Flow-Through PolyHIPE Silver-Based Catalytic Reactor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. PolyHIPE Preparation
2.3. Homogeneity of the PolyHIPE
2.4. Functionalization
2.5. Determination of Aldehyde Group
2.6. Formation of Silver Nanoparticles
2.7. Catalytic Reduction of 4-NP
2.8. Characterization of AgNPs
3. Results and Discussion
3.1. Homogeneity of the PolyHIPE
3.2. Growth of Silver Nanoparticles
3.3. Catalytic Performance
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Liu, H.; Wan, D.; Du, J.; Jin, M. Dendritic Amphiphile Mediated One-Pot Preparation of 3D Pt Nanoparticles-Decorated PolyHIPE as a Durable and Well-Recyclable Catalyst. ACS Appl. Mater. Interfaces 2015, 7, 20885–20892. [Google Scholar] [CrossRef]
- Ye, Y.; Jin, M.; Wan, D. One-pot synthesis of porous monolith-supported gold nanoparticles as an effective recyclable catalyst. J. Mater. Chem. A 2015, 3, 13519–13525. [Google Scholar] [CrossRef]
- Zhu, Y.; Hua, Y.; Zhang, S.; Wang, Y.; Chen, J. Open-cell macroporous bead: A novel polymeric support for heterogeneous photocatalytic reactions. J. Polym. Res. 2015, 22, 57. [Google Scholar] [CrossRef]
- Lee, J.; Chang, J.Y. A hierarchically porous catalytic monolith prepared from a Pickering high internal phase emulsion stabilized by microporous organic polymer particles. Chem. Eng. J. 2020, 381, 122767. [Google Scholar] [CrossRef]
- Yuan, W.; Chen, X.; Xu, Y.; Yan, C.; Liu, Y.; Lian, W.; Zhou, Y.; Li, Z. Preparation and recyclable catalysis performance of functional macroporous polyHIPE immobilized with gold nanoparticles on its surface. RSC Adv. 2018, 8, 5912–5919. [Google Scholar] [CrossRef] [Green Version]
- Plutschack, M.B.; Pieber, B.; Gilmore, K.; Seeberger, P.H. The Hitchhiker’s Guide to Flow Chemistry. Chem. Rev. 2017, 117, 11796–11893. [Google Scholar] [CrossRef] [PubMed]
- Ottens, M.; Leene, G.; Beenackers, A.A.C.M.; Cameron, N.; Sherrington, D.C. PolyHipe: A New Polymeric Support for Heterogeneous Catalytic Reactions: Kinetics of Hydration of Cyclohexene in Two- and Three-Phase Systems over a Strongly Acidic Sulfonated PolyHipe. Ind. Eng. Chem. Res. 2000, 39, 259–266. [Google Scholar] [CrossRef]
- Ruan, G.; Wu, Z.; Huang, Y.; Wei, M.; Su, R.; Du, F. An easily regenerable enzyme reactor prepared from polymerized high internal phase emulsions. Biochem. Biophys. Res. Commun. 2016, 473, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Alshehri, S.M.; Almuqati, T.; Almuqati, N.; Al-Farraj, E.; Alhokbany, N.; Ahamad, T. Chitosan based polymer matrix with silver nanoparticles decorated multiwalled carbon nanotubes for catalytic reduction of 4-nitrophenol. Carbohydr. Polym. 2016, 151, 135–143. [Google Scholar] [CrossRef] [PubMed]
- Tan, L.; Tan, B. Functionalized hierarchical porous polymeric monoliths as versatile platforms to support uniform and ultrafine metal nanoparticles for heterogeneous catalysis. Chem. Eng. J. 2020, 390, 124485. [Google Scholar] [CrossRef]
- Ding, R.; Chen, Q.; Luo, Q.; Zhou, L.; Wang, Y.; Zhang, Y.; Fan, G. Salt template-assisted in situ construction of Ru nanoclusters and porous carbon: Excellent catalysts toward hydrogen evolution, ammonia-borane hydrolysis, and 4-nitrophenol reduction. Green Chem. 2020, 22, 835–842. [Google Scholar] [CrossRef]
- Cheng, W.M.; Wang, C.C.; Chen, C.Y. The influence of Ni nanoparticles and Ni(II) on the growth of Ag dendrites immobilized on the chelating copolymer membrane. Mater. Chem. Phys. 2012, 137, 76–84. [Google Scholar] [CrossRef]
- Akay, G.; Calkan, B. Preparation of Nanostructured Microporous Metal Foams through Flow Induced Electroless Deposition. J. Nanomater. 2015, 2015, 275705. [Google Scholar] [CrossRef] [Green Version]
- Wan, Y.; Feng, Y.; Wan, D.; Jin, M. Polyamino amphiphile mediated support of platinum nanoparticles on polyHIPE as an over 1500-time recyclable catalyst. RSC Adv. 2016, 6, 109253–109258. [Google Scholar] [CrossRef]
- Dong, X.Y.; Gao, Z.W.; Yang, K.F.; Zhang, W.Q.; Xu, L.W. Nanosilver as a new generation of silver catalysts in organic transformations for efficient synthesis of fine chemicals. Catal. Sci. Technol. 2015, 5, 2554–2574. [Google Scholar] [CrossRef]
- Cao, S.; Tao, F.F.; Tang, Y.; Li, Y.; Yu, J. Size- and shape-dependent catalytic performances of oxidation and reduction reactions on nanocatalysts. Chem. Soc. Rev. 2016, 45, 4747–4765. [Google Scholar] [CrossRef]
- Liao, G.; Gong, Y.; Zhong, L.; Fang, J.; Zhang, L.; Xu, Z.; Gao, H.; Fang, B. Unlocking the door to highly efficient Ag-based nanoparticles catalysts for NaBH4-assisted nitrophenol reduction. Nano Res. 2019, 12, 2407–2436. [Google Scholar] [CrossRef]
- Kim, J.G.; Cha, M.C.; Lee, J.; Choi, T.; Chang, J.Y. Preparation of a Sulfur-Functionalized Microporous Polymer Sponge and In Situ Growth of Silver Nanoparticles: A Compressible Monolithic Catalyst. ACS Appl. Mater. Interfaces 2017, 9, 38081–38088. [Google Scholar] [CrossRef] [PubMed]
- Yan, Z.; Fu, L.; Zuo, X.; Yang, H. Green assembly of stable and uniform silver nanoparticles on 2D silica nanosheets for catalytic reduction of 4-nitrophenol. Appl. Catal. B Environ. 2018, 226, 23–30. [Google Scholar] [CrossRef]
- Ma, M.; Yang, Y.; Li, W.; Feng, R.; Li, Z.; Lyu, P.; Ma, Y. Gold nanoparticles supported by amino groups on the surface of magnetite microspheres for the catalytic reduction of 4-nitrophenol. J. Mater. Sci. 2019, 54, 323–334. [Google Scholar] [CrossRef]
- Lv, Z.S.; Zhu, X.Y.; Meng, H.-B.; Feng, J.J.; Wang, A.J. One-pot synthesis of highly branched Pt@Ag core-shell nanoparticles as a recyclable catalyst with dramatically boosting the catalytic performance for 4-nitrophenol reduction. J. Colloid Interface Sci. 2019, 538, 349–356. [Google Scholar] [CrossRef]
- Zhang, T.; Sanguramath, R.A.; Israel, S.; Silverstein, M.S. Emulsion Templating: Porous Polymers and Beyond. Macromolecules 2019, 52, 5445–5479. [Google Scholar] [CrossRef] [Green Version]
- Taylor-Pashow, K.M.L.; Pribyl, J.G. PolyHIPEs for Separations and Chemical Transformations: A Review. Solvent Extr. Ion Exch. 2019, 37, 1–26. [Google Scholar] [CrossRef]
