Nanosized SnO2 Prepared by Electrospinning: Influence of the Polymer on Both Morphology and Microstructure
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Preparation of the Samples
2.3. Characterization Techniques
3. Results and Discussion
3.1. Electrospinning of Polymer/Precursor
3.2. Thermal Treatments
3.3. Characterization of Tin-Oxide
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Bracco, P.; Scalarone, D.; Trotta, F. Electrospun Membranes for Sensors Applications. In Smart Membranes and Sensors: Synthesis, Characterization, and Applications; Scrivener Publishing LLC: Beverly, MA, USA, 2014; pp. 301–336. [Google Scholar]
- Eranna, G.; Joshi, B.C.; Runthala, D.P.; Gupta, R.P. Oxide materials for development of integrated gas sensors—A comprehensive review. Crit. Rev. Solid State Mater. Sci. 2004, 29, 111–188. [Google Scholar] [CrossRef]
- Yu, X.; Marks, T.J.; Facchetti, A. Metal oxides for optoelectronic applications. Nat. Publ. Gr. 2016, 15, 383–396. [Google Scholar] [CrossRef] [PubMed]
- Batzill, M.; Diebold, U. The surface and materials science of tin oxide. Prog. Surf. Sci. 2005, 79, 47–154. [Google Scholar] [CrossRef]
- Das, S.; Jayaraman, V. SnO2: A comprehensive review on structures and gas sensors. Prog. Mater. Sci. 2014, 66, 112–255. [Google Scholar] [CrossRef]
- Ai, M. The oxidation activity and acid-base properties of SnO2-based binary catalysts. I. The SnO2V2O5 system. J. Catal. 1975, 40, 318–326. [Google Scholar] [CrossRef]
- Ezhilan, M.; JBB, A.J.; Balaguru Rayappan, J.B. Influence of PVA templates on the synthesis of interconnected and long-winded electrospun V2O5 nanowires—Acetone sensor. Mater. Res. Bull. 2021, 139, 111276. [Google Scholar] [CrossRef]
- Sun, Y.-F.; Liu, S.-B.; Meng, F.-L.; Liu, J.-Y.; Jin, Z.; Kong, L.-T.; Liu, J.-H. Metal Oxide Nanostructures and Their Gas Sensing Properties: A Review. Sensors 2012, 12, 2610–2631. [Google Scholar] [CrossRef] [Green Version]
- Zaera, F. Nanostructured materials for applications in heterogeneous catalysis. Chem. Soc. Rev. 2013, 42, 2746–2762. [Google Scholar] [CrossRef]
- Li, D.; Xia, Y. Fabrication of titania nanofibers by electrospinning. Nano Lett. 2003, 3, 555–560. [Google Scholar] [CrossRef]
- Choi, S.S.; Lee, S.G.; Im, S.; Kim, S.H.; Joo, Y.L. Silica nanofibers from electrospinning/sol-gel process. J. Mater. Sci. Lett. 2003, 22, 891–893. [Google Scholar] [CrossRef]
- Morandi, S.; Cecone, C.; Marchisio, G.; Bracco, P.; Zanetti, M.; Manzoli, M. Shedding light on precursor and thermal treatment effects on the nanostructure of electrospun TiO2 fibers. Nano Struct. Nano Objects 2016, 7, 49–55. [Google Scholar] [CrossRef]
- Chandraiah, M.; Sahoo, B.; Panda, P.K. Preparation and Characterization of SnO2 Nanofibers by Electrospinning. Trans. Indian Ceram. Soc. 2014, 73, 266–269. [Google Scholar] [CrossRef]
- Madhugiri, S.; Sun, B.; Smirniotis, P.G.; Ferraris, J.P.; Balkus, K.J. Electrospun mesoporous titanium dioxide fibers. Microporous Mesoporous Mater. 2004, 69, 77–83. [Google Scholar] [CrossRef]
- Bazargan, A.M.; Fateminia, S.M.A.; Ganji, M.E.; Bahrevar, M.A. Electrospinning preparation and characterization of cadmium oxide nanofibers. Chem. Eng. J. 2009, 155, 523–527. [Google Scholar] [CrossRef]
- Dai, Y.; Liu, W.; Formo, E.; Sun, Y.; Xia, Y. Ceramic nanofibers fabricated by electrospinning and their applications in catalysis, environmental science, and energy technology. Polym. Adv. Technol. 2011, 22, 326–338. [Google Scholar] [CrossRef]
- Masa, S.; Hontanon, E.; Santos, J.P.; Sayago, I.; Lozano, J. Chemiresistive sensors based on electrospun tin oxide nanofibers for detecting NO2 at the sub-0.1 ppm level. In Proceedings of the 2019 5th Experiment International Conference (exp.at’19), Funchal, Madeira Island, Portugal, 12–14 June 2019; pp. 310–314. [Google Scholar]
- MacDiarmid, A.G.; Jones, W.; Norris, J.D.; Gao, J.; Johnson, A.T.; Pinto, N.J.; Hone, J.; Han, F.K. Electrostatically-generated nano fibers of electronic polymers. Synth. Met. 2001, 119, 27–30. [Google Scholar] [CrossRef]
- Theron, S.A.; Zussman, E.; Yarin, A.L. Experimental investigation of the governing parameters in the electrospinning of polymer solutions. Polymer 2004, 45, 2017–2030. [Google Scholar] [CrossRef]
- Liu, S.; White, K.L.; Reneker, D.H. Electrospinning Polymer Nanofibers with Controlled Diameters. IEEE Trans. Ind. Appl. 2019, 55, 5239–5243. [Google Scholar] [CrossRef]
