A Design for Additive Manufacturing Strategy for Dimensional and Geometrical Quality Improvement of PolyJet-Manufactured Glossy Cylindrical Features
Abstract
:1. Introduction
- Geometrical re-parameterization shall be carried out upon the design file, so that it could be implemented using a conventional 3D design software package.
- A suitable verification strategy shall be determined to obtain a bi-univocal correspondence between design parameters and verification parameters.
- Compensation models shall be defined after checking how dimensional and geometrical quality is influenced by design, process, or production parameters that were not included in the recommended process configuration.
- The proposed strategy shall be oriented to medium-to-large production batches, and experimental effort shall be kept to a minimum.
2. Description of the Proposed DfAM Strategy
- Selection of a proper verification and re-parameterization strategy.
- Deviation modelling and design optimization.
2.1. Step 1: Selection of a Proper Verification and Re-Parameterization Strategy
2.2. Step 2: Deviation Modelling and Design Optimization
3. Application Example
3.1. Materials and Equipment
3.2. Verification and Re-Parameterization Strategy
3.3. Deviation Modelling and Design Optimization
3.4. Discussion
- It allowed for a clear improvement in part quality.
- It was found to be more robust than the scaling compensation strategy.
- It also has lower complexity: It can be implemented in a conventional CAD software and does not require dense digitizing, model adjustment, or interpolation procedures.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- ISO/ASTM 52900. Additive Manufacturing—General Principles—Terminology; ISO: Geneva, Switzerland, 2015. [Google Scholar]
- Thomas-Seale, L.E.J.; Kirkman-Brown, J.C.; Attallah, M.M.; Espino, D.M.; Shepherd, D.E.T. The barriers to the progression of additive manufacture: Perspectives from UK industry. Int. J. Prod. Econ. 2018, 198, 104–118. [Google Scholar] [CrossRef]
- Leach, R.K.; Bourell, D.; Carmignato, S.; Donmez, A.; Senin, N. Geometrical metrology for metal additive manufacturing. CIRP Ann. Manuf. Technol. 2019, 68, 677–700. [Google Scholar] [CrossRef]
- Singh, R. Process capability study of PolyJet printing for plastic components. J. Mech. Sci. Technol. 2011, 25, 1011–1015. [Google Scholar] [CrossRef]
- Udroiu, R.; Braga, I.C. System Performance and Process Capability in Additive Manufacturing: Quality Control for Polymer Jetting. Polymers 2020, 12, 1292. [Google Scholar] [CrossRef] [PubMed]
- Minetola, P.; Calignano, F.; Galati, M. Comparing geometric tolerance capabilities of additive manufacturing systems for polymers. Addit. Manuf. 2020, 32, 101103. [Google Scholar] [CrossRef]
- Byun, H.S.; Lee, K.H. Determination of the optimal build direction for different rapid prototyping processes using multi-criterion decision making. Robot. Comput. Integr. Manuf. 2006, 22, 69–80. [Google Scholar] [CrossRef]
- Noriega, A.; Blanco, D.; Alvarez, B.J.; Garcia, A. Dimensional accuracy improvement of FDM square cross-section parts using artificial neural networks and an optimization algorithm. Int. J. Adv. Manuf. Technol. 2013, 69, 2301–2313. [Google Scholar] [CrossRef]
- Boschetto, A.; Bottini, L. Accuracy prediction in fused deposition modelling. Int. J. Adv. Manuf. Technol. 2014, 73, 913–928. [Google Scholar] [CrossRef]
- Galantucci, L.M.; Bodi, I.; Kacani, J.; Lavecchia, F. Analysis of dimensional performance for a 3D open-source printer based on fused deposition modelling technique. Procedia CIRP 2015, 28, 82–87. [Google Scholar] [CrossRef] [Green Version]
- Cajal, C.; Santolaria, J.; Samper, D.; Velazquez, J. Efficient volumetric error compensation technique for additive manufacturing machines. Rapid Prototyp. J. 2016, 22, 2–19. [Google Scholar] [CrossRef]
- Beltrán, N.; Carrieles, F.; Álvarez, B.J.; Blanco, D.; Rico, J.C. Characterization of factors influencing dimensional and geometric errors in PolyJet manufacturing of cylindrical surfaces. Procedia Eng. 2016, 132, 62–69. [Google Scholar] [CrossRef] [Green Version]
- Khoshkhoo, A.; Carrano, A.L.; Blersch, D.M. Effect of surface slope and build orientation on surface finish and dimensional accuracy in material jetting processes. Procedia Manuf. 2018, 26, 720–730. [Google Scholar] [CrossRef]
- Mostafa, K.G.; Arshad, M.; Ullah, A.; Nobes, D.S.; Qureshi, A.J. Concurrent modelling and experimental investigation of material properties and geometries produced by projection microstreolithography. Polymers 2020, 12, 506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tulcan, A.; Vasilescu, M.D.; Tulcan, L. Study of the influence of technological parameters on generating flat part with cylindrical features in 3D printing with resin cured by optical processing. Polymers 2020, 12, 1941. [Google Scholar] [CrossRef] [PubMed]