- Thomas, J.M.; Thomas, W.J. Principles and Practices of Heterogneous Catalysis, 2nd ed.; Wiley-VCH: Weinheim, Germany, 2015; ISBN 352731458X. [Google Scholar]
- Rajamanickam, V.; Herwig, C.; Spadiut, O. Monoliths in Bioprocess Technology. Chromatography 2015, 2, 195–212. [Google Scholar] [CrossRef] [Green Version]
- Trojanowicz, M. Flow Chemistry in Contemporary Chemical Sciences: A Real Variety of Its Applications. Molecules 2020, 25, 1434. [Google Scholar] [CrossRef] [Green Version]
- Montazer, M.; Alimohammadi, F.; Shamei, A.; Rahimi, M.K. In situ synthesis of nano silver on cotton using Tollens’ reagent. Carbohydr. Polym. 2012, 87, 1706–1712. [Google Scholar] [CrossRef]
- Textor, T.; Fouda, M.M.G.; Mahltig, B. Deposition of durable thin silver layers onto polyamides employing a heterogeneous Tollens’ reaction. Appl. Surf. Sci. 2010, 256, 2337–2342. [Google Scholar] [CrossRef]
- Diodati, S.; Dolcet, P.; Casarin, M.; Gross, S. Pursuing the Crystallization of Mono- and Polymetallic Nanosized Crystalline Inorganic Compounds by Low-Temperature Wet-Chemistry and Colloidal Routes. Chem. Rev. 2015, 115, 11449–11502. [Google Scholar] [CrossRef]
- Gurevitch, I.; Silverstein, M.S. Nanoparticle-Based and Organic-Phase-Based AGET ATRP PolyHIPE Synthesis within Pickering HIPEs and Surfactant-Stabilized HIPEs. Macromolecules 2011, 44, 3398–3409. [Google Scholar] [CrossRef]
- Lamson, M.; Epshtein-Assor, Y.; Silverstein, M.S.; Matyjaszewski, K. Synthesis of degradable polyHIPEs by AGET ATRP. Polymer 2013, 54, 4480–4485. [Google Scholar] [CrossRef]
- Simakova, A.; Averick, S.E.; Konkolewicz, D.; Matyjaszewski, K. Aqueous ARGET ATRP. Macromolecules 2012, 45, 6371–6379. [Google Scholar] [CrossRef]
- Tadros, T.F. Emulsion Formation and Stability. Tadros, T.F., Ed.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2013; ISBN 9783527647941. [Google Scholar]
- Mravljak, R.; Bizjak, O.; Podlogar, M.; Podgornik, A. Effect of polyHIPE porosity on its hydrodynamic properties. Polym. Test. 2020, 93, 106590. [Google Scholar] [CrossRef]
- Mallik, R.; Jiang, T.; Hage, D.S. High-Performance Affinity Monolith Chromatography: Development and Evaluation of Human Serum Albumin Columns. Anal. Chem. 2004, 76, 7013–7022. [Google Scholar] [CrossRef] [PubMed]
- Telvekar, V.N.; Patel, D.J.; Mishra, S.J. Oxidative Cleavage of Epoxides Using Aqueous Sodium Paraperiodate. Synth. Commun. 2008, 39, 311–315. [Google Scholar] [CrossRef]
- Bockris, J.O.M.; Oldfield, L.F. The oxidation-reduction reactions of hydrogen peroxide at inert metal electrodes and mercury cathodes. Trans. Faraday Soc. 1955, 51, 249–259. [Google Scholar] [CrossRef]
- Tollens, B. Ueber ammon-alkalische Silberlösung als Reagens auf Aldehyd. Ber. Dtsch. Chem. Ges. 1882, 15, 1635–1639. [Google Scholar] [CrossRef] [Green Version]
- Yang, T.; Han, Y. Quantitatively relating diffusion and reaction for shaping particles. Cryst. Growth Des. 2016, 16, 2850–2859. [Google Scholar] [CrossRef]
- Yang, T.; Liu, J.; Dai, J.; Han, Y. Shaping particles by chemical diffusion and reaction. CrystEngComm 2017, 19, 72–79. [Google Scholar] [CrossRef]
- You, H.; Ding, C.; Song, X.; Ding, B.; Fang, J. In situ studies of different growth modes of silver crystals induced by the concentration field in an aqueous solution. CrystEngComm 2011, 13, 4491–4495. [Google Scholar] [CrossRef]
- Singh, J.; Mehta, A.; Rawat, M.; Basu, S. Green synthesis of silver nanoparticles using sun dried tulsi leaves and its catalytic application for 4-Nitrophenol reduction. J. Environ. Chem. Eng. 2018, 6, 1468–1474. [Google Scholar] [CrossRef]
- Thanh, N.T.K.; Maclean, N.; Mahiddine, S. Mechanisms of Nucleation and Growth of Nanoparticles in Solution. Chem. Rev. 2014, 114, 7610–7630. [Google Scholar] [CrossRef]
- Sadeghi, S.; Moghbeli, M.R. Synthesis and dispersion of colloidal silver nanoparticles on microcellular polyHIPE support. Colloids Surfaces A Physicochem. Eng. Asp. 2012, 409, 42–51. [Google Scholar] [CrossRef]
- Cao, H.-L.; Huang, H.-B.; Chen, Z.; Karadeniz, B.; Lü, J.; Cao, R. Ultrafine Silver Nanoparticles Supported on a Conjugated Microporous Polymer as High-Performance Nanocatalysts for Nitrophenol Reduction. ACS Appl. Mater. Interfaces 2017, 9, 5231–5236. [Google Scholar] [CrossRef] [PubMed]
- Krajnc, P.; Leber, N.; Štefanec, D.; Kontrec, S.; Podgornik, A. Preparation and characterisation of poly(high internal phase emulsion) methacrylate monoliths and their application as separation media. J. Chromatogr. A 2005, 1065, 69–73. [Google Scholar] [CrossRef] [PubMed]
- Welham, N.J.; Kelsall, G.H.; Diaz, M.A. Thermodynamics of Ag-Cl-H2O, Ag-Br-H2O and Ag-I-H2O systems at 298 K. J. Electroanal. Chem. 1993, 361, 39–47. [Google Scholar] [CrossRef]
- Adkins, H.; Elofson, R.M.; Rossow, A.G.; Robinson, C.C. The Oxidation Potentials of Aldehydes and Ketones. J. Am. Chem. Soc. 1949, 71, 3622–3629. [Google Scholar] [CrossRef]
- Ho, N.A.D.; Babel, S. Electrochemical reduction of different Ag(I)-containing solutions in bioelectrochemical systems for recovery of silver and simultaneous power generation. RSC Adv. 2019, 9, 30259–30268. [Google Scholar] [CrossRef]
- Vlakh, E.G.; Tennikova, T.B. Flow-through immobilized enzyme reactors based on monoliths: I. Preparation of heterogeneous biocatalysts. J. Sep. Sci. 2013, 36, 110–127. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Zhao, S.; Wei, Y. Hydrophilic Modification of Microporous Polysulfone Membrane via Surface-Initiated Atom Transfer Radical Polymerization and Hydrolysis of Poly(glycidylmethacrylate). Chin. J. Chem. 2012, 30, 2473–2482. [Google Scholar] [CrossRef]
- Křvenková, J.; Bilková, Z.; Foret, F. Chararacterization of a monolithic immobilized trypsin microreactor with on-line coupling to ESI-MS. J. Sep. Sci. 2005, 28, 1675–1684. [Google Scholar] [CrossRef] [PubMed]
- Hainey, P.; Huxham, I.M.; Rowatt, B.; Sherrington, D.C.; Tetley, L. Synthesis and ultrastructural studies of styrene-divinylbenzene Polyhipe polymers. Macromolecules 1991, 24, 117–121. [Google Scholar] [CrossRef]
- Starovoytov, O.N.; Kim, N.S.; Han, K.N. Dissolution behavior of silver in ammoniacal solutions using bromine, iodine and hydrogen-peroxide as oxidants. Hydrometallurgy 2007, 86, 114–119. [Google Scholar] [CrossRef]
- Henglein, A. Non-metallic silver clusters in aqueous solution: Stabilization and chemical reactions. Chem. Phys. Lett. 1989, 154, 473–476. [Google Scholar] [CrossRef]
- Grzeschik, R.; Schäfer, D.; Holtum, T.; Küpper, S.; Hoffmann, A.; Schlücker, S. On the Overlooked Critical Role of the pH Value on the Kinetics of the 4-Nitrophenol NaBH4-Reduction Catalyzed by Noble-Metal Nanoparticles (Pt, Pd, and Au). J. Phys. Chem. C 2020, 124. [Google Scholar] [CrossRef]
- Wunder, S.; Polzer, F.; Lu, Y.; Mei, Y.; Ballauff, M. Kinetic Analysis of Catalytic Reduction of 4-Nitrophenol by Metallic Nanoparticles Immobilized in Spherical Polyelectrolyte Brushes. J. Phys. Chem. C 2010, 114, 8814–8820. [Google Scholar] [CrossRef]
- Menumerov, E.; Hughes, R.A.; Neretina, S. Catalytic Reduction of 4-Nitrophenol: A Quantitative Assessment of the Role of Dissolved Oxygen in Determining the Induction Time. Nano Lett. 2016, 16, 7791–7797. [Google Scholar] [CrossRef] [PubMed]
- Strachan, J.; Barnett, C.; Masters, A.F.; Maschmeyer, T. 4-Nitrophenol Reduction: Probing the Putative Mechanism of the Model Reaction. ACS Catal. 2020, 10, 5516–5521. [Google Scholar] [CrossRef]
- Neal, R.D.; Inoue, Y.; Hughes, R.A.; Neretina, S. Catalytic Reduction of 4-Nitrophenol by Gold Catalysts: The Influence of Borohydride Concentration on the Induction Time. J. Phys. Chem. C 2019, 123, 12894–12901. [Google Scholar] [CrossRef]
- Iben Ayad, A.; Luart, D.; Ould Dris, A.; Guénin, E. Kinetic Analysis of 4-Nitrophenol Reduction by “Water-Soluble” Palladium Nanoparticles. Nanomaterials 2020, 10, 1169. [Google Scholar] [CrossRef]
m(AgNP) [g] | k’ [min−1] | k [L molB−1 min−1] | kcat’ [min−1 g−1] | kcat [L molB−1 min−1 g−1] |
---|---|---|---|---|
0.012 | 0.447 | 7.45 | 37.3 | 621 |
0.106 | 3.82 | 63.7 | 36.0 | 601 |
0.477 | 9.03 | 151 | 18.9 | 316 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mravljak, R.; Bizjak, O.; Božič, B.; Podlogar, M.; Podgornik, A. Flow-Through PolyHIPE Silver-Based Catalytic Reactor. Polymers 2021, 13, 880. https://doi.org/10.3390/polym13060880
Mravljak R, Bizjak O, Božič B, Podlogar M, Podgornik A. Flow-Through PolyHIPE Silver-Based Catalytic Reactor. Polymers. 2021; 13(6):880. https://doi.org/10.3390/polym13060880
Chicago/Turabian StyleMravljak, Rok, Ožbej Bizjak, Benjamin Božič, Matejka Podlogar, and Aleš Podgornik. 2021. "Flow-Through PolyHIPE Silver-Based Catalytic Reactor" Polymers 13, no. 6: 880. https://doi.org/10.3390/polym13060880
APA StyleMravljak, R., Bizjak, O., Božič, B., Podlogar, M., & Podgornik, A. (2021). Flow-Through PolyHIPE Silver-Based Catalytic Reactor. Polymers, 13(6), 880. https://doi.org/10.3390/polym13060880