- Aliheidari, N.; Aliahmad, N.; Agarwal, M.; Dalir, H. Electrospun nanofibers for label-free sensor applications. Sensors 2019, 19, 587. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Fan, H.; Ren, P. Electrospinning derived hollow SnO2 microtubes with highly photocatalytic property. Catal. Commun. 2013, 31, 37–41. [Google Scholar] [CrossRef]
- Sun, X.; Huang, Y.; Zong, M.; Wu, H.; Ding, X. Preparation of porous SnO2/ZnO nanotubes via a single spinneret electrospinning technique as anodes for lithium ion batteries. J. Mater. Sci. Mater. Electron. 2016, 27, 2682–2686. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, J.; Du, H.; Li, X.; Wang, C.; Hou, T. Formaldehyde gas sensors based on SnO2/ZSM-5 zeolite composite nanofibers. J. Alloys Compd. 2021, 868, 159140. [Google Scholar] [CrossRef]
- Seongok, H.; Chongyoup, K.; Dongsook, K. Thermal degradation of poly (ethyleneglycol). Polym. Degrad. Stab. 1995, 47, 203–208. [Google Scholar]
- Holland, B. The thermal degradation of poly(vinyl acetate) measured by thermal analysis–Fourier transform infrared spectroscopy. Polymer 2002, 43, 2207–2211. [Google Scholar] [CrossRef]
- Loría-Bastarrachea, M.I.; Herrera-Kao, W.; Cauich-Rodríguez, J.V.; Cervantes-Uc, J.M.; Vázquez-Torres, H.; Ávila-Ortega, A. A TG/FTIR study on the thermal degradation of poly(vinyl pyrrolidone). J. Therm. Anal. Calorim. 2011, 104, 737–742. [Google Scholar] [CrossRef]
- Deitzel, J.M.; Kleinmeyer, J.D.; Hirvonen, J.K.; Tan, N.C.B. Controlled deposition of electrospun poly (ethylene oxide) ® bers. Polymer 2001, 42, 8163–8170. [Google Scholar] [CrossRef]
- Landau, O.; Rothschild, A. Fibrous TiO2 gas sensors produced by electrospinning. J. Electroceramics 2015, 35, 148–159. [Google Scholar] [CrossRef]
- Pakravan, M.; Heuzey, M.C.; Ajji, A. A fundamental study of chitosan/PEO electrospinning. Polymer 2011, 52, 4813–4824. [Google Scholar] [CrossRef]
- Fioravanti, A.; Morandi, S.; Rubin Pedrazzo, A.; Bracco, P.; Zanetti, M.; Manzoli, M.; Mazzocchi, M.; Carotta, M.C. Ultrasensitive Gas Sensors Based on Electrospun TiO2 and ZnO. Proceedings 2017, 1, 485. [Google Scholar] [CrossRef] [Green Version]
- Claire, P.D. Sainte Degradation of PEO in the Solid State: A Theoretical Kinetic Model Degradation of PEO in the Solid State: A Theoretical Kinetic Model. Macromolecules 2009, 3469–3482. [Google Scholar] [CrossRef] [Green Version]
- Brandrup, J.; Immergut, E.; Grulke, E.A.; Eric, A. Polymer Handbook, 4th ed.; Brandrup, J., Immergut, E.H., Grulke, E.A., Eds.; Wiley: New York, NY, USA, 1999; ISBN 978-0471166283. [Google Scholar]
- Jaypraksh Sharma, H.; Damodhar Sonwane, N.; Baburao Kondawar, S. Electrospun SnO2/Polyaniline Composite Nanofibers Based Low Temperature Hydrogen Gas Sensor. Fibers Polym. 2015, 16, 1527–1532. [Google Scholar] [CrossRef]
- Wu, W.Y.; Ting, J.M.; Huang, P.J. Electrospun ZnO Nanowires as Gas Sensors for Ethanol Detection. Nanoscale Res. Lett. 2009, 4, 513–517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Polymer | POL (wt %) | SnEt (wt %) | DMF (wt %) | SnEt/POL RATIO |
---|---|---|---|---|
Polyvinyl pyrrolidone (PVP) | 15.3 | 11.0 | 73.6 | 40/60 |
Polyethylene oxide (PEO) | 8.7 | 6.1 | 85.2 | 40/60 |
Polyvinyl acetate (PVAc) | 15.4 | 10.8 | 73.9 | 40/60 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rubin Pedrazzo, A.; Cecone, C.; Morandi, S.; Manzoli, M.; Bracco, P.; Zanetti, M. Nanosized SnO2 Prepared by Electrospinning: Influence of the Polymer on Both Morphology and Microstructure. Polymers 2021, 13, 977. https://doi.org/10.3390/polym13060977
Rubin Pedrazzo A, Cecone C, Morandi S, Manzoli M, Bracco P, Zanetti M. Nanosized SnO2 Prepared by Electrospinning: Influence of the Polymer on Both Morphology and Microstructure. Polymers. 2021; 13(6):977. https://doi.org/10.3390/polym13060977
Chicago/Turabian StyleRubin Pedrazzo, Alberto, Claudio Cecone, Sara Morandi, Maela Manzoli, Pierangiola Bracco, and Marco Zanetti. 2021. "Nanosized SnO2 Prepared by Electrospinning: Influence of the Polymer on Both Morphology and Microstructure" Polymers 13, no. 6: 977. https://doi.org/10.3390/polym13060977
APA StyleRubin Pedrazzo, A., Cecone, C., Morandi, S., Manzoli, M., Bracco, P., & Zanetti, M. (2021). Nanosized SnO2 Prepared by Electrospinning: Influence of the Polymer on Both Morphology and Microstructure. Polymers, 13(6), 977. https://doi.org/10.3390/polym13060977