Enhancement of Curcumin Anti-Inflammatory Effect via Formulation into Myrrh Oil-Based Nanoemulgel
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Development of Transdermal Cur Formulations
2.2.1. Development of Gel
2.2.2. Development of Cur-Loaded Emulgel
2.2.3. Development of Nanoemulgel
2.3. Physical Characterization
2.3.1. Visual Inspection
2.3.2. pH Measurement
2.3.3. Spreadability Test
2.3.4. Viscosity
2.3.5. Size and Size Distribution
2.3.6. Morphological Evaluation
2.4. In Vitro Drug Release Studies
2.5. Kinetic Study
- (a)
- Zero order equation Q = Q0 + kt
- (b)
- First order equation Q = Q0 × ekt
- (c)
- Higuchi equation Q = k × t0.5
- (d)
- Korsmeyer–Peppas equation Q = k × tn
2.6. Stability Study
2.7. Animal Experiment
2.8. Ex Vivo Evaluation (Skin Permeation Study)
2.8.1. Preparation of Rat Skin
2.8.2. Permeation of Cur from Different Transdermal Formulations
2.9. Anti-Inflammatory Activity
Carrageenan-Induced Rat Paw Edema
2.10. Skin Irritation Studies
2.11. Statistical Analysis
3. Results and Discussion
3.1. Physical Characterization
3.1.1. Visual Inspection
3.1.2. pH Measurement
3.1.3. Spreadability Test
3.1.4. Viscosity
3.1.5. Particle Size and PDI
3.1.6. Morphological Evaluation
3.2. In Vitro Drug Release Studies
3.3. Kinetic Study
3.4. Stability Study
3.5. Ex Vivo Evaluation (Skin Permeation Study)
3.6. Anti-Inflammatory Activity
Carrageenan-Induced Rat Paw Edema
3.7. Skin Irritation Study
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Algahtani, M.S.; Ahmad, M.Z.; Nourein, I.H.; Ahmad, J. Co-delivery of imiquimod and curcumin by nanoemugel for improved topical delivery and reduced psoriasis-like skin lesions. Biomolecules 2020, 10, 968. [Google Scholar] [CrossRef]
- Jurenka, J.S. Anti-inflammatory properties of curcumin, a major constituent of Curcuma longa: A review of preclinical and clinical research. Altern. Med. Rev. J. Clin. Ther. 2009, 14, 141–153. [Google Scholar]
- Alisi, I.O.; Uzairu, A.; Abechi, S.E.; Idris, S.O. Evaluation of the antioxidant properties of curcumin derivatives by genetic function algorithm. J. Adv. Res. 2018, 12, 47–54. [Google Scholar] [CrossRef]
- Adamczak, A.; Ożarowski, M.; Karpiński, T.M. Curcumin, a natural antimicrobial agent with strain-specific activity. Pharm. Basel 2020, 13, 153. [Google Scholar] [CrossRef]
- Tomeh, M.A.; Hadianamrei, R.; Zhao, X. A review of curcumin and its derivatives as anticancer agents. Int. J. Mol. Sci. 2019, 20, 1033. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Purpura, M.; Lowery, R.P.; Wilson, J.M.; Mannan, H.; Münch, G.; Razmovski-Naumovski, V. Analysis of different innovative formulations of curcumin for improved relative oral bioavailability in human subjects. Eur. J. Nutr. 2018, 57, 929–938. [Google Scholar] [CrossRef] [Green Version]
- Hewlings, S.J.; Kalman, D.S. Curcumin: A review of its effects on human health. Foods 2017, 6, 92. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Liu, Y.; Tang, Y.; Shokoohinia, Y.; Chittiboyina, A.G.; Wang, M.; Avonto, C. Identification of potential skin sensitizers in myrrh. Cosmetics 2019, 6, 47. [Google Scholar] [CrossRef] [Green Version]
- Cao, B.; Wei, X.C.; Xu, X.R.; Zhang, H.Z.; Luo, C.H.; Feng, B.; Xu, R.C.; Zhao, S.Y.; Du, X.J.; Han, L.; et al. Seeing the unseen of the combination of two natural resins, frankincense and myrrh: Changes in chemical constituents and pharmacological activities. Molecules 2019, 24, 3076. [Google Scholar] [CrossRef] [Green Version]
- Fatani, A.J.; Alrojayee, F.S.; Parmar, M.Y.; Abuohashish, H.M.; Ahmed, M.M.; Al-Rejaie, S.S. Myrrh attenuates oxidative and inflammatory processes in acetic acid-induced ulcerative colitis. Exp. Ther. Med. 2016, 12, 730–738. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, C.; Lu, X.; Liu, W.; Chen, A.; Meng, G.; Zhang, H.; Li, B.; Zhang, Y.; Wu, J.; Wei, J. CD8+ T cells mediate the antitumor activity of frankincense and myrrh in hepatocellular carcinoma. J. Transl. Med. 2018, 16, 1–12. [Google Scholar] [CrossRef]
- Chen, Y.; Zhou, C.; Ge, Z.; Liu, Y.; Liu, Y.; Feng, W.; Li, S.; Chen, G.; Wei, T. Composition and potential anticancer activities of essential oils obtained from myrrh and frankincense. Oncol. Lett. 2013, 6, 1140–1146. [Google Scholar] [CrossRef] [Green Version]
- Su, S.; Hua, Y.; Wang, Y.; Gu, W.; Zhou, W.; Duan, J.-A.; Jiang, H.; Chen, T.; Tang, Y. Evaluation of the anti-inflammatory and analgesic properties of individual and combined extracts from Commiphora myrrha, and Boswellia carterii. J. Ethnopharmacol. 2012, 139, 649–656. [Google Scholar] [CrossRef] [PubMed]
- De Rapper, S.; van Vuuren, S.; Kamatou, G.; Viljoen, A.; Dagne, E. The additive and synergistic antimicrobial effects of select frankincense and myrrh oils—A combination from the pharaonic pharmacopoeia. Lett. Appl. Microbiol. 2012, 54, 352–358. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Su, S.; Ouyang, Z.; Zhou, W.; Hua, Y.; Duan, J.; Tang, Y. Effect of extracts from Olibanum and Myrrha and their compatibility on platelet aggregation and antithrombin activity. Chin. J. Exp. Tradit. Med. Formul. 2011, 19, 160–165. [Google Scholar]
- Shehata, T.M.; Khalil, H.E.; Elsewedy, H.S.; Soliman, W.E. Myrrh essential oil-based nanolipid formulation for enhancement of the antihyperlipidemic effect of atorvastatin. J. Drug Deliv. Sci. Technol. 2021, 61, 102277. [Google Scholar] [CrossRef]
- Maroon, J.C.; Bost, J.W.; Maroon, A. Natural anti-inflammatory agents for pain relief. Surg. Neurol. Int. 2010, 1, 80. [Google Scholar] [CrossRef] [Green Version]
- Prausnitz, M.R.; Langer, R. Transdermal drug delivery. Nat. Biotechnol. 2008, 26, 1261–1268. [Google Scholar] [CrossRef]
- Elsewedy, H.S.; Aldhubiab, B.E.; Mahdy, M.A.; Elnahas, H.M. Brucine PEGylated nanoemulsion: In vitro and in vivo evaluation. Colloids Surf. A Physicochem. Eng. Asp. 2021, 608, 125618. [Google Scholar] [CrossRef]
- Mao, Y.; Chen, X.; Xu, B.; Shen, Y.; Ye, Z.; Chaurasiya, B.; Liu, L.; Li, Y.; Xing, X.; Chen, D. Eprinomectin nanoemulgel for transdermal delivery against endoparasites and ectoparasites: Preparation, in vitro and in vivo evaluation. Drug Deliv. 2019, 26, 1104–1114. [Google Scholar] [CrossRef] [Green Version]
- Alexander, A.; Khichariya, A.; Gupta, S.; Patel, R.J.; Giri, T.K.; Tripathi, D.K. Recent expansions in an emergent novel drug delivery technology: Emulgel. J. Control. Release Off. J. Control. Release Soc. 2013, 171, 122–132. [Google Scholar] [CrossRef]
- Algahtani, M.S.; Ahmad, M.Z.; Ahmad, J. Nanoemulgel for improved topical delivery of retinyl palmitate: Formulation design and stability evaluation. Nanomaterials 2020, 10, 848. [Google Scholar] [CrossRef]
- Chowdhury, M.R.; Moshikur, R.M.; Wakabayashi, R.; Tahara, Y.; Kamiya, N.; Moniruzzaman, M.; Goto, M. Development of a novel ionic liquid—Curcumin complex to enhance its solubility, stability, and activity. Chem. Commun. 2019, 55, 7737–7740. [Google Scholar] [CrossRef] [PubMed]
- Hardiningtyas, S.D.; Wakabayashi, R.; Ishiyama, R.; Owada, Y.; Goto, M.; Kamiya, N. Enhanced potential of therapeutic applications of curcumin using solid-in-water nanodispersion technique. J. Chem. Eng. Jpn. 2019, 52, 138–143. [Google Scholar] [CrossRef] [Green Version]
- Morsy, M.A.; Abdel-Latif, R.G.; Nair, A.B.; Venugopala, K.N.; Ahmed, A.F.; Elsewedy, H.S.; Shehata, T.M. Preparation and evaluation of atorvastatin-loaded nanoemulgel on wound-healing efficacy. Pharmaceutics 2019, 11, 609. [Google Scholar] [CrossRef] [Green Version]
- Arora, R.; Aggarwal, G.; Harikumar, S.L.; Kaur, K. Nanoemulsion based hydrogel for enhanced transdermal delivery of ketoprofen. Adv. Pharm. 2014, 2014, 468456. [Google Scholar] [CrossRef]
- Dantas, M.G.B.; Reis, S.A.G.B.; Damasceno, C.M.D.; Rolim, L.A.; Rolim-Neto, P.J.; Carvalho, F.O.; Quintans-Junior, L.J.; Almeida, J.R.G.D.S. Development and evaluation of stability of a gel formulation containing the monoterpene borneol. Sci. World J. 2016, 2016, 7394685. [Google Scholar] [CrossRef] [Green Version]
- Soliman, W.E.; Khan, S.; Rizvi, S.M.D.; Moin, A.; Elsewedy, H.S.; Abulila, A.S.; Shehata, T.M. Therapeutic applications of biostable silver nanoparticles synthesized using peel extract of Benincasa hispida: Antibacterial and anticancer activities. Nanomaterials 2020, 10, 1954. [Google Scholar] [CrossRef]
- Shehata, T.M.; Ibrahima, M.M. BUCHI nano spray dryer B-90: A promising technology for the production of metformin hydrochloride-loaded alginate-gelatin nanoparticles. Drug Dev. Ind. Pharm. 2019, 45, 1907–1914. [Google Scholar] [CrossRef]
- Siepmann, J.; Siepmann, F. Mathematical modeling of drug dissolution. Int. J. Pharm. 2013, 453, 12–24. [Google Scholar] [CrossRef] [PubMed]
- Owonubi, S.J.; Aderibigbe, B.A.; Mukwevho, E.; Sadiku, E.R.; Ray, S.S. Characterization and in vitro release kinetics of antimalarials from whey protein-based hydrogel biocomposites. Int. J. Ind. Chem. 2018, 9, 39–52. [Google Scholar] [CrossRef] [Green Version]
- Alam, M.S.; Ali, M.S.; Alam, M.I.; Anwer, T.; Safhi, M.M.A. Stability testing of beclomethasone dipropionate nanoemulsion. Trop. J. Pharm. Res. 2015, 14, 15–20. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, M.M.; Shehata, T.M. The enhancement of transdermal permeability of water soluble drug by niosome-emulgel combination. J. Drug Deliv. Sci. Technol. 2012, 22, 353–359. [Google Scholar] [CrossRef]
- Shah, J.; Nair, A.B.; Jacob, S.; Patel, R.K.; Shah, H.; Shehata, T.M.; Morsy, M.A. Nanoemulsion based vehicle for effective ocular delivery of moxifloxacin using experimental design and pharmacokinetic study in rabbits. Pharmaceutics 2019, 11, 230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shehata, T.M.; Nair, A.B.; Al-Dhubiab, B.E.; Shah, J.; Jacob, S.; Alhaider, I.A.; Attimarad, M.; Elsewedy, H.S.; Ibrahim, M.M. Vesicular emulgel based system for transdermal delivery of insulin: Factorial design and in vivo evaluation. Appl. Sci. 2020, 10, 5341. [Google Scholar] [CrossRef]
- Khedr, M.A.; Shehata, T.M.; Mohamed, M.E. Repositioning of 2,4-Dichlorophenoxy acetic acid as a potential anti-inflammatory agent: In Silico and Pharmaceutical Formulation study. European J. Pharm. Sci. 2014, 65, 130–138. [Google Scholar] [CrossRef] [PubMed]
- Patel, N.A.; Patel, N.J.; Patel, R.P. Formulation and evaluation of curcumin gel for topical application. Pharm. Dev. Technol. 2009, 14, 80–89. [Google Scholar] [CrossRef] [PubMed]
- Sarigüllü Ozgüney, I.; Yeşim Karasulu, H.; Kantarci, G.; Sözer, S.; Güneri, T.; Ertan, G. Transdermal delivery of diclofenac sodium through rat skin from various formulations. AAPS PharmSciTech 2006, 7, 88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mulia, K.; Ramadhan, R.M.A.; Krisanti, E.A.J.M.W.C. Formulation and characterization of nanoemulgel mangosteen extract in virgin coconut oil for topical formulation. MATEC Web Conf. 2018, 156, 01013. [Google Scholar] [CrossRef] [Green Version]
- Rajput, R.L.; Narkhede, J.S.; Mujumdar, A.; Naik, J.B. Synthesis and evaluation of luliconazole loaded biodegradable nanogels prepared by pH-responsive Poly (acrylic acid) grafted Sodium Carboxymethyl Cellulose using amine based cross linker for topical targeting: In vitro and ex vivo assessment. Polym. Plast. Technol. Mater. 2020, 59, 1654–1666. [Google Scholar] [CrossRef]
- Ermawati, D.E.; Alya, F.; Prihapsara, F. Optimization of Nanoemulgel Formula of Gold Particle-Vitamin E and in Vivo Test. In Proceedings of the 2019 Ahmad Dahlan International Conference Series on Pharmacy and Health Science (ADICS-PHS 2019), Yogyakarta, Indonesia, 26–27 August 2019. [Google Scholar]
- Dhawan, B.; Aggarwal, G.; Harikumar, S. Enhanced transdermal permeability of piroxicam through novel nanoemulgel formulation. Int. J. Pharm. Investig. 2014, 4, 65–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, Y.; Ling, X.; Jiang, W.; Du, S.; Lu, Y.; Tu, J. Formulation and evaluation of Cyclosporin a emulgel for ocular delivery. Drug Deliv. 2015, 22, 911–917. [Google Scholar] [CrossRef]
- Dash, S.; Murthy, P.N.; Nath, L.; Chowdhury, P. Kinetic modeling on drug release from controlled drug delivery systems. Acta Pol. Pharm. 2010, 67, 217–223. [Google Scholar] [PubMed]
- Rizwan, M.I.; Damodharan, N. Mathematical modelling of dissolution kinetics in dosage forms. Res. J. Pharm. Technol. 2020, 13, 1339–1345. [Google Scholar]
- Mohamed, M.I. Optimization of chlorphenesin emulgel formulation. AAPS J. 2004, 6, e26. [Google Scholar] [CrossRef] [Green Version]
- Nair, A.; Jacob, S.; Al-Dhubiab, B.; Attimarad, M.; Harsha, S. Basic considerations in the dermatokinetics of topical formulations. Braz. J. Pharm. Sci. 2013, 49, 423–434. [Google Scholar] [CrossRef] [Green Version]
- Shah, H.; Nair, A.B.; Shah, J.; Bharadia, P.; Al-Dhubiab, B.E. Proniosomal gel for transdermal delivery of lornoxicam: Optimization using factorial design and in vivo evaluation in rats. Daru J. Pharm. Sci. 2019, 27, 59–70. [Google Scholar] [CrossRef] [PubMed]
- Sohail, A.; Gaurav, K.J.; Farhan, J.A.; Roop, K.K.; Neelu, J.; Zeenat, I.K.; Sushama, T. Investigation of nanoemulsion system for transdermal delivery of domperidone: Ex-vivo and in vivo Studies. Curr. Nanosci. 2008, 4, 381–390. [Google Scholar] [CrossRef]
- Thomas, L.; Zakir, F.; Mirza, M.A.; Anwer, M.K.; Ahmad, F.J.; Iqbal, Z. Development of curcumin loaded chitosan polymer based nanoemulsion gel: In vitro, ex vivo evaluation and in vivo wound healing studies. Int. J. Biol. Macromol. 2017, 101, 569–579. [Google Scholar] [CrossRef]
- Elmataeeshy, M.; Sokar, M.; Bahey-El-Din, M.; Shaker, D. Enhanced transdermal permeability of Terbinafine through novel nanoemulgel formulation; Development, in vitro and in vivo characterization. Future J. Pharm. Sci. 2018, 4. [Google Scholar] [CrossRef]
- Eid, A.M.; El-Enshasy, H.A.; Aziz, R.; Elmarzugi, N.A. Preparation, characterization and anti-inflammatory activity of swietenia macrophylla nanoemulgel. J. Nanomed. Nanotechnol. 2014, 5, 1–10. [Google Scholar] [CrossRef]
- Astuti, K.W.; Wijayanti, N.P.A.D.; Yustiantara, P.S.; Laksana, K.P.; Putra, P.S.A. Anti-inflammatory activity of mangosteen (Garcinia Mangostana Linn.) rind extract nanoemulgel and gel dosage forms. Biomed. Pharmacol. J. 2019, 12, 1767. [Google Scholar] [CrossRef]
- Su, S.; Duan, J.; Chen, T.; Huang, X.; Shang, E.; Yu, L.; Wei, K.; Zhu, Y.; Guo, J.; Guo, S.; et al. Frankincense and myrrh suppress inflammation via regulation of the metabolic profiling and the MAPK signaling pathway. Sci. Rep. 2015, 5, 13668. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Formulation | Cur (g) | NaCMC (g) | Myrrh Oil (mL) | Ethanol (g) | PG (g) | Tween 80 (mL) | Water to (g) |
---|---|---|---|---|---|---|---|
Cur-loaded gel | 1 | 1 | - | - | - | 1 | 50 |
Cur-loaded emulgel | 1 | 1 | 5 | 2 | 1 | 1 | 50 |
Cur-loaded nanoemulgel | 1 | 1 | 5 | 2 | 1 | 1 | 50 |
Properties | Cur-Loaded Gel | Cur-Loaded Emulgel | Cur-Loaded Nanoemulgel |
---|---|---|---|
Color and homogeneity | Reddish homogenous | Reddish homogenous | Yellow homogenous |
pH | 5.8 ± 0.2 | 6.7 ± 0.3 | 6.1 ± 0.2 |
Spreadability (mm) | 61.2 ± 1.7 | 49.2 ± 2.7 * | 53.5 ± 2.0 *,# |
Viscosity (cP) | 57,300 ± 1835 | 93,300 ± 1053 * | 79,700 ± 1085 *, # |
Kinetic Model | Cur Suspension | Cur-Loaded Gel | Cur-Loaded Emulgel | Cur-Loaded Nanoemulgel |
---|---|---|---|---|
Zero order model | 0.9706 | 0.8364 | 0.9234 | 0.9155 |
First order model | 0.7432 | 0.6105 | 0.7051 | 0.6916 |
Higuchi model | 0.9866 | 0.9597 | 0.9914 | 0.9873 |
Korsmeyer–Peppas | 0.9906 | 0.9590 | 0.9808 | 0.9748 |
Properties | Temperature | Cur-Loaded Gel | Cur-Loaded Emulgel | Cur-Loaded Nanoemulgel |
---|---|---|---|---|
Color and homogeneity | 4 °C | Reddish homogenous | Reddish homogenous | Reddish homogenous |
25 °C | Reddish homogenous | Reddish homogenous | Reddish homogenous | |
pH | 4 °C | 6.0± 0.3 | 6.9 ± 0.2 | 6.2 ± 0.2 |
25 °C | 5.9 ± 0.4 | 6.9 ± 0.1 | 6.2 ± 0.3 | |
Spreadability (mm) | 4 °C | 60.1 ± 1.1 | 48.4 ± 1.3 * | 52.2 ± 1.2 *, # |
25 °C | 61.7 ± 1.3 | 50.0 ± 2.3 * | 53.8 ± 1.5 *, # | |
Viscosity (cP) | 4 °C | 58,200 ± 950 | 94,200 ± 884 * | 80,200 ± 965 *, # |
25 °C | 56,030 ± 1680 | 92,100 ± 1025 * | 78,300 ±926 *, # |
Properties | Temperature | Cur-Loaded Gel | Cur-Loaded Emulgel | Cur-Loaded Nanoemulgel |
---|---|---|---|---|
Color and homogeneity | 4 °C | Reddish homogenous | Reddish homogenous | Reddish homogenous |
25 °C | Reddish homogenous | Reddish homogenous | Reddish homogenous | |
pH | 4 °C | 5.9 ± 0.2 | 6.9 ± 0.4 | 6.3 ± 0.3 |
25 °C | 6.0 ± 0.5 | 6.9 ± 0.3 | 6.4 ± 0.2 | |
Spreadability (mm) | 4 °C | 59.4 ± 1.3 | 46.5 ± 1.4 * | 51.1 ± 1.5 *, # |
25 °C | 62.5 ± 2.1 | 50.7 ± 2.3 * | 55.0 ± 1.9 *, # | |
Viscosity (cP) | 4 °C | 59,300 ± 2025 | 95,300 ± 1125 * | 81,200 ± 884 *, # |
25 °C | 55,150 ± 1738 | 91,200 ± 1033 * | 77,200 ±1779 *, # |
Formula | SSTF µg/cm2·h | ER |
---|---|---|
Cur aqueous suspension | 15.3 ± 3.5 | 1 |
Cur-loaded gel | 26.7 ± 2.3 * | 1.7 ± 0.2 * |
Cur-loaded emulgel | 67.2 ± 5.9 *,# | 4.4 ± 0.4 *,# |
Cur-loaded nanoemulgel | 108.6 ± 3.8 *,#,■ | 7.1 ± 0.2 *,#,■ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soliman, W.E.; Shehata, T.M.; Mohamed, M.E.; Younis, N.S.; Elsewedy, H.S. Enhancement of Curcumin Anti-Inflammatory Effect via Formulation into Myrrh Oil-Based Nanoemulgel. Polymers 2021, 13, 577. https://doi.org/10.3390/polym13040577
Soliman WE, Shehata TM, Mohamed ME, Younis NS, Elsewedy HS. Enhancement of Curcumin Anti-Inflammatory Effect via Formulation into Myrrh Oil-Based Nanoemulgel. Polymers. 2021; 13(4):577. https://doi.org/10.3390/polym13040577
Chicago/Turabian StyleSoliman, Wafaa E., Tamer M. Shehata, Maged E. Mohamed, Nancy S. Younis, and Heba S. Elsewedy. 2021. "Enhancement of Curcumin Anti-Inflammatory Effect via Formulation into Myrrh Oil-Based Nanoemulgel" Polymers 13, no. 4: 577. https://doi.org/10.3390/polym13040577
APA StyleSoliman, W. E., Shehata, T. M., Mohamed, M. E., Younis, N. S., & Elsewedy, H. S. (2021). Enhancement of Curcumin Anti-Inflammatory Effect via Formulation into Myrrh Oil-Based Nanoemulgel. Polymers, 13(4), 577. https://doi.org/10.3390/polym13040577