; Jeong, I.; Kim, S.-Y.; Lee, J.B.; Lee, P.C.W. BRC-Mediated RNAi Targeting of USE1 Inhibits Tumor Growth in Vitro and in Vivo. Biomaterials 2020, 230, 119630. [Google Scholar] [CrossRef]
- Kim, H.; Park, Y.; Lee, J.B. Self-Assembled Messenger RNA Nanoparticles (MRNA-NPs) for Efficient Gene Expression. Sci. Rep. 2015, 5, 12737. [Google Scholar] [CrossRef] [Green Version]
- Mori, Y.; Nagamine, K.; Tomita, N.; Notomi, T. Detection of Loop-Mediated Isothermal Amplification Reaction by Turbidity Derived from Magnesium Pyrophosphate Formation. Biochem. Biophys. Res. Commun. 2001, 289, 150–154. [Google Scholar] [CrossRef]
- Takagi, S.; Takahashi, Y.; Sugimura, K.; Nishikawa, M.; Takakura, Y. Application of Magnesium Pyrophosphate–Based Sponge-Like Microparticles to Enhance the Delivery Efficiency and Adjuvant Effects of Polyriboinosinic-Polyribocytidylic Acid in Immune Cells. J. Pharm. Sci. 2016, 105, 766–772. [Google Scholar] [CrossRef] [Green Version]
- Zubaite, G.; Simutis, K.; Galinis, R.; Milkus, V.; Kiseliovas, V.; Mazutis, L. Droplet Microfluidics Approach for Single-DNA Molecule Amplification and Condensation into DNA-Magnesium-Pyrophosphate Particles. Micromachines 2017, 8, 62. [Google Scholar] [CrossRef] [Green Version]
- Shopsowitz, K.E.; Roh, Y.H.; Deng, Z.J.; Morton, S.W.; Hammond, P.T. RNAi-Microsponges Form through Self-Assembly of the Organic and Inorganic Products of Transcription. Small 2014, 10, 1623–1633. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, E.; Agarwal, S.; Kim, N.; Hage, F.S.; Leonardo, V.; Gelmi, A.; Stevens, M.M. Bioinspired Fabrication of DNA–Inorganic Hybrid Composites Using Synthetic DNA. ACS Nano 2019, 13, 2888–2900. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.B.; Hong, J.; Bonner, D.K.; Poon, Z.; Hammond, P.T. Self-Assembled RNA Interference Microsponges for Efficient SiRNA Delivery. Nat. Mater. 2012, 11, 316–322. [Google Scholar] [CrossRef] [Green Version]
- Han, D.; Park, Y.; Nam, H.; Lee, J.B. Enzymatic Size Control of RNA Particles Using Complementary Rolling Circle Transcription (CRCT) Method for Efficient SiRNA Production. Chem. Commun. 2014, 50, 11665–11667. [Google Scholar] [CrossRef]
- Kim, H.; Kim, D.; Jeong, J.; Jeon, H.; Lee, J.B. Size-Controllable Enzymatic Synthesis of Short Hairpin RNA Nanoparticles by Controlling the Rate of RNA Polymerization. Polymers 2018, 10, 589. [Google Scholar] [CrossRef] [Green Version]
- Han, S.; Kim, H.; Lee, J.B. Library SiRNA-Generating RNA Nanosponges for Gene Silencing by Complementary Rolling Circle Transcription. Sci. Rep. 2017, 7, 10005. [Google Scholar] [CrossRef]
- Jiang, Z.; Thayumanavan, S. Noncationic Material Design for Nucleic Acid Delivery. Adv. Ther. 2020, 3, 1900206. [Google Scholar] [CrossRef]
- Conner, S.D.; Schmid, S.L. Regulated Portals of Entry into the Cell. Nature 2003, 422, 37–44. [Google Scholar] [CrossRef]
