Review of the Most Important Methods of Improving the Processing Properties of Starch toward Non-Food Applications
Abstract
:1. Introduction
2. Structure and Properties of Starch
3. The Methods to Improve Processing Properties of Starch
3.1. Physical Methods
3.2. Chemical and Biochemical Methods
4. Starch-Based Materials for the Packaging Industry
4.1. Starch and TPS as a Packaging Material
4.2. Non-Degradable or Weak Degradable Polymers for Starch-Based Packaging Materials
4.3. Biodegradable Polymers for Starch-Based Packaging Materials
5. Conclusions: Challenges and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ragauskas, A.J.; Williams, C.K.; Davison, B.H.; Britovsek, G.; Cairney, J.; Eckert, C.A.; Frederick, W.J., Jr.; Hallett, J.P.; Leak, D.J.; Liotta, C.L.; et al. The path forward for biofuels and biomaterials. Science 2006, 311, 484–489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, C.K.; Hillmyer, M.A. Polymers from renewable resources: A perspective for a special issue of polymer reviews. Polym. Rev. 2008, 48, 1–10. [Google Scholar] [CrossRef]
- Kapusniak, J.; Jochym, K.; Bajer, K.; Bajer, D. Przegląd metod chemicznej modyfikacji skrobi. Przem. Chem. 2011, 90, 1521–1526. [Google Scholar]
- Bajer, K. Skrobia jako potencjalny surowiec materiałowy. Biotworzywa 2015, 1, 30–34. [Google Scholar]
- Chen, Q.; Yu, H.; Wang, L.; Abdin, Z.; Chen, Y.; Wang, J.; Zhou, W.; Yang, X.; Khan, R.U.; Zhang, H.; et al. Recent progress in chemical modification of starch and its applications. Rsc Adv. 2015, 5, 67459–67474. [Google Scholar] [CrossRef]
- Chiu, C.; Solarek, D. Modification of Starches. In Starch: Chemistry and Technology; Academic Press: Cambridge, MA, USA, 2009; pp. 629–655. [Google Scholar]
- Gilet, A.; Quettier, C.; Wiatz, V.; Bricout, H.; Ferreira, M.; Rousseau, C.; Monfliera, E.; Tilloy, S. Unconventional media and technologies for starch etherification and esterification. Green Chem. 2018, 20, 1152–1168. [Google Scholar] [CrossRef]
- Ptak, S.; Roczkowska, M.; Zarski, A.; Kapusniak, J. Esterification of starch with fatty acids. New opportunities and challenges. Przem. Chem. 2014, 4, 472–479. [Google Scholar]
- Stergiou, P.Y.; Foukis, A.; Filippou, M.; Koukouritaki, M.; Parapouli, M.; Theodorou, L.G.; Hatziloukas, E.; Afendra, A.; Pandey, A.; Papamichael, E.M. Advances in lipase catalyzed esterification reactions. Biotechnol. Adv. 2013, 31, 1846–1859. [Google Scholar] [CrossRef]
- Van Rantwijk, F.; Madeira Lau, R.; Sheldon, R.A. Biocatalytic transformations in ionic liquids. Trends. Biotechnol. 2003, 21, 131–138. [Google Scholar] [CrossRef]
- Tegge, G. Skrobia i jej Pochodne; PTTŻ Odział Małopolski: Kraków, Polska, 2010. [Google Scholar]
- Robyt, J.F. Starch: Structure, Properties, Chemistry and Enzymology. In Glycoscience; Springer: Berlin/Heidelberg, Germany, 2008; pp. 1437–1472. [Google Scholar]
- Bertoft, E. Understanding Starch Structure: Recent Progress. Agronomy 2017, 7, 56. [Google Scholar] [CrossRef]
- Ai, Y.; Jane, J. Understanding Starch Structure and Functionality. In Starch in Food: Structure, Function and Application; Woodhead Publishing: Cambridge, MA, USA, 2018; pp. 151–178. [Google Scholar]
- Available online: https://chemistry.stackexchange.com (accessed on 25 November 2020).
- Jane, J.; Chen, Y.Y.; Lee, L.F.; Mcpherson, A.E.; Wong, K.S.; Radosavljevic, M.; Kasemsuwan, T. Effects of amylopectin branch chain length and amylose content on the gelatinization and pasting properties of starch. Cereal Chem. 1999, 76, 629–637. [Google Scholar] [CrossRef]
- Hoover, R. Composition, molecular structure, and physicochemical properties of tuber and root starches: Review. Carbohyd. Polym. 2001, 45, 253–267. [Google Scholar] [CrossRef]
- Tomasik, P.; Fiedorowicz, M.; Para, A. Novelties in chemical modification of starch. In Starch: Progress in Structural Studies, Modifications and Applications; Polish Society of Food Technologists: Kraków, Polska, 2004; pp. 301–355. [Google Scholar]
- Tomasik, P.; Schilling, C.H. Chemical modification of starch. Adv. Carbohyd. Chem. Bi. 2004, 59, 175–204. [Google Scholar]
- Kapusniak, J.; Siemion, P. Thermal reactions of starch with long-chain unsaturated fatty acids. Part 2. Linoleic acid. J. Food. Eng. 2007, 78, 323–332. [Google Scholar] [CrossRef]
- Staroszczyk, H.; Tomasik, P.; Janas, P.; Poreda, A. Esterification of starch with sodium selenite and selenate. Carbohyd. Polym. 2007, 69, 299–304. [Google Scholar] [CrossRef]
- Angellier, H.; Molina-Boisseau, S.; Dole, P.; Dufresne, A. Thermoplastic starch-waxy maize starch nanocrystals nanocomposites. Biomacromolecules 2006, 7, 531–539. [Google Scholar] [CrossRef] [PubMed]
- Bao, J.; Xing, J.; Phillips, D.L.; Corke, H. Physical properties of octenyl succinic anhydride modified rice, wheat, and potato starches. J. Agric. Food Chem. 2003, 51, 2283–2287. [Google Scholar] [CrossRef] [PubMed]
- Ashogbon, A.O.; Akintayo, E.T. Recent trend in the physical and chemical modification of starches from different botanical sources: A review Starch-Starke 2014, 66, 41–57. Starch-Starke 2014, 66, 41–57. [Google Scholar] [CrossRef]
- Freitas, R.A.; Paula, R.C.; Feitosa, J.P.A.; Rocha, S.; Sierakowski, M.R. Amylose contents, rheological properties and gelatinization kinetics of yam (Dioscorea alata) and cassava (Manihot utilissima) starches. Carbohyd. Polym. 2004, 55, 3–8. [Google Scholar] [CrossRef]
- Tako, M.; Tamaki, Y.; Teruya, T.; Takeda, Y. The principles of starch gelatinization and retrogradation. Food Sci. Nutr. 2014, 5, 280–291. [Google Scholar] [CrossRef] [Green Version]
- Chung, H.J.; Liu, Q.; Hoover, R. The impact of annealing and heat–moisture treatments on rapidly digestible, slowly digestible and resistant starch levels in native and gelatinized corn, pea and lentil starches. Carbohyd. Polym. 2009, 75, 436–447. [Google Scholar] [CrossRef]
- Chung, H.J.; Liu, Q.; Hoover, R. Effect of single and dual hydrothermal treatments on the crystalline structure, thermal properties and nutritional fractions of pea, lentil and navy bean starches. Food Res. Int. 2010, 43, 501–508. [Google Scholar] [CrossRef]
- Tester, R.F.; Debon, S.J.J. Annealing of starch-a review. Int. J. Biol. Macromol. 2000, 27, 1–12. [Google Scholar] [CrossRef]
- Jacobs, H.; Mischenko, N.; Koch, M.H.J.; Eerlingen, R.C.; Delcour, J.A.; Reynaers, H. Evaluation of the impact of annealing on gelatinisation at intermediate water content of wheat and potato starches: A differential scanning calorimetry and small angle X-ray scattering study. Carbohyd. Res. 1998, 306, 1–10. [Google Scholar] [CrossRef]
- Lewandowicz, G.; Soral-Smietana, M. Starch modification by iterated syneresis. Carbohyd. Polym. 2004, 56, 403–413. [Google Scholar] [CrossRef]
- Szymonska, J.; Krok, F.; Komorowska-Czepirska, E.; Rebilas, K. Modification of granular potato starch by multiple deep-freezing and thawing. Carbohyd. Polym. 2003, 52, 1–10. [Google Scholar] [CrossRef]
- Han, Z.; Zeng, X.; Zhang, B.; Yu, S. Effect of pulsed electric fields (PEF) treatment on the properties of corn starch. J. Food Eng. 2009, 93, 318–323. [Google Scholar] [CrossRef]
- Pkkahuta, C.; Shobsnggobi, S.; Varavimit, S. Effect of osmotic pressure on starch: New method of physical modification of starch. Starch-Starke 2007, 58, 78–90. [Google Scholar] [CrossRef]
- Nemtanu, M.R.; Minea, R. Functional properties of corn starch treated with corona electrical discharges. Macromol. Symp. 2006, 245–246, 525–528. [Google Scholar] [CrossRef]
- Alcázar-Alay, S.C.; Meireles, M.A.A. Physicochemical properties, modifications and applications of starches from different botanical sources. Food Sci. Tech-Brazil. 2015, 35, 215–236. [Google Scholar] [CrossRef] [Green Version]
- Deeyai, P.; Suphantharika, M.; Wongsagonsup, R.; Dangtip, S. Characterization of modified tapioca starch in atmospheric argon plasma under diverse humidity by FTIR spectroscopy. Chinese Phys. Lett. 2013, 30, 18103–18104. [Google Scholar] [CrossRef]
- Wongsagonsup, R.; Deeyai, P.; Chaiwat, W.; Horrungsiwat, S.; Leejariensuk, K.; Suphantharika, M.; Fuongfuchat, A.; Dangtip, S. Modification of tapioca starch by non-chemical route using jet atmospheric argon plasma. Carbohyd. Polym. 2014, 102, 790–798. [Google Scholar] [CrossRef] [PubMed]
- Bastos, D.C.; Santos, A.E.F.; da Silva, M.L.V.J.; Simao, R.A. Hydrophobic corn starch thermoplastic films produced by plasma treatment. Ultramicroscopy 2009, 109, 1089–1093. [Google Scholar] [CrossRef] [PubMed]
- Braşoveanu, M.; Nemtanu, M.R. Behaviour of starch exposed to microwave radiation treatment. Starch-Starke 2014, 66, 3–14. [Google Scholar] [CrossRef]
- Yu, S.; Zhang, Y.; Ge, Y.; Zhang, Y.; Sun, T.; Jiao, Y.; Zheng, X.Q. Effects of ultrasound processing on the thermal and retrogradation properties of nonwaxy rice starch. J. Food Process. Eng. 2013, 36, 793–802. [Google Scholar] [CrossRef]
- Iida, Y.; Tuziuti, T.; Yasui, K.; Towata, A.; Kozuka, T. Control of viscosity in starch and polysaccharide solutions with ultrasound after gelatinization. Innov. Food Sci. Emerg. 2008, 9, 140–146. [Google Scholar] [CrossRef]
- Zuo, Y.Y.J.; Hébraud, P.; Hemar, Y.; Ashokkumar, M. Quantification of high-power ultrasound induced damage on potato starch granules using light microscopy. Ultrason. Sonochem. 2012, 19, 421–426. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Bustos, F.; Lopez-Soto, M.; San-Martin Martinez, E.; Zazueta-Morales, J.J.; Velez-Medina, J.J. Effects of high energy milling on same functional properties of jicama starch and cassava starch. J. Food Eng. 2007, 78, 1212–1220. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Huang, Z.Q.; Yang, C.; Huang, A.M.; Hu, H.Y.; Gong, Z.Q. Material properties of partially pregelatinized cassava starch prepared by mechanical activation. Starch-Starke 2013, 65, 461–468. [Google Scholar] [CrossRef]
- Xie, F.; Zhang, B.; Wang, D.K. Starch thermal processing: Technologies at laboratory and semi-industrial scales. In Starch-Based Materials in Food Packaging; Processing, Characterization and Applications; Academic Press: Cambridge, MA, USA, 2017; pp. 187–227. [Google Scholar]
- Mitrus, M.; Wojtowicz, A.; Moscicki, L. Biodegradable Polymers and Their Practical Utility. In Thermoplastic Starch: A Green Material for Various Industries; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2009; pp. 1–33. [Google Scholar]
- Stasiek, J. Wytłaczanie Tworzyw Polimerowych. Zagadnienia Wybrane; Wydawnictwo Uczelniane UTP: Bydgoszcz, Polska, 2007. [Google Scholar]
- Doane, W.M. Opportunities and challenges for new industrial uses of starch. Cereal Food World 1994, 39, 556–563. [Google Scholar]
- Fanta, G.F.; Swanson, C.L.; Doane, W.M. Complexing between starch and poly(ethylene-co-acrylic acid)-a comparison of starch varietes and complexing conditions. Carbohyd. Polym. 1992, 17, 51–58. [Google Scholar] [CrossRef]
- Drummond, K.M.; Hopewell, J.L.; Shanks, R.A. Crystallization of low-density polyethylene and linear low-density polyethylene-rich blends. J. Appl. Polym. Sci. 2000, 78, 1009–1016. [Google Scholar] [CrossRef]
- Jagannath, J.H.; Nadanasabapathi, S.; Bawa, A.S. Effect of starch on thermal, mechanical, and barrier properties of low density polyethylene film. J. Appl. Polym. Sci. 2006, 99, 3355–3364. [Google Scholar] [CrossRef]
- Kaseem, M.; Hamad, K.; Deri, F. Thermoplastic starch blends: A review of recent works. Polym. Sci. Ser. A 2012, 54, 165–176. [Google Scholar] [CrossRef]
- Lawrence, S.S.T.; Walia, P.S.; Felker, F.; Willett, J.L. Starch- filled ternary polymer composites: Room temperature tensile properties. Polym. Eng. Sci. 2004, 44, 1846–1883. [Google Scholar] [CrossRef]
- Available online: https://www.european-bioplastics.org/guidance-on-single-use-plastics-directive-european-commission-to-stick-to-its-timeline/ (accessed on 25 November 2020).
- Teixeira, E.M.; Da Roz, A.L.; Carvalho, A.J.F.; Curvelo, A.A.S. The effect of glycerol/sugar/water and sugar/water mixtures on the plasticization of thermoplastic cassava starch. Carbohyd. Polym. 2007, 69, 619–624. [Google Scholar] [CrossRef]
- Wang, N.; Yu, J.; Chang, P.; Ma, X. Influence of formamide and water on the properties of thermoplastic starch/poly(lactic acid) blends. Carbohyd. Polym. 2008, 71, 109–118. [Google Scholar] [CrossRef]
- Corradini, E.; Medeiros, E.; Carvalho, A.; Curvelo, A.; Mattoso, L. Mechanical and morphological characterization of starch/zein blends plasticized with glycerol. J. Appl. Polym. Sci. 2006, 101, 4133–4139. [Google Scholar] [CrossRef]
- Rodriguez-Gonzalez, F.J.; Ramsay, B.A.; Favis, B.D. Rheological and thermal properties of thermoplastic starch with high glycerol content. Carbohyd. Polym. 2004, 58, 139–147. [Google Scholar] [CrossRef]
- Rosa, D.S.; Guedes, C.G.F.; Carvalho, C.L. Processing, thermal, mechanical and morphological characterization of post-consumer polyolefins/thermoplastic starch blends. J. Mater. Sci. 2007, 42, 551–557. [Google Scholar] [CrossRef]
- Salcido, C.S.; Gonzalez, F.J.; Hernandez, M.L.; Esquivel, J.C. Effect of morphology on the biodegradation of thermoplastic starch in LDPE/TPS blends. Polym. Bull. 2008, 60, 677–688. [Google Scholar] [CrossRef]
- Yang, J.H.; Yu, J.G.; Ma, X.F. A novel plasticizer for the preparation of thermoplastic starch. Chin. Chem. Lett. 2006, 17, 133–136. [Google Scholar]
- Wang, N.; Yu, J.; Ma, X.; Ying, W. The influence of citric acid on the properties of thermoplastic starch/linear low- density polyethylene blends. Carbohyd. Polym. 2007, 67, 446–453. [Google Scholar]
- Ma, X.; Yu, J. The plasticizers containing amide groups for thermoplastic starch. Carbohyd. Polym. 2004, 57, 197–203. [Google Scholar] [CrossRef]
- Ma, X.; Yu, J.; Wan, J.J. Urea and ethanolamine as a mixed plasticizer for thermoplastic starch. Carbohyd. Polym. 2006, 64, 267–273. [Google Scholar] [CrossRef]
- Girija, B.; Sailaja, R. Low – density polyethylene/plasticized tapioca starch blends with the low—density polyethylene functionalized with maleate ester: Mechanical and thermal properties. J. Appl. Polym. Sci. 2006, 101, 1109–1120. [Google Scholar] [CrossRef]
- Jang, B.; Huh, S.; Jang, J.; Bae, Y. Mechanical properties and morphology of the modified HDPE/starch reactive blend. J. Appl. Polym. Sci. 2001, 82, 3313–3320. [Google Scholar] [CrossRef]
- Kalambur, S.; Rizvi, S. An overview of starch-based plastic blends from reactive extrusion. J. Plast. Film Sheet. 2006, 22, 39–57. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Gonzalez, F.J.; Virgilio, N.; Ramsay, B.A.; Favis, B.D. Influence of melt drawing on the morphology of one- and two-step processed LDPE/Thermoplastic starch blends. Adv. Polym. Tech. 2003, 22, 297–305. [Google Scholar] [CrossRef]
- Sailaja, R.; Chanda, M. Use of poly(ethylene-co-vinyl alcohol) as compatibilizer in LDPE/thermoplastic tapioca starch blends. J. Appl. Polym. Sci. 2002, 86, 3126–3134. [Google Scholar] [CrossRef]
- Wang, S.; Yu, J.; Yu, J. Compatible thermoplastic starch/polyethylene blends by one - step reactive extrusion. Polym. Int. 2005, 54, 279–285. [Google Scholar] [CrossRef]
- Rosa, D.S.; Bardi, M.A.G.; Machado, L.D.B.; Dias, D.B.; Silva, L.G.A.; Kodama, Y. Influence of thermoplastic starch plasticized with biodiesel glycerol on thermal properties of PP blends. J. Therm. Anal. Calorim. 2009, 97, 565–570. [Google Scholar] [CrossRef]
- Pimentel, T.A.P.F.; Duraes, J.A.; Drummond, A.L.; Schlemmer, D.; Falcao, R.; Salas, M.J.A. Preparation and characterization of blends of recycled polystyrene with cassava starch. J. Mater. Sci. 2007, 42, 7530–7536. [Google Scholar] [CrossRef]
- Schlemmer, D.; Oliveira, E.R.; Sales, M.J.A. Polystyrene/thermoplastic starch blends with different plasticizers, preparation and thermal characterization. J. Therm. Anal. Calorim. 2007, 87, 635–638. [Google Scholar] [CrossRef]
- Park, H.R.; Chough, S.H.; Yun, Y.H.; Yoon, S.D. Properties of starch/PVA blend films containing citric acid as additive. J. Polym. Environ. 2005, 13, 375–382. [Google Scholar] [CrossRef]
- Sreedhar, B.; Chattopadhyay, D.K.; Karunakar, M.S.H.; Sastry, A.R.K. Thermal and surface characterization of plasticized starch polyvinyl alcohol blends crosslinked with epichlorohydrin. J. Appl. Polym. Sci. 2006, 101, 25–34. [Google Scholar] [CrossRef]
- Yoon, S.D.; Chough, S.H.; Park, H.R. Effects of additives with different functional groups on the physical properties of starch/PVA blend film. J. Appl. Polym. Sci. 2006, 100, 3733–3740. [Google Scholar] [CrossRef]
- Zhou, J.; Ma, Y.; Ren, L.; Tong, J.; Liu, Z.; Xie, L. Preparation and characterization of surface crosslinked TPS/PVA blend films. Carbohyd. Polym. 2009, 76, 632–638. [Google Scholar]
- Huneault, M.; Li, H. Morphology and properties of compatibilized polylactide/thermoplastic starch blends. Polymer 2007, 48, 270–280. [Google Scholar] [CrossRef]
- Wang, N.; Yu, J.; Ma, X. Preparation and characterization of compatible thermoplastic dry starch/poly(lactic acid). Polym. Compos. 2008, 29, 551–559. [Google Scholar] [CrossRef]
- Li, G.; Favis, B.D. Morphology development and interfacial interactions in polycaprolactone/thermoplastic-starch blends. Macromol. Chem. Phys. 2010, 211, 321–333. [Google Scholar] [CrossRef]
- Sarazin, P.; Li, G.; Orts, W.; Favis, B.D. Binary and ternary blends of polylactide, polycaprolactone and thermoplastic starch. Polymer 2008, 49, 599–609. [Google Scholar] [CrossRef]
- Shin, B.Y.; Lee, S.I.; Shin, Y.S.; Balakrishnan, S.; Narayan, R. Rheological, mechanical and biodegradation studies on blends thermoplastic starch and polycaprolactone. Polym. Eng. Sci. 2004, 44, 1429–1438. [Google Scholar] [CrossRef]
- Averous, L.; Moro, L.; Dole, P.; Fringant, C. Properties of thermoplastic blends: Starch—polycaprolactone. Polymer 2000, 41, 4157–4167. [Google Scholar] [CrossRef]
- Carvalho, A.J.F.; Job, A.E.; Alves, N.; Curvelo, A.A.S.; Gandini, A. Thermoplastic starch/natural rubber blends. Carbohyd. Polym. 2003, 53, 95–99. [Google Scholar] [CrossRef]
- Landreau, E.; Tighzert, L.; Bliard, C.; Berzin, F.; Lacoste, C. Morphologies and properties of plasticized starch/polyamide compatibilized blends. Eur. Polym. J. 2009, 45, 2609–2618. [Google Scholar] [CrossRef]
- Walia, P.S.; Lawton, J.W.; Shogren, R.L. Mechanical properties of thermoplastic starch/poly(hydroxyl ester ether) blends: Effect of moisture during and after processing. J. Appl. Polym. Sci. 2002, 84, 121–131. [Google Scholar] [CrossRef]
- Zeng, J.; Jiao, L.; Li, Y.; Srinivasan, M.; Li, T.; Wang, Y. Bio-based blends of starch and poly(butylene succinate) with improved miscibility, mechanical properties, and reduced water absorption. Carbohyd. Polym. 2011, 83, 762–768. [Google Scholar] [CrossRef]
- Lu, Y.; Tighzert, L.; Berzin, F.; Rondot, S. Innovative plasticized starch films modified with waterborne polyurethane from renewable resources. Carbohyd. Polym. 2005, 61, 174–182. [Google Scholar] [CrossRef]
- Din, Z.; Xiong, H.; Fei, P. Physical and chemical modification of starches: A review. Crit. Rev. Food Sci. Nutr. 2017, 57, 2691–2705. [Google Scholar]
- Pal, J.; Singhal, R.S.; Kulkarni, P.R. Physicochemical properties of hydroxypropyl derivative from corn and amaranth starch. Carbohyd. Polym. 2002, 48, 49–53. [Google Scholar] [CrossRef]
- Wang, Y.-J.; Wang, L. Physicochemical properties of common and waxy corn starches oxidized by different levels of sodium hypochlorite. Carbohyd. Polym. 2003, 52, 207–217. [Google Scholar] [CrossRef]
- Kim, H.S.; Hwang, D.K.; Kim, B.Y.; Baik, M.Y. Cross-linking of corn starch with phosphorus oxychloride under ultrahigh pressure. Food Chem. 2012, 130, 977–980. [Google Scholar] [CrossRef]
- Lack, S.; Dulong, V.; Picton, L.; Cerf, D.L.; Condamine, E. High-resolution nuclear magnetic resonance spectroscopy studies of polysaccharides crosslinked by sodium trimetaphosphate: A proposal for the reaction mechanism. Carbohyd. Res. 2007, 342, 943–953. [Google Scholar] [CrossRef]
- Koo, S.H.; Lee, K.Y.; Lee, H.G. Effect of cross-linking on the physicochemical and physiological properties of corn starch. Food Hydrocolloids 2010, 24, 619–625. [Google Scholar] [CrossRef]
- Hu, Y.; Wang, Q.; Tang, M. Preparation and properties of Starch-g-PLA/poly(vinyl alcohol) composite film. Carbohyd. Polym. 2013, 96, 384–388. [Google Scholar] [CrossRef]
- Kaewtatip, K.; Tanrattanakul, V. Preparation of cassava starch grafted with polystyrene by suspension polymerization. Carbohyd. Polym. 2008, 73, 647–655. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Rivera, M.M.; García-Suárez, F.J.L.; Velázquez Del Valle, M.; Gutierrez-Meraz, F.; dan Bello-Pérez, L. Partial characterization of banana starches oxidized by different levels of sodium hypochlorite. Carbohyd. Polym. 2005, 62, 50–56. [Google Scholar] [CrossRef]
- Klein, B.; Vanier, N.L.; Moomand, K.; Pinto, V.Z.; Colussi, R.; Da Rosa Zavareze, E.; Dias, A.R.G. Ozone oxidation of cassava starch in aqueous solution at different pH. Food Chem. 2014, 155, 167–173. [Google Scholar] [CrossRef] [Green Version]
- Sandhu, H.P.S.; Manthey, F.A.; Simsek, S. Ozone gas affects physical and chemical properties of wheat (Triticum aestivum L.) starch. Carbohyd. Polym. 2012, 87, 1261–1268. [Google Scholar] [CrossRef]
- Heinze, T.; Liebert, T.; Heinze, U.; Schwikal, K. Starch derivatives of high degree of functionalization: Carboxymethyl starches. Cellulose 2004, 11, 239–245. [Google Scholar] [CrossRef]
- Masina, N.; Choonara, Y.E.; Kumar, P.; du Toit, L.C.; Govender, M.; Indermun, S.; Pillay, V. A review of the chemical modification techniques of starch. Carbohyd. Polym. 2017, 157, 1226–1236. [Google Scholar] [CrossRef]
- Lawal, O.S.; Storz, J.; Storz, H.; Lohmann, D.; Lechner, D.; Kulicke, W.D. Hydrogels based on carboxymethyl cassava starch cross-linked with di- or polyfunctional carboxylic acids: Synthesis, water absorbent behavior and rheological characterizations. Eur. Polym. J. 2009, 45, 3399–3408. [Google Scholar] [CrossRef]
- Massicotte, L.P.; Baille, W.E.; Mateescu, M.A. Carboxylated high amylose starch as pharmaceutical excipients. Structural insights and formulation of pancreatic enzymes. Int. J. Pharm. 2008, 356, 212–223. [Google Scholar] [CrossRef]
- Singh, J.; Kaur, L.; McCarthy, O.J. Factors influencing the physico-chemical, morphological, thermal and rheological properties of some chemically modified starches for food applications - A review. Food Hydrocolloids 2007, 21, 1–22. [Google Scholar] [CrossRef]
- Besheer, A.; Hause, G.; Kressler, J.; Mäder, K. Hydrophobically modified hydroxyethyl starch: Synthesis, characterization, and aqueous self-assembly into nano-sized polymeric micelles and vesicles. Biomacromolecules 2007, 8, 359–367. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.; Zeng, X.-A.; Brennan, C.S.; Brennan, M.; Han, Z. Recent advances in techniques for starch esters and the applications: A review. Foods 2016, 5, 50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fortuna, T.; Rożnowski, J. Skrobie modyfikowane chemicznie, ich właściwości i zastosowanie. Zywn-Nauk. Technol. Jakosc 2002, 9, 6–29. [Google Scholar]
- Staroszczyk, H.; Fiedorowicz, M.; Zhong, W.; Janas, P.; Tomasik, P. Microwave-assisted solid-state sulphation of starch. e-Polymers 2007, 7, 140. [Google Scholar] [CrossRef] [Green Version]
- Staroszczyk, H. Microwave-assisted silication of potato starch. Carbohyd. Polym. 2009, 77, 506–515. [Google Scholar] [CrossRef]
- Staroszczyk, H.; Tomasik, P. Facile synthesis of potato starch sulfate magnesium salts. e-Polymers 2005, 80. Available online: https://www.degruyter.com/document/doi/10.1515/epoly.2005.5.1.847/html (accessed on 18 November 2020).
- Staroszczyk, H. Microwave-assisted boration of potato starch. Polimery 2009, 54, 31–41. [Google Scholar] [CrossRef] [Green Version]
- Staroszczyk, H.; Janas, P. Microwave-assisted synthesis of zinc derivatives of potato starch. Carbohyd. Polym. 2010, 80, 962–969. [Google Scholar] [CrossRef]
- Staroszczyk, H.; Janas, P. Microwave-assisted preparation of potato starch silicated with silicic acid. Carbohyd. Polym. 2010, 81, 599–606. [Google Scholar] [CrossRef]
- Staroszczyk, H. Synthesis and characterization of starch cuprate. Food Chem. 2011, 129, 1217–1223. [Google Scholar] [CrossRef]
- Bohrisch, J.; Vorwerg, W.; Radosta, R. Development of hydrophobic starch. Starch-Starke 2004, 56, 322–329. [Google Scholar] [CrossRef]
- Parandoosh, S.; Hudson, S.M. The acetylation and enzymatic degradation of starch films. J. Appl. Polym. Sci. 1993, 48, 787–791. [Google Scholar] [CrossRef]
- Thiebaud, S.; Aburto, J.; Alric, I.; Borredon, E.; Bikiaris, D.; Prinos, J.; Panayiotou, C. Properties of fatty - acid esters of starch and their blends with LDPE. J. Appl. Polym. Sci. 1997, 65, 705–721. [Google Scholar] [CrossRef]
- Aburto, J.; Alric, I.; Borredon, E. Preparation of long—chain esters of starch using fatty acid chlorides in the absence of an organic solvent. Starch-Starke 1999, 51, 132–135. [Google Scholar] [CrossRef]
- Junistia, L.; Sugih, A.K.; Manurung, R.; Picchioni, F.; Janssen, L.P.B.M.; Heeres, H.J. Synthesis of higher fatty acid starch esters using vinyl laurate and stearate as reactants. Starch-Starke 2008, 60, 667–675. [Google Scholar] [CrossRef] [Green Version]
- Simi, C.K.; Abraham, E.E. Hydrophobic grafted and cross-linked starch nanoparticles for drug delivery. Bioproc. Biosyst. Eng. 2007, 30, 173–180. [Google Scholar] [CrossRef]
- Aburto, J.; Thiebaud, S.; Alric, I.; Borredon, E.; Bikiaris, D.; Prinos, J.; Panayiotou, C. Properties of octanoated starch and its blends with polyethylene. Carbohyd. Polym. 1997, 34, 101–112. [Google Scholar] [CrossRef]
- Aburto, J.; Alric, I.; Borredon, E. Organic solvent–free transesterification of various starches with lauric acid methyl ester and triacyl glycerides. Starch-Starke 2005, 57, 145–152. [Google Scholar] [CrossRef]
- Miladinov, V.D.; Hanna, M.A. Starch esterification by reactive extrusion. Ind. Crops Prod. 2000, 11, 51–57. [Google Scholar] [CrossRef]
- Namazi, H.; Fathi, F.; Dadkhah, A. Hydrophobically modified starch using long-chain fatty acids for preparation of nanosized starch particles. Sci. Iran. 2011, 18, 439–445. [Google Scholar] [CrossRef] [Green Version]
- Rajan, A.; Prasad, V.S.; Abraham, T.E. Enzymatic esterification of starch using recovered coconut oil. Int. J. Biol. Macromol. 2006, 39, 265–272. [Google Scholar] [CrossRef] [PubMed]
- Jyothi, A.N.; Rajasekharan, K.N.; Moorthy, S.N.; Sreekumar, J. Microwave-assisted synthesis and characterization of succinate derivatives of cassava (Manihot esculenta Crantz) starch. Starch-Starke 2005, 57, 556–563. [Google Scholar] [CrossRef]
- Xing, G.X.; Zhang, S.F.; Ju, B.Z.; Yang, J.Z. Microwave-assisted synthesis of starch maleate by dry method. Starch-Starke 2006, 58, 464–467. [Google Scholar] [CrossRef]
- Jyothi, A.N.; Moorthy, S.N.; Sreekumar, J.N.; Rajasekharan, K.N. Studies on the properties of citrate derivatives of cassava (Manihot esculenta Crantz) starch synthesized by microwave technique. J. Sci. Food Agric. 2007, 87, 871–879. [Google Scholar] [CrossRef]
- Diop, C.I.; Li, H.L.; Xie, J.; Shi, J. Effects of acetic acid/acetic anhydride ratios on the properties of corn starch acetates. Food Chem. 2011, 126, 1662–1669. [Google Scholar] [CrossRef]
- Diop, C.I.; Li, H.L.; Xie, J.; Shi, J. Impact of the catalytic activity of iodine on the granule morphology, crystalline structure, thermal properties and water solubility of acetylated corn (Zea mays) starch synthesized under microwave assistance. Ind. Crops Prod. 2011, 33, 302–309. [Google Scholar] [CrossRef]
- Ptak, S.; Zarski, A.; Antczak, T.; Kapusniak, J. Estryfikacja skrobi ziemniaczanej kwasem oleinowym w obecności lipazy z Candida antarctica w polu mikrofalowym oraz w warunkach ogrzewania konwencjonalnego. Polimery 2016, 61, 442–448. [Google Scholar] [CrossRef]
- Hou, C.; Chen, Y.; Chen, W.; Li, W. Microwave-assisted methylation of cassava starch with dimethyl carbonate. Carbohyd. Res. 2011, 346, 1178–1181. [Google Scholar] [CrossRef] [PubMed]
- Hou, C.; Chen, Y.; Li, W. Thiocarbamide and microwave-accelerated green methylation of cassava starch with dimethyl carbonate. Carbohyd. Res. 2012, 355, 87–91. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, R.; Wang, J.; Dong, Y. Microwave-assisted synthesis and characterization of acetylated corn starch. Starch-Stärke 2014, 66, 515–523. [Google Scholar] [CrossRef]
- Horchani, H.; Chaâbouni, M.; Gargouri, Y.; Sayari, A. Solvent-free lipase-catalyzed synthesis of long-chain starch esters using microwave heating: Optimization by response surface methodology. Carbohyd. Polym. 2010, 79, 466–474. [Google Scholar] [CrossRef]
- Shi, H.; Yin, Y.; Wang, A.; Fang, L.; Jiao, S. Kinetic study of the nonthermal effect of the esterification of octenyl succinic anhydride modified starch treated by microwave radiation. J. Appl. Polym. Sci. 2016, 133, 43909. [Google Scholar] [CrossRef]
- Kubisa, P. Perspektywy zastosowań cieczy jonowych w chemii polimerów. Polimery 2006, 51, 485–490. [Google Scholar] [CrossRef] [Green Version]
- Pernak, J. Ciecze jonowe. Związki na miarę XXI wieku. Przem. Chem. 2003, 82, 521–523. [Google Scholar]
- Wilkes, J.S. A short history of ionic liquids - from molten salts to neoteric solvents. Green Chem. 2002, 4, 73–80. [Google Scholar] [CrossRef]
- Pernak, J. Ciecze jonowe—rozpuszczalniki XXI wieku. Przem. Chem. 2000, 79, 150–153. [Google Scholar]
- Wilpiszewska, K.; Spychaj, T. Ionic liquids: Media for starch dissolution, plasticization and modification. Carbohyd. Polym. 2011, 86, 424–428. [Google Scholar] [CrossRef]
- Seoud, O.A.E.; Koschella, A.; Fidale, L.C.; Dorn, S.; Heinze, T. Applications of ionic liquids in carbohydrate chemistry: A window of opportunities. Biomacromolecules 2007, 8, 2629–2647. [Google Scholar] [CrossRef]
- Ptak, S.; Zarski, A.; Kapusniak, J. The importance of ionic liquids in the modification of starch and processing of starch-based materials. Materials 2020, 13, 4479. [Google Scholar] [CrossRef]
- Ren, F.; Wang, J.; Xie, F.; Zan, K.; Wang, S.; Wang, S. Applications of ionic liquids in starch chemistry: A review. Green Chem. 2020, 22, 2162–2183. [Google Scholar] [CrossRef]
- Fan, Y.; Picchioni, F. Modification of starch: A review on the application of “green” solvents and controlled functionalization. Carbohyd. Polym. 2020, 241, 116350. [Google Scholar] [CrossRef]
- Xie, W.; Shao, L.; Liu, Y. Synthesis of starch esters in ionic liquids. J. Appl. Polym. Sci. 2010, 116, 218–224. [Google Scholar] [CrossRef]
- Luo, Z.; Zhou, Z. Homogeneous synthesis and characterization of starch acetates in ionic liquid without catalysts. Starch-Stärke 2011, 64, 37–44. [Google Scholar] [CrossRef]
- Lehmann, A.; Volkert, B.; Hassan-Nejad, M.; Greco, T.; Fink, H.P. Synthesis of thermoplastic starch mixed esters catalyzed by the in situ generation of imidazolium salts. Green Chem. 2010, 12, 2164–2171. [Google Scholar] [CrossRef]
- Lehmann, A.; Volkert, B. Preparing esters from high-amylose starch using ionic liquids as catalysts. Carbohyd. Polym. 2011, 83, 1529–1533. [Google Scholar] [CrossRef]
- Shogren, R.; Biswas, A. Acetylation of starch with vinyl acetate in imidazolium ionic liquids and characterization of acetate distribution. Carbohyd. Polym. 2010, 81, 149–151. [Google Scholar] [CrossRef]
- Gao, J.; Luo, Z.G.; Luo, F.X. Ionic liquids as solvents for dissolution of corn starch and homogeneous synthesis of fatty-acid starch esters without catalysts. Carbohyd. Polym. 2012, 89, 1215–1221. [Google Scholar] [CrossRef] [PubMed]
- Xie, W.; Wang, Y. Synthesis of high fatty acid starch esters with 1-butyl-3-methylimidazolium chloride as a reaction medium. Starch-Stärke 2011, 63, 190–197. [Google Scholar] [CrossRef]
- Desalegn, T.; Garcia, I.J.V.; Titman, J.; Licence, P.; Chebude, Y. Synthesis of starch vernolate in 1-butyl-3-methylimidazolium chloride ionic liquid. Starch-Stärke 2015, 67, 200–203. [Google Scholar] [CrossRef]
- Lu, X.; Luo, Z.; Yu, S.; Fu, X. Lipase-catalyzed synthesis of starch palmitate in mixed ionic liquids. J. Agric. Food Chem. 2012, 60, 9273–9279. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Luo, Z.; Fu, X.; Xiao, Z. Two-step method of enzymatic synthesis of starch laurate in ionic liquids. J. Agric. Food Chem. 2013, 61, 9882–9891. [Google Scholar] [CrossRef]
- Desalegn, T.; Villar-Garcia, I.J.; Titman, J.; Licence, P.; Diaz, I.; Chebude, Y. Enzymatic synthesis of epoxy fatty acid starch ester in ionic liquid-organic solvent mixture from vernonia oil. Starch-Stärke 2013, 66, 385–392. [Google Scholar] [CrossRef]
- Li, D.; Zhang, X.; Tian, Y. Ionic liquids as novel solvents for biosynthesis of octenyl succinic anhydride-modified waxy maize starch. Int. J. Biol. Macromol. 2016, 86, 119–125. [Google Scholar] [CrossRef]
- Adak, S.; Banerjee, R. A green approach for starch modification: Esterification by lipase and novel imidazolium surfactant. Carbohyd. Polym. 2016, 150, 359–368. [Google Scholar] [CrossRef]
- Zarski, A.; Ptak, S.; Siemion, P.; Kapusniak, J. Esterification of potato starch by a biocatalysed reaction in an ionic liquid. Carbohydr. Polym. 2016, 137, 657–663. [Google Scholar] [CrossRef]
- Zarski, A.; Bajer, K.; Zarska, S.; Kapusniak, J. From high oleic vegetable oils to hydrophobic starch derivatives: I. Development and structural studies. Carbohyd. Polym. 2019, 214, 124–130. [Google Scholar] [CrossRef]
- Muljana, H.; Picchioni, F.; Heeres, H.J.; Janssen, L.P.B.M. Supercritical carbon dioxide (scCO2) induced gelatinization of potato starch. Carbohyd. Polym. 2009, 78, 511–519. [Google Scholar] [CrossRef]
- Muljana, H.; Picchioni, F.; Heeres, H.J.; Janssen, L.P.B.M. Green starch conversions: Studies on starch acetylation in densified CO2. Carbohyd. Polym. 2010, 82, 653–662. [Google Scholar] [CrossRef]
- Muljana, H.; Picchioni, F.; Heeres, H.J.; Janssen, L.P.B.M. Process-product studies on starch acetylation reactions in pressurised carbon dioxide. Starch-Starke 2010, 62, 566–576. [Google Scholar] [CrossRef]
- Muljana, H.; Picchioni, F.; Knez, Z.; Heeres, H.J.; Janssen, L.P.B.M. Insights in starch acetylation in sub-and supercritical CO2. Carbohyd. Res. 2011, 346, 1224–1231. [Google Scholar] [CrossRef] [PubMed]
- Hermawan, E.; Rosyanti, L.; Megasari, L.; Sugih, A.K.; Muljana, H. Transesterification of Sago Starch Using Various Fatty Acid Methyl Esters in Densified CO2. Int. J. Chem. Eng. Appl. 2015, 6, 152–155. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Zuo, B.; Wu, P.; Wang, Y.; Gao, W. Ultrasound effects on the acetylation of dioscorea starch isolated from Dioscorea zingiberensis. Chem. Eng. Process. 2012, 54, 29–36. [Google Scholar] [CrossRef]
- Chen, H.M.; Huang, Q.; Fu, X.; Luo, F.X. Ultrasonic effect on the octenyl succinate starch synthesis and substitution patterns in starch granules. Food Hydrocoll. 2014, 35, 636–643. [Google Scholar] [CrossRef]
- Chen, M.; Yin, T.; Chen, Y.; Xiong, S.; Zhao, S. Preparation and characterization of octenyl succinic anhydride modified waxy rice starch by dry media milling. Starch-Stärke 2014, 66, 985–991. [Google Scholar] [CrossRef]
- Hu, H.; Liu, W.; Shi, J.; Huang, Z.; Zhang, Y.; Huang, A.; Yang, M.; Qin, X.; Shen, F. Structure and functional properties of octenyl succinic anhydride modified starch prepared by a non-conventional technology. Starch-Stärke 2016, 68, 151–159. [Google Scholar] [CrossRef]
- Zhang, Y.; Gan, T.; Hu, H.; Huang, Z.; Huang, A.; Zhu, Y.; Feng, Z.; Yang, M. A green technology for the preparation of high fatty acid starch esters: Solid-phase synthesis of starch laurate assisted by mechanical activation with stirring ball mill as reactor. Ind. Eng. Chem. Res. 2014, 53, 2114–2120. [Google Scholar] [CrossRef]
- Li, N.; Niu, M.; Zhang, B.; Zhao, S.; Xiong, S.; Xie, F. Effects of concurrent ball milling and octenyl succinylation on structure and physicochemical properties of starch. Carbohyd. Polym. 2017, 155, 109–116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chi, H.; Xu, K.; Xue, D.; Song, C.; Zhang, W.; Wang, P. Synthesis of dodecenyl succinic anhydride (DDSA) corn starch. Food Res. Int. 2007, 40, 232–238. [Google Scholar] [CrossRef]
- Zhou, J.; Ren, L.; Tong, J.; Xie, L.; Liu, Z. Surface esterification of corn starch films: Reaction with dodecenyl succinic anhydride. Carbohyd. Polym. 2009, 78, 888–889. [Google Scholar] [CrossRef]
- Tahlawy, K.E.; Venditti, R.; Pawlak, J. Effect of alkyl ketene dimer reacted starch on the properties of starch microcellular foam using a solvent exchange technique. Carbohyd. Polym. 2008, 73, 133–142. [Google Scholar] [CrossRef]
- Barikani, M.; Mohammadi, M. Synthesis and characterization of starch-modified polyurethane. Carbohyd. Polym. 2007, 68, 773–780. [Google Scholar] [CrossRef]
- Carvalho, A.J.F.; Curvelo, A.A.S.; Gandini, A. Surface chemical modification of thermoplastic starch: Reactions with isocyanates, epoxy functions and stearoyl chloride. Ind. Crops Prod. 2005, 21, 331–336. [Google Scholar] [CrossRef]
- Cunha, A.G.; Gandini, A. Turning polysaccharides into hydrophobic materials: A critical review. Part 2. Hemicelluloses, chitin/chitosan, starch, pectin and alginates. Cellulose 2010, 17, 1045–1065. [Google Scholar] [CrossRef]
- Bartkowiak, A.; Mizielińska, M.; Sumińska, P.; Romanowska-Osuch, A.; Lisiecki, S. Innovations in Food Packaging Materials. In Emerging and Traditional Technologies for Safe, Healthy and Quality Food; Springer International Publishing: Cham, Switzerland, 2016; pp. 383–412. [Google Scholar]
- Romero-Bastida, C.A.; Bello-Perez, L.; Garcia, M.A.; Martno, M.N.; Solorza-Feria, J.; Zaritzky, N.E. Physicochemical and microstructural characterization of films prepared by thermal and cold gelatinization from non-conventional sources of starches. Carbohyd. Polym. 2005, 60, 235–244. [Google Scholar] [CrossRef]
- Koch, K. Starch-based films. In Starch in Food. Structure, Function and Applications; Woodhead Publishing: Cambridge, MA, USA, 2018; pp. 747–767. [Google Scholar]
- Mani, R.; Bhattacharya, M. Properties of injection moulded starch/synthetic polymer blends. III Effect of amylopectin to amylose ratio in starch. Eur. Polym. J. 1998, 34, 1467–1475. [Google Scholar] [CrossRef]
- Liu, H.; Xie, F.; Yu, L.; Chen, L.; Li, L. Thermal processing of starch-based polymers. Prog. Polym. Sci. 2009, 34, 1348–1368. [Google Scholar] [CrossRef]
- Nafchi, A.M.; Moradpour, M.; Saeidi, M.; Alias, A.K. Thermoplastic starches: Properties, challenges and prospects. Starch–Starke 2013, 65, 61–67. [Google Scholar] [CrossRef]
- Shogren, R.L.; Lawton, J.W.; Tiefenbacher, K.F. Baked starch foams: Starch modifications and additives improve process parameters, structure and properties. Ind. Crops Prod. 2002, 16, 69–79. [Google Scholar] [CrossRef]
- Wollerdorfer, M.; Bader, H. Influence of natural fibres on the mechanical properties of biodegradable polymers. Ind. Crops Prod. 1998, 8, 105–112. [Google Scholar] [CrossRef]
- Carvalho, A.J.F. Starch: Major Sources, Properties and Applications as Thermoplastic Materials. In Monomers, Polymers and Composites from Renewable Resources; Elsevier: Amsterdam, The Netherlands, 2008; pp. 321–342. [Google Scholar]
- Herrmann, A.S.; Nickel, J.; Riedel, U. Construction materials based upon biologically renewable resources – from components to finished parts. Polym. Degrad. Stab. 1998, 59, 251–261. [Google Scholar] [CrossRef]
- Ma, X.F.; Yu, J.G.; Kennedy, J.F. Studies on the properties of natural fibers-reinforced thermoplastic starch composites. Carbohyd. Polym. 2005, 62, 19–24. [Google Scholar] [CrossRef]
- Averous, A.; Frigant, C.; Moro, L. Plasticized starch–cellulose interactions in polysaccharide composites. Polymers 2001, 42, 6565–6572. [Google Scholar] [CrossRef]
- Reis, R.L.; Cunha, A.M.; Allan, P.S.; Bevis, M.J. Structure development and control of injection-molded hydroxyl apatite reinforced starch/EVOH composites. Adv. Polym. Technol. 1997, 16, 263–277. [Google Scholar] [CrossRef]
- Carvalho, A.J.F.; Curvelo, A.A.S.; Agnelli, J.A.M. A first insight on composites of thermoplastic starch and kaolin. Carbohyd. Polym. 2001, 45, 189–194. [Google Scholar]
- Behera, A.K. Mechanical and biodegradation analysis of thermoplastic starch reinforced nanobiocomposites. IOP Conf. Ser. Mater. Sci. Eng. 2018, 410, 012001. [Google Scholar] [CrossRef] [Green Version]
- Nazrin, A.; Sapuan, S.M.; Zuhri, M.Y.M. Mechanical, physical and thermal properties of sugar palm nanocellulose reinforced thermoplastic starch (TPS)/poly (lactic acid) (PLA) blend bionanocomposites. Polymers 2020, 12, 2216. [Google Scholar] [CrossRef]
- Mani, R.; Bhattacharya, M. Properties of injection moulded blends of starch and modified biodegradable polyesters. Eur. Polym. J. 2001, 37, 515–526. [Google Scholar] [CrossRef]
- Park, H.; Lee, S.; Chowdhury, S.; Kang, T.; Kim, H.; Park, S.; Ha, C. Tensile properties, morphology and biodegradability of blends of starch with various thermoplastics. J. Appl. Polym. Sci. 2002, 86, 2907–2915. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, Z.; Liu, W. Biodegradable Materials from Starch-Grafted Polymers. U.S. Patent 305,661, 12 September 2003. [Google Scholar]
- Ramkumar, D.; Bhattacharya, M.; Vaidya, U. Properties of injection moulded starch/synthetic polymer blends—II. Evaluation of mechanical properties. Eur. Polym. J. 1997, 33, 729–743. [Google Scholar] [CrossRef]
- Loercks, J.; Pommeranz, W.; Schmidt, H.; Timmermann, R.; Grigat, E.; Schulz-Schlitte, W. Biodegradable polymeric mixtures based on thermoplastic starch. U.S. Patent 6,235,815, 29 October 2002. [Google Scholar]
- Martin, O.; Schwach, E.; Avérous, L.; Couturier, Y. Properties of biodegradable multilayer films based on plasticized wheat starch. Starch-Starke 2001, 53, 372–380. [Google Scholar] [CrossRef]
- Griffin, G. Synthetic/resin based compositions. U.S. Patent 4,125,495, 14 November 1977. [Google Scholar]
- Thakore, I.M.; Desai, S.; Sarawade, B.D.; Devi, S. Studies on biodegradability, morphology and thermomechanical properties of LDPE/ modified starch blends. Eur. Polym. J. 2001, 37, 151–160. [Google Scholar] [CrossRef]
- Walker, A.; Ying, T.; Torkelson, J. Polyethylene/starch blends with enhanced oxygen barrier and mechanical properties: Effect of granule morphology damage by solid state shear pulverization. Polymer 2007, 48, 1066–1074. [Google Scholar] [CrossRef]
- Liu, W.; Wang, Y.-J.; Sun, Z. Crystallization behavior of starch—Filled polypropylene. J. Appl. Polym. Sci. 2004, 92, 484–492. [Google Scholar] [CrossRef]
- Bhattacharya, M. Stress relaxation of starch/synthetic polymer blends. J. Mater. Sci. 1998, 33, 4131–4139. [Google Scholar] [CrossRef]
- Pedroso, A.; Rosa, D. Mechanical, thermal and morphological characterization of recycled LDPE/corn starch blends. Carbohyd. Polym. 2005, 59, 1–9. [Google Scholar] [CrossRef]
- Petersen, K.; Nielsen, P.; Olsen, M. Physical and mechanical properties of biobased materials—starch, polylactate and polyhydroxybutyrate. Starch–Starke 2001, 53, 356–361. [Google Scholar] [CrossRef]
- Averous, L.; Fauconnier, N.; Moro, L.; Fringant, C. Blends of thermoplastic starch and polyesteramide: Processing and properties. J. Appl. Polym. Sci. 2000, 76, 1117–1128. [Google Scholar] [CrossRef]
- Chandra, R.; Rustgi, R. Biodegradation of maleated linear low—density polyethylene and starch blends. Polym. Degrad. Stabil. 1997, 56, 185–202. [Google Scholar] [CrossRef]
- Matzinos, P.; Tserki, V.; Gianikouris, C.; Pavlidou, E.; Panayiotou, C. Processing and characterization of LDPE/starch/PCL blends. Eur. Polym. J. 2002, 38, 1713–1720. [Google Scholar] [CrossRef]
- Mazerolles, T.; Heuzey, M.-C.; Soliman, M.; Martens, H.; Kleppinger, R.; Huneault, M.A. Development of multilayer barrier films of thermoplastic starch and low density polyethylene. J. Polym. Res. 2020, 27, 44. [Google Scholar] [CrossRef]
- Chaléat, C.; Halley, P.J.; Truss, R.W. Mechanical properties of starch-based plastics. In Starch Polymers: from Genetic Engineering to Green Applications; Elsevier: Burlington, NJ, USA, 2014; pp. 187–209. [Google Scholar]
- López, O.V.; Garcia, M.A.; Zaritzky, N.E. Film forming capacity of chemically modified corn starches. Carbohyd. Polym. 2007, 23, 573–581. [Google Scholar] [CrossRef]
- Debiagi, F.; Mello, L.R.P.F.; Mali, S. Thermoplastic starch-based blends: Processing, structural, and final properties. In Starch-Based Materials in Food Packaging; Academic Press: Cambridge, MA, USA, 2018; pp. 153–186. [Google Scholar]
- Marichelvam, M.K.; Jawaid, M.; Asim, M. Corn and rice starch-based bio-plastics as alternative packaging materials. Fibers 2019, 7, 32. [Google Scholar] [CrossRef] [Green Version]
- Issa, A.; Ibrahim, S.A.; Tahergorabi, R. Sweet Potato Starch/Clay Nanocomposite Film: New Material for Emerging Biodegradable Food Packaging. MOJ Food Process. Technol. 2016, 3, 313–315. [Google Scholar]
- López, O.V.; Castillo, L.A.; Garcia, M.A.; Villar, M.A.; Barbosa, S.E. Food Packaging Bags Based on Thermoplastic Corn Starch Reinforced with Talc Nanoparticles. Food Hydrocolloids 2015, 43, 18–24. [Google Scholar] [CrossRef]
- Gadhave, R.V.; Das, A.; Mahanwar, P.A.; Gadekar, P.T. Starch Based Bio-Plastics: The Future of Sustainable Packaging. Open J. Polym. Chem. 2018, 8, 21–33. [Google Scholar] [CrossRef] [Green Version]
- Ghanbarzadeh, B.; Almasi, H.; Entezami, A.A. Improving the Barrier and Mechanical Properties of Corn Starch-Based Edible Films: Effect of Citric Acid and Carboxymethyl Cellulose. Ind. Crops Prod. 2011, 33, 229–235. [Google Scholar] [CrossRef]
- Nikolic, V.; Velickovic, S.; Popovic, A. Biodegradation of Polystyrene-Graft-Starch Copolymers in Three Different Types of Soil. Environ. Sci. Pollut. R. 2014, 21, 9877–9886. [Google Scholar] [CrossRef]
- Vašková, I.; Alexy, P.; Bugaj, P.; Nahálková, A.; Feranc, J.; Mlynský, T. Biodegradable polymer packaging materials based on polycaprolactone, starch and polyhydroxybutyrate. Acta Chim. Slov. 2008, 1, 301–308. [Google Scholar]
- Fang, J.M.; Fowler, P.A.; Escrig, C.; Gonzalez, R.; Costa, J.A.; Chamudis, L. Development of biodegradable laminate films derived from naturally occurring carbohydrate polymers. Carbohyd. Polym. 2005, 60, 39–42. [Google Scholar] [CrossRef]
- Yew, G.H.; Mohd Yusof, A.M.; Mohd Ishak, Z.A.; Ishiaku, U.S. Water absorption and enzymatic degradation of poly(lactic acid)/rice starch composites. Polym. Degrad. Stabil. 2005, 90, 488–500. [Google Scholar] [CrossRef]
- Zhai, M.; Zhao, M.; Yoshii, F.; Kume, T. Study on antibacterial starch/chitosan blend film formed under the action of irradiation. Carbohyd. Polym. 2004, 57, 83–88. [Google Scholar] [CrossRef]
- Bourtoom, T.; Chinnan, M.S. Preparation and properties of rice starch–chitosan blend biodegradable film. LWT-Food Sci. Technol. 2008, 41, 1633–1641. [Google Scholar] [CrossRef]
- Bourtoom, T. Plasticizer effect on the properties of biodegradable blend film from rice starch-chitosan. Songklanakarin J. Sci. Technol. 2008, 30, 149–155. [Google Scholar]
- Li, H.; Gao, X.; Wang, Y.; Zhang, X.; Tong, Z. Comparison of chitosan/starch composite film properties before and after cross-linking. Int. J. Biol. Macromol. 2013, 52, 275–279. [Google Scholar] [CrossRef]
- Mendes, J.F.; Paschoalin, R.T.; Carmona, V.B.; Neto, A.R.S.; Marques, A.C.P.; Marconcini, J.M.; Mattoso, L.H.C.; Medeiros, E.S.; Oliveira, J.E. Biodegradable polymer blends based on corn starch and thermoplastic chitosan processed by extrusion. Carbohyd. Polym. 2016, 137, 452–458. [Google Scholar] [CrossRef] [Green Version]
- Ren, L.; Yan, X.; Zhou, J.; Tong, J.; Su, X. Influence of chitosan concentration on mechanical and barrier properties of corn starch/chitosan films. Int. J. Biol. Macromol. 2017, 105, 1636–1643. [Google Scholar] [CrossRef]
- Méndez-Hernández, M.L.; Rivera-Armenta, J.L.; Sandoval-Arellano, Z.; Salazar-Cruz, B.A.; Chavez-Cinco, M.Y. Evaluation of styrene content over physical and chemical properties of elastomer/TPS-EVOH/Chicken feather composites. In Applications of Modified Starches; Intech Open Limited: London, UK, 2018; pp. 23–39. [Google Scholar]
- Corradini, E.; Carvalho, A.J.F.; Curvelo, A.A.S.; Agnelli, J.A.M.; Mattoso, L.H.C. Preparation and characterization of thermoplastic starch/zein blends. Mater. Res. 2007, 10, 227–231. [Google Scholar] [CrossRef] [Green Version]
- Józó, M.; Cui, L.; Bocz, K.; Pukánszky, B. Processing induced segregation in PLA/TPS blends: Factors and consequences. EXPRESS Polym. Lett. 2020, 14, 768–779. [Google Scholar] [CrossRef]
- Bulatović, V.O.; Mandić, V.; Grgić, D.K.; Ivančić, A. Biodegradable polymer blends based on thermoplastic starch. J. Polym. Environ. 2020. [Google Scholar] [CrossRef]
- Yun, I.S.; Hwang, S.W.; Shim, J.K. A study on the thermal and mechanical properties of poly (butylene succinate)/thermoplastic starch binary blends. Int. J. Precis. Eng. Manuf.-Green Technol. 2016, 3, 289–296. [Google Scholar] [CrossRef]
- Parulekar, Y.; Mohanty, A.K. Extruded biodegradable cast films from polyhydroxyalkanoate and thermoplastic starch blends: Fabrication and characterization. Macromol. Mater. Eng. 2007, 292, 1218–1228. [Google Scholar] [CrossRef]
- De Moraes, J.O.; Laurindo, J.B. Properties of starch–cellulose fiber films produced by tape casting coupled with infrared radiation. Dry Technol. 2018, 36, 830–840. [Google Scholar] [CrossRef]
- do Val Siqueira, L.; La Fuentes Arias, C.I.; Chieregato Maniglia, B.; Tadini, C.C. Starch-based biodegradable plastics: Methods of production, challenges and future perspectives. Curr. Opin. Food Sci. 2021, 38. [Google Scholar] [CrossRef]
- Zarski, A.; Bajer, K.; Raszkowska-Kaczor, A.; Rogacz, D.; Zarska, S.; Kapusniak, J. From high oleic vegetable oils to hydrophobic starch derivatives: II. Physicochemical, processing and environmental properties. Carbohydr. Polym. 2020, 243, 116499. [Google Scholar] [CrossRef] [PubMed]
- Thais Vedove, M.A.R.D.; Chieregato Maniglia, B.; Tadini, C.C. Production of sustainable smart packaging based on cassava starch and anthocyanin by an extrusion process. J. Food Eng. 2021, 289, 110274. [Google Scholar] [CrossRef]
- Ghanbari, A.; Tabarsa, T.; Ashori, A.; Shakeri, A.; Mashkour, M. Preparation and characterization of thermoplastic starch and cellulose nanofibers as green nanocomposites: Extrusion processing. Int. J. Biol. Macromol. 2018, 112, 442–447. [Google Scholar] [CrossRef]
- Pattanayaiying, R.; Sane, A.; Photjanataree, P.; Cutter, C.N. Thermoplastic starch/polybutylene adipate terephthalate film coated with gelatin containing nisin Z and lauric arginate for control of foodborne pathogens associated with chilled and frozen seafood. Int. J. Food Microbiol. 2019, 290, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Herniou-Julien, C.; Mendieta, J.R.; Gutiérrez, T.J. Characterization of biodegradable/non-compostable films made from cellulose acetate/corn starch blends processed under reactive extrusion conditions. Food Hydrocoll. 2019, 89, 67–79. [Google Scholar] [CrossRef]
- Simões, B.M.; Cagnin, C.; Yamashita, F.; Olivato, J.B.; Garcia, P.S.; Oliveira, S.M.; Eiras Grossmann, M.V. Citric acid as crosslinking agent in starch/xanthan gum hydrogels produced by extrusion and thermopressing. LWT 2020, 125, 108950. [Google Scholar]
- Huntrakul, K.; Yoksan, R.; Sane, A.; Harnkarnsujarit, N. Effects of pea protein on properties of cassava starch edible films produced by blown-film extrusion for oil packaging. Food Packag. Shelf Life 2020, 24, 100480. [Google Scholar] [CrossRef]
- Gao, W.; Liu, P.; Li, X.; Qiu, L.; Hou, H.; Cui, B. The co-plasticization effects of glycerol and small molecular sugars on starch-based nanocomposite films prepared by extrusion blowing. Int. J. Biol. Macromol. 2019, 133, 1175–1181. [Google Scholar] [CrossRef] [PubMed]
Type of Chemical Modification | Properties of Modified Starch | Ref. |
---|---|---|
Cross-linking |
| [93,94,95] |
Grafting polymerization |
| [5,96,97] |
Oxidation |
| [5,98,99,100] |
Etherification |
| [101,102,103,104,105,106] |
Esterification |
| [7,8] |
Starch | Reagent | Solvent | Catalyst | Power [W] | Product | Ref. |
---|---|---|---|---|---|---|
Cassava starch | Dimethyl carbonate | Sodium chloride | Na2HPO4 | 1300 | Methylated starch | [133] |
Cassava starch | Dimethyl carbonate | Dimethyl carbonate | Na2HPO4 NH2CONH2 NH2CSNH2 | 800 | Methylated starch | [134] |
Corn starch | Acetic acid anhydride | Acetic acid anhydride | I2 | 300 | Starch acetate | [130] |
Corn starch | Acetic acid anhydride | Acetic acid anhydride | I2 | 300 | Starch acetate | [131] |
Corn starch | Vinyl acetate | H2O | K2CO3 | n/d | Starch acetate | [135] |
Maize starch | Oleic acid | H2O | Staphylococcus aureus lipase | 700 | Starch oleate | [136] |
Cassava starch | Octenyl succinic anhydride | H2O | NaOH | 50 | Starch octenyl succinate | [137] |
Potato starch | Oleic acid | - | Candida antarctica lipase | 105–315 | Starch oleate | [132] |
Starch | Ionic Liquid | Catalyst | Product | Ref. |
---|---|---|---|---|
Corn starch | [BMIM]Cl | Pyridine | Starch acetate or succinate | [147] |
Corn starch | [BMIM]Cl | - | Starch acetate | [148] |
Corn starch | Imidazolium based ILs | ILs | Starch mixed esters | [149] |
Corn starch | [BMIM]Cl | [BMIM]Cl | Starch acetate or propionate | [150] |
Corn maltodextrin | [BMIM]X; X-halogen | - | Maltodextrin acetate | [151] |
Corn starch | IL, DMF or DMSO | - | Starch laurate, palmitate or stearate | [152] |
Corn starch | [BMIM]Cl | Pyridine | Starch laurate or stearate | [153] |
Cassava starch | [BMIM]Cl | Pyridine | Starch vernolate | [154] |
High-amylose maize starch | Mixture of [BMIM]BF4 [BMIM]OAc | C. rugosa lipase | Starch palmitate | [155] |
High-amylose maize starch | [BMIM]BF4 | C. rugosa lipase | Starch laurate | [156] |
Cassava starch | Mixture of [BMIM]PF6 DMSO | Novozyme 435 lipase | Starch vernolate | [157] |
Waxy maize starch | [C8MIM]NO3 | Novozyme 435 lipase | Starch octenyl succinate | [158] |
Corn starch | C16 MIMBr, C16-3-C16 IMBr2, C16-12-C16 IMBr2 | R. oryzae lipase | Starch oleate | [159] |
Potato starch | [BMIM]Cl | T. lanuginosus lipase | Starch oleate | [160] |
Potato starch | [BMIM]Cl P80 surfactant | T. lanuginosus lipase | Starch esters | [161] |
Starch | Reagent | Catalyst | Product | Ref. |
---|---|---|---|---|
Potato starch | Acetate anhydride | Sodium acetate | Starch acetate | [162] |
Potato starch | Acetate anhydride | K2CO3 | Starch acetate | [163] |
Potato starch | Acetate anhydride | Sodium acetate | Starch acetate | [164] |
Potato starch | Anhydride or methyl/vinyl esters | K2CO3 | Starch esters | [165] |
Sago starch | Methyl esters | K2CO3 | Starch esters | [166] |
Starch | Reagent | Solvent | Catalyst | Product | Ref. |
---|---|---|---|---|---|
Waxy rice starch | Octenyl succinate anhydride | H2O | NaOH | Starch octenyl succinate | [169] |
Cassava starch | Octenyl succinate anhydride | - | Na2CO3 | Starch octenyl succinate | [170] |
Cassava starch | Lauric acid | - | K2CO3 | Starch laurate | [171] |
Waxy rice starch | Octenyl succinate anhydride | H2O | NaOH | Starch octenyl succinate | [172] |
Methods of Starch Modification | Medium or Technique of Modification | Ref. | ||
---|---|---|---|---|
Name | Advantages | Disadvantages | ||
Physical, chemical, and biochemical | organic/inorganic solvents |
|
| [8,102] |
Physical, chemical, and biochemical | ionic liquids |
|
| [144,145,146] |
Physical and chemical | supercritical CO2 |
|
| [159,160,161,162,163] |
Physical, chemical, and biochemical | microwave radiation |
|
| [8,132] |
Physical and chemical | ultrasonication |
|
| [164,165] |
Physical and chemical | mechanochemistry |
|
| [166,167,168,169] |
Composition of Matrix | Reinforcement or Filler | Ref. |
---|---|---|
TPS/PVA | Softwood fiber | [185] |
Potato starch/Cellulose derivatives/Synthetic polymers | Flax, jute, ramie, oil palm fiber | [186] |
Corn starch/PCL | Flax and ramie | [186] |
Wheat starch/PCL | Flax and ramie | [186] |
Wheat starch/Glycerol/Sorbitol/TPS | Flax and ramie | [186] |
TPS/ Thermoplastic PU | Flax | [187] |
TPS/PCL | Flax | [187] |
Maize starch/TPS | Flax fiber | [187] |
TPS/PCL/EVOH | Non-woven of flax, hemp, ramie fibers | [188] |
Starch/Glycerol/Formamide/Urea | Micro winceyette fiber | [189] |
Wheat starch/Glycerol/TPS | Leafwood fibers | [190] |
Starch/EVOH | Hydroxylapatite-reinforced | [191] |
Maize starch/Glycerol | Kaolin | [192] |
TPS | Montmorylonit, Cloisite 30B | [193] |
TPS/PLA | Sugar palm nanocellulose fibers | [194] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zarski, A.; Bajer, K.; Kapuśniak, J. Review of the Most Important Methods of Improving the Processing Properties of Starch toward Non-Food Applications. Polymers 2021, 13, 832. https://doi.org/10.3390/polym13050832
Zarski A, Bajer K, Kapuśniak J. Review of the Most Important Methods of Improving the Processing Properties of Starch toward Non-Food Applications. Polymers. 2021; 13(5):832. https://doi.org/10.3390/polym13050832
Chicago/Turabian StyleZarski, Arkadiusz, Krzysztof Bajer, and Janusz Kapuśniak. 2021. "Review of the Most Important Methods of Improving the Processing Properties of Starch toward Non-Food Applications" Polymers 13, no. 5: 832. https://doi.org/10.3390/polym13050832
APA StyleZarski, A., Bajer, K., & Kapuśniak, J. (2021). Review of the Most Important Methods of Improving the Processing Properties of Starch toward Non-Food Applications. Polymers, 13(5), 832. https://doi.org/10.3390/polym13050832