- Henke, R.P.; Summerhays, K.D.; Baldwin, J.M.; Cassou, R.M.; Brown, C.W. Methods for evaluation of systematic geometric deviations in machined parts and their relationships to process variables. Precis. Eng. 1999, 23, 273–292. [Google Scholar] [CrossRef]
- Huang, W.; Ceglarek, D. Mode-based Decomposition of Part Form Error by Discrete-Cosine-Transform with Implementation to Assembly and Stamping System with Compliant Parts. CIRP Ann. 2002, 51, 21–26. [Google Scholar] [CrossRef]
- Camelio, J.A.; Hu, S.H.; Marin, S.P. Compliant Assembly Variation Analysis Using Component Geometric Covariance. J. Manuf. Sci. Eng. 2004, 126, 355–360. [Google Scholar] [CrossRef]
- Ballu, A.; Mathieu, L. Univocal expression of functional and geometrical tolerances for design. In Proceedings of the 4th CIRP Seminar on Computer Aided Tolerancing, Tokyo, Japan, 5–6 April 1995; pp. 31–46. [Google Scholar]
- Schleich, B.; Answer, N.; Mathieu, L.; Wartzack, S. Skin Model Shapes: A new paradigm shift for geometric variations modelling in mechanical engineering. Comput. Aided Des. 2014, 50, 1–15. [Google Scholar] [CrossRef]
- Schleich, B.; Wartzack, S. Evaluation of geometric tolerances and generation of variational part representatives for tolerance analysis. Int. J. Adv. Manuf. Technol. 2015, 79, 959–983. [Google Scholar] [CrossRef]
- Yan, X.; Ballu, A. Tolerance analysis using skin model shapes and linear complementary conditions. J. Manuf. Syst. 2018, 48, 140–156. [Google Scholar] [CrossRef]
- Yan, X.; Ballu, A. Generation of consistent skin model shape based on FEA method. Int. J. Adv. Manuf. Technol. 2017, 92, 140–156. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, J.; Ding, X.; Shao, N. Tolerance analysis of annular surfaces considering form errors and local surface deformations. Procedia CIRP 2018, 75, 291–296. [Google Scholar] [CrossRef]
- Homri, L.; Goka, E.; Levasseur, G.; Dantan, J.Y. Tolerance analysis—Form defects modelling and simulation by modal decomposition and optimization. Comput. Aided Des. 2017, 91, 46–59. [Google Scholar] [CrossRef] [Green Version]
- Dantan, J.Y.; Huang, Z.; Goka, E.; Homri, L.; Etienne, A.; Bonnet, N.; Rivette, M. Geometrical variations management for additive manufactured product. CIRP Ann. 2017, 66, 161–164. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Z.; Anwer, N.; Huang, Q.; Mathieu, L. Machine learning in tolerancing for additive manufacturing. CIPR Ann. 2018, 67, 157–160. [Google Scholar] [CrossRef]
- Tong, K.; Joshi, S.; Lehtihet, E.A. Error compensation for fused deposition modeling (FDM) machine by correcting slice files. Rapid Prototyp. J. 2008, 14, 4–14. [Google Scholar] [CrossRef]
- Huang, Q.; Zhang, J.; Sabbagnhi, A.; Dasgupta, T. Optimal offline compensation of shape shrinkage for three-dimensional printing processes. IIE Trans. 2015, 47, 431–441. [Google Scholar] [CrossRef]
- Huang, Q.; Nouri, H.; Xu, K.; Chen, Y.; Sosina, S.; Dasgupta, T. Statistical predictive modelling and compensation of geometric deviations of three-dimensional printed products. J. Manuf. Sci. Eng. 2014, 136, 061008. [Google Scholar] [CrossRef]
- Sabbaghi, A.; Dasgupta, T.; Huang, Q.; Zhang, J. Inference for Deformation and Interference in 3d Printing. Ann. Appl. Stat. 2014, 8, 1395–1415. [Google Scholar] [CrossRef]
- Luan, H.; Huang, Q. Prescriptive Modeling and Compensation of In-Plane Shape Deformation for 3-D Printed Freeform Products. IEEE Trans. Autom. Sci. Eng. 2017, 14, 73–82. [Google Scholar] [CrossRef]
- Luan, H.; Post, B.K.; Huang, Q. Statistical Process Control of In-Plane Shape Deformation for Additive Manufacturing. In Proceedings of the 13th IEEE Conference on Automation Science and Engineering (CASE), Xi’an, China, 20–23 August 2017; pp. 1274–1279. [Google Scholar]
- Wang, A.; Song, S.; Huang, Q.; Tsung, F. In-Plane Shape-Deviation Modeling and Compensation for Fused Deposition Modeling Processes. IEEE Trans. Autom. Sci. Eng. 2018, 14, 968–976. [Google Scholar] [CrossRef]
- Huang, Q. An Analytical Foundation for Optimal Compensation of Three-Dimensional Shape Deformation in Additive Manufacturing. J. Manuf. Sci. Eng. 2015, 138, 061010. [Google Scholar] [CrossRef]
- Jin, Y.; Quin, J.S.; Huang, Q. Modelling Inter-Layer Interactions for Out-of-Plane Shape Deviation Reduction in Additive Manufacturing. IISE Trans. 2019, 52, 721–731. [Google Scholar] [CrossRef]
- Afazov, S.; Okioga, A.; Holloway, A.; Denmark, W.; Triantaphyllou, