Particle and Gel Characterization of Irinotecan-Loaded Double-Reverse Thermosensitive Hydrogel
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Fabrication of Irinotecan-Loaded Thermosensitive SLN
2.3. Particle Characterisation of Irinotecan-Loaded Thermosensitive SLN
2.4. Fabrication of Arinotecan-Loaded Thermosensitive DRTHs
2.5. Gel Characterisation of Irinotecan-Loaded Thermosensitive DRTHs.
3. Results and Discussion
3.1. Irinotecan-Loaded Thermosensitive SLN
3.2. Irinotecan-Loaded Thermosensitive DRTH
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- ud Din, F.; Aman, W.; Ullah, I.; Qureshi, O.S.; Mustapha, O.; Shafique, S.; Zeb, A. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int. J. Nanomed. 2017, 12, 7291. [Google Scholar] [CrossRef] [Green Version]
- Zhong, Z. Innovative Polymers for Controlled Release Applications. Biomacromolecules 2017, 18, 3652–3653. [Google Scholar] [CrossRef]
- Sabir, F.; Asad, M.I.; Qindeel, M.; Afzal, I.; Dar, M.J.; Shah, K.U.; Zeb, A.; Khan, G.M.; Ahmed, N.; Din, F.-u. Polymeric nanogels as versatile nanoplatforms for biomedical applications. J. Nanomater. 2019, 2019. [Google Scholar] [CrossRef] [Green Version]
- Elsabahy, M.; Heo, G.S.; Lim, S.-M.; Sun, G.; Wooley, K.L. Polymeric nanostructures for imaging and therapy. Chem. Rev. 2015, 115, 10967–11011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamaly, N.; Yameen, B.; Wu, J.; Farokhzad, O.C. Degradable controlled-release polymers and polymeric nanoparticles: Mechanisms of controlling drug release. Chem. Rev. 2016, 116, 2602–2663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cabral, H.; Kataoka, K. Progress of drug-loaded polymeric micelles into clinical studies. J. Control. Release 2014, 190, 465–476. [Google Scholar] [CrossRef] [Green Version]
- Zeb, A.; Rana, I.; Choi, H.-I.; Lee, C.-H.; Baek, S.-W.; Lim, C.-W.; Khan, N.; Arif, S.T.; Alvi, A.M.; Shah, F.A. Potential and Applications of Nanocarriers for Efficient Delivery of Biopharmaceuticals. Pharmaceutics 2020, 12, 1184. [Google Scholar] [CrossRef]
- Mir, M.; Ishtiaq, S.; Rabia, S.; Khatoon, M.; Zeb, A.; Khan, G.M.; ur Rehman, A.; ud Din, F. Nanotechnology: From in vivo imaging system to controlled drug delivery. Nanoscale Res. Lett. 2017, 12, 1–16. [Google Scholar] [CrossRef]
- Femke, M.; Goey, A.K.L.; van Schaik, R.H.N.; Mathijssen, R.H.J.; Bins, S. Individualization of irinotecan treatment: A review of pharmacokinetics, pharmacodynamics, and pharmacogenetics. Clin. Pharmacokinet. 2018, 57, 1229–1254. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.S.; Kim, J.H.; Kim, B.; Choi, H.C.; Kwon, J.H.; Choi, D.R. Phase II study of weekly carboplatin and irinotecan as first-line chemotherapy for patients with advanced non-small cell lung cancer. Cancer Chemother. Pharmacol. 2013, 71, 1591–1597. [Google Scholar] [CrossRef]
- Poudel, B.K.; Gupta, B.; Ramasamy, T.; Thapa, R.K.; Youn, Y.S.; Choi, H.-G.; Yong, C.S.; Kim, J.O. Development of polymeric irinotecan nanoparticles using a novel lactone preservation strategy. Int. J. Pharm. 2016, 512, 75–86. [Google Scholar] [CrossRef]
- Tran, T.H.; Nguyen, H.T.; Pham, T.T.; Choi, J.Y.; Choi, H.-G.; Yong, C.S.; Kim, J.O. Development of a graphene oxide nanocarrier for dual-drug chemo-phototherapy to overcome drug resistance in cancer. ACS Appl. Mater. Interfaces 2015, 7, 28647–28655. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Ballesteros, M.; Andrés-Guerrero, V.; Parra, F.J.; Marinich, J.; de-Las-Heras, B.; Molina-Martínez, I.T.; Vázquez-Lasa, B.; San Román, J.; Herrero-Vanrell, R. Amphiphilic acrylic nanoparticles containing the poloxamer star bayfit® 10WF15 as ophthalmic drug carriers. Polymers 2019, 11, 1213. [Google Scholar] [CrossRef] [Green Version]
- Soepenberg, O.; Dumez, H.; Verweij, J.; Semiond, D.; deJonge, M.J.A.; Eskens, F.A.L.M.; Steeg, J.t.; Selleslach, J.; Assadourian, S.; Sanderink, G.-J. Phase I and pharmacokinetic study of oral irinotecan given once daily for 5 days every 3 weeks in combination with capecitabine in patients with solid tumors. J. Clin. Oncol. 2005, 23, 889–898. [Google Scholar] [CrossRef] [PubMed]
- Mathijssen, R.H.J.; Van Alphen, R.J.; Verweij, J.; Loos, W.J.; Nooter, K.; Stoter, G.; Sparreboom, A. Clinical pharmacokinetics and metabolism of irinotecan (CPT-11). Clin. Cancer Res. 2001, 7, 2182–2194. [Google Scholar] [PubMed]
- Manchun, S.; Dass, C.R.; Cheewatanakornkool, K.; Sriamornsak, P. Enhanced anti-tumor effect of pH-responsive dextrin nanogels delivering doxorubicin on colorectal cancer. Carbohydrate polymers 2015, 126, 222–230. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Hu, Z.; Chan, S.Y.; Chan, E.; Goh, B.C.; Duan, W.; Zhou, S. Novel agents that potentially inhibit irinotecan-induced diarrhea. Curr. Med. Chem. 2005, 12, 1343–1358. [Google Scholar] [CrossRef]
- ud Din, F.; Mustapha, O.; Kim, D.W.; Rashid, R.; Park, J.H.; Choi, J.Y.; Ku, S.K.; Yong, C.S.; Kim, J.O.; Choi, H.-G. Novel dual-reverse thermosensitive solid lipid nanoparticle-loaded hydrogel for rectal administration of flurbiprofen with improved bioavailability and reduced initial burst effect. Eur. J. Pharm. Biopharm. 2015, 94, 64–72. [Google Scholar] [CrossRef]
- ud Din, F.; Rashid, R.; Mustapha, O.; Kim, D.W.; Park, J.H.; Ku, S.K.; Oh, Y.-K.; Kim, J.O.; Youn, Y.S.; Yong, C.S. Development of a novel solid lipid nanoparticles-loaded dual-reverse thermosensitive nanomicelle for intramuscular administration with sustained release and reduced toxicity. RSC Adv. 2015, 5, 43687–43694. [Google Scholar] [CrossRef]
- Seo, Y.G.; Kim, D.-W.; Yeo, W.H.; Ramasamy, T.; Oh, Y.-K.; Park, Y.-J.; Kim, J.-A.; Oh, D.H.; Ku, S.K.; Kim, J.K. Docetaxel-loaded thermosensitive and bioadhesive nanomicelles as a rectal drug delivery system for enhanced chemotherapeutic effect. Pharm. Res. 2013, 30, 1860–1870. [Google Scholar] [CrossRef] [PubMed]
- Yeo, W.H.; Ramasamy, T.; Kim, D.-W.; Cho, H.J.; Kim, Y.-I.; Cho, K.H.; Yong, C.S.; Kim, J.O.; Choi, H.-G. Docetaxel-loaded thermosensitive liquid suppository: Optimization of rheological properties. Arch. Pharm. Res. 2013, 36, 1480–1486. [Google Scholar] [CrossRef]
- Choi, H.-G.; Oh, Y.-K.; Kim, C.-K. In situ gelling and mucoadhesive liquid suppository containing acetaminophen: Enhanced bioavailability. Int. J. Pharm. 1998, 165, 23–32. [Google Scholar] [CrossRef]
- Fakhar ud, D.; Khan, G.M. Development and characterisation of levosulpiride-loaded suppositories with improved bioavailability in vivo. Pharm. Dev. Technol. 2019, 24, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Yun, M.-O.; Choi, H.-G.; Jung, J.-H.; Kim, C.-K. Development of a thermo-reversible insulin liquid suppository with bioavailability enhancement. Int. J. Pharm. 1999, 189, 137–145. [Google Scholar] [CrossRef]
- Rana, I.; Khan, N.; Ansari, M.M.; Shah, F.A.; ud Din, F.; Sarwar, S.; Imran, M.; Qureshi, O.S.; Choi, H.-I.; Lee, C.-H. Solid lipid nanoparticles-mediated enhanced antidepressant activity of duloxetine in lipopolysaccharide-induced depressive model. Colloids Surf. B Biointerfaces 2020, 194, 111209. [Google Scholar] [CrossRef]
- Din, F.u.; Choi, J.Y.; Kim, D.W.; Mustapha, O.; Kim, D.S.; Thapa, R.K.; Ku, S.K.; Youn, Y.S.; Oh, K.T.; Yong, C.S. Irinotecan-encapsulated double-reverse thermosensitive nanocarrier system for rectal administration. Drug Delivery 2017, 24, 502–510. [Google Scholar] [CrossRef] [Green Version]
- Ding, Y.; Dou, C.; Chang, S.; Xie, Z.; Yu, D.-G.; Liu, Y.; Shao, J. Core–shell eudragit s100 nanofibers prepared via triaxial electrospinning to provide a colon-targeted extended drug release. Polymers 2020, 12, 2034. [Google Scholar] [CrossRef]
- Mwiiri, F.K.; Daniels, R. Electrospun nanofibers for biomedical applications. In Delivery of Drugs; Elsevier: Amsterdam, The Netherlands, 2020; Volume 74, pp. 53–74. [Google Scholar] [CrossRef]
- Kajdič, S.; Planinšek, O.; Gašperlin, M.; Kocbek, P. Electrospun nanofibers for customized drug-delivery systems. J. Drug Deliv. Sci. Technol. 2019, 51, 672–681. [Google Scholar] [CrossRef]
- Li, B.; Liu, Y.; Wei, S.; Huang, Y.; Yang, S.; Xue, Y.; Xuan, H.; Yuan, H. A Solvent System Involved Fabricating Electrospun Polyurethane Nanofibers for Biomedical Applications. Polymers 2020, 12, 3038. [Google Scholar] [CrossRef] [PubMed]
- ud Din, F.; Kim, D.W.; Choi, J.Y.; Thapa, R.K.; Mustapha, O.; Kim, D.S.; Oh, Y.-K.; Ku, S.K.; Youn, Y.S.; Oh, K.T. Irinotecan-loaded double-reversible thermogel with improved antitumor efficacy without initial burst effect and toxicity for intramuscular administration. Acta Biomater. 2017, 54, 239–248. [Google Scholar] [CrossRef]
- Kasongo, K.W.; Müller, R.H.; Walker, R.B. The use of hot and cold high pressure homogenization to enhance the loading capacity and encapsulation efficiency of nanostructured lipid carriers for the hydrophilic antiretroviral drug, didanosine for potential administration to paediatric patients. Pharm. Dev. Technol. 2012, 17, 353–362. [Google Scholar] [CrossRef] [PubMed]
- Souza, L.G.; Silva, E.J.; Martins, A.L.L.; Mota, M.F.; Braga, R.C.; Lima, E.M.; Valadares, M.C.; Taveira, S.F.; Marreto, R.N. Development of topotecan loaded lipid nanoparticles for chemical stabilization and prolonged release. Eur. J. Pharm. Biopharm. 2011, 79, 189–196. [Google Scholar] [CrossRef] [PubMed]
- ud Din, F.; Zeb, A.; Shah, K.U. Development, in-vitro and in-vivo evaluation of ezetimibe-loaded solid lipid nanoparticles and their comparison with marketed product. J. Drug Deliv. Sci. Technol. 2019, 51, 583–590. [Google Scholar] [CrossRef]
- Nguyen, H.T.; Tran, T.T.P.; Jin, S.G.; Yong, C.S.; Truong, D.H.; Tran, T.H.; Kim, J.O. Combined hyperthermia and chemotherapy as a synergistic anticancer treatment. J. Pharm. Investig. 2019, 49, 519–526. [Google Scholar] [CrossRef]
- Ying, X.-Y.; Cui, D.; Yu, L.; Du, Y.-Z. Solid lipid nanoparticles modified with chitosan oligosaccharides for the controlled release of doxorubicin. Carbohydr. Polym. 2011, 84, 1357–1364. [Google Scholar] [CrossRef]
- You, J.; Wan, F.; de Cui, F.; Sun, Y.; Du, Y.-Z.; qiang Hu, F. Preparation and characteristic of vinorelbine bitartrate-loaded solid lipid nanoparticles. Int. J. Pharm. 2007, 343, 270–276. [Google Scholar] [CrossRef]
- Khaleeq, N.; Din, F.-U.; Khan, A.S.; Rabia, S.; Dar, J.; Khan, G.M. Development of levosulpiride-loaded solid lipid nanoparticles and their in vitro and in vivo comparison with commercial product. J. Microencapsul. 2020, 37, 160–169. [Google Scholar] [CrossRef] [PubMed]
- Mojahedian, M.M.; Daneshamouz, S.; Samani, S.M.; Zargaran, A. A novel method to produce solid lipid nanoparticles using n-butanol as an additional co-surfactant according to the o/w microemulsion quenching technique. Chem. Phys. Lipids 2013, 174, 32–38. [Google Scholar] [CrossRef] [PubMed]
- Ramasamy, T.; Ruttala, H.B.; Choi, J.Y.; Tran, T.H.; Kim, J.H.; Ku, S.K.; Choi, H.G.; Yong, C.S.; Kim, J.O. Engineering of a lipid-polymer nanoarchitectural platform for highly effective combination therapy of doxorubicin and irinotecan. Chem. Commun. 2015, 51, 5758–5761. [Google Scholar] [CrossRef]
- Choi, J.Y.; Ramasamy, T.; Tran, T.H.; Ku, S.K.; Shin, B.S.; Choi, H.-G.; Yong, C.S.; Kim, J.O. Systemic delivery of axitinib with nanohybrid liposomal nanoparticles inhibits hypoxic tumor growth. J. Mater. Chem. B 2015, 3, 408–416. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.W.; Kwon, M.S.; Yousaf, A.M.; Balakrishnan, P.; Park, J.H.; Kim, D.S.; Lee, B.-J.; Park, Y.J.; Yong, C.S.; Kim, J.O. Comparison of a solid SMEDDS and solid dispersion for enhanced stability and bioavailability of clopidogrel napadisilate. Carbohydr. Polym. 2014, 114, 365–374. [Google Scholar] [CrossRef] [PubMed]
- Ramasamy, T.; Choi, J.Y.; Cho, H.J.; Umadevi, S.K.; Shin, B.S.; Choi, H.-G.; Yong, C.S.; Kim, J.O. Polypeptide-based micelles for delivery of irinotecan: Physicochemical and in vivo characterization. Pharm. Res. 2015, 32, 1947–1956. [Google Scholar] [CrossRef] [PubMed]
- Xuan, J.-J.; Balakrishnan, P.; Oh, D.H.; Yeo, W.H.; Park, S.M.; Yong, C.S.; Choi, H.-G. Rheological characterization and in vivo evaluation of thermosensitive poloxamer-based hydrogel for intramuscular injection of piroxicam. Int. J. Pharm. 2010, 395, 317–323. [Google Scholar] [CrossRef] [PubMed]
- Xuan, J.-J.; Yan, Y.-D.; Oh, D.H.; Choi, Y.K.; Yong, C.S.; Choi, H.-G. Development of thermo-sensitive injectable hydrogel with sustained release of doxorubicin: Rheological characterization and in vivo evaluation in rats. Drug Delivery 2011, 18, 305–311. [Google Scholar] [CrossRef] [Green Version]
Composition | Gelatine Temperature (°C) | Viscosity at 25 °C (mPa.s) | Gel Strength (×102 mPa.s) | Gelation Time (min) |
---|---|---|---|---|
I (15/17/0/0/68%) | 50.0 ± 0.3 | 114.8 ± 4.6 | 92.2 ± 0.9 | 9.0 ± 0.4 |
II (15/17/4/0/64%) | 37.6 ± 0.3 | 210.1 ± 3.3 | 103.0 ± 0.8 | 7.8 ± 0.6 |
III (15/17/5/0/63%) | 35.1 ± 0.2 | 233.5 ± 3.6 | 111.4 ± 0.8 | 5.6 ± 0.6 |
IV (15/17/7/0/61%) | 31.9 ± 1.6 | 287.1 ± 3.3 | 121.6 ± 1.0 | 4.0 ± 0.7 |
V (15/17/4/5/59%) | 34.6 ± 0.2 | 244.8 ± 4.8 | 108.1 ± 0.5 | 5.7 ± 0.4 |
VI (15/17/4/10/54%) | 32.5 ± 0.4 | 259.0 ± 3.1 | 117.0 ± 0.6 | 4.8 ± 0.5 |
VII (15/17/4/15/49%) | 28.0 ± 0.8 | 284.6 ± 3.1 | 132.3 ± 0.5 | 3.0 ± 0.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Din, F.u.; Jin, S.G.; Choi, H.-G. Particle and Gel Characterization of Irinotecan-Loaded Double-Reverse Thermosensitive Hydrogel. Polymers 2021, 13, 551. https://doi.org/10.3390/polym13040551
Din Fu, Jin SG, Choi H-G. Particle and Gel Characterization of Irinotecan-Loaded Double-Reverse Thermosensitive Hydrogel. Polymers. 2021; 13(4):551. https://doi.org/10.3390/polym13040551
Chicago/Turabian StyleDin, Fakhar ud, Sung Giu Jin, and Han-Gon Choi. 2021. "Particle and Gel Characterization of Irinotecan-Loaded Double-Reverse Thermosensitive Hydrogel" Polymers 13, no. 4: 551. https://doi.org/10.3390/polym13040551
APA StyleDin, F. u., Jin, S. G., & Choi, H. -G. (2021). Particle and Gel Characterization of Irinotecan-Loaded Double-Reverse Thermosensitive Hydrogel. Polymers, 13(4), 551. https://doi.org/10.3390/polym13040551