- Kim, D.; Kim, H.; Han, S.; Scatena, M.; Kim, D.-H.; Lee, J.B. Immunostimulatory Effects Triggered by Self-Assembled Microspheres with Tandem Repeats of Polymerized RNA Strands. Adv. Healthc. Mater. 2019, 8, 1801395. [Google Scholar] [CrossRef]
- Mitragotri, S.; Lahann, J. Physical Approaches to Biomaterial Design. Nat. Mater. 2009, 8, 15–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, D.; Lin, J.; Jia, F.; Tan, X.; Wang, Y.; Sun, X.; Cao, X.; Che, F.; Lu, H.; Gao, X.; et al. Bottlebrush-Architectured Poly(Ethylene Glycol) as an Efficient Vector for RNA Interference in Vivo. Sci. Adv. 2019, 5, eaav9322. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Z.; Cui, W.; Mager, J.; Thayumanavan, S. Postfunctionalization of Noncationic RNA–Polymer Complexes for RNA Delivery. Ind. Eng. Chem. Res. 2019, 58, 6982–6991. [Google Scholar] [CrossRef]
- He, F.; Becker, G.W.; Litowski, J.R.; Narhi, L.O.; Brems, D.N.; Razinkov, V.I. High-Throughput Dynamic Light Scattering Method for Measuring Viscosity of Concentrated Protein Solutions. Anal. Biochem. 2010, 399, 141–143. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.B.; Peng, S.; Yang, D.; Roh, Y.H.; Funabashi, H.; Park, N.; Rice, E.J.; Chen, L.; Long, R.; Wu, M.; et al. A Mechanical Metamaterial Made from a DNA Hydrogel. Nat. Nanotechnol. 2012, 7, 816–820. [Google Scholar] [CrossRef]
- Sashi, P.; Bhuyan, A.K. Viscosity Dependence of Some Protein and Enzyme Reaction Rates: Seventy-Five Years after Kramers. Biochemistry 2015, 54, 4453–4461. [Google Scholar] [CrossRef]
- Ansari, A.; Jones, C.M.; Henry, E.R.; Hofrichter, J.; Eaton, W.A. The Role of Solvent Viscosity in the Dynamics of Protein Conformational Changes. Science 1992, 256, 1796–1798. [Google Scholar] [CrossRef]
DNA Strands | Length (nt) | Sequence |
---|---|---|
Linear DNA 1 (sense) | 92 | 5′—Phosphate—ATA GTG AGT CGT ATT AAA AAC TTC AGG GTC AGC TTG CTT GCT GGA TGA AGG ACG GTC GAA CGC AAA ACT TCA GGG TCA GCT TGC TTA TCC CT—3′ |
Linear DNA 2 (anti-sense) | 92 | 5′—Phosphate—ATA GTG AGT CGT ATT AAA GCA AGC TGA CCC TGA AGT TTT CTT AGG CTG GAC AAC AAC CAT CTA AAG CAA GCT GAC CCT GAA GTT TTA TCC CT—3′ |
Primer for T7 RNA polymerase | 22 | 5′—TAA TAC GAC TCA CTA TAG GGA T—3′ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moon, S.; Kim, H.; Kim, D.; Lee, J.B. Viscosity-Regulated Control of RNA Microstructure Fabrication. Polymers 2021, 13, 454. https://doi.org/10.3390/polym13030454
Moon S, Kim H, Kim D, Lee JB. Viscosity-Regulated Control of RNA Microstructure Fabrication. Polymers. 2021; 13(3):454. https://doi.org/10.3390/polym13030454
Chicago/Turabian StyleMoon, Sunghyun, Hyejin Kim, Dajeong Kim, and Jong Bum Lee. 2021. "Viscosity-Regulated Control of RNA Microstructure Fabrication" Polymers 13, no. 3: 454. https://doi.org/10.3390/polym13030454
APA StyleMoon, S., Kim, H., Kim, D., & Lee, J. B. (2021). Viscosity-Regulated Control of RNA Microstructure Fabrication. Polymers, 13(3), 454. https://doi.org/10.3390/polym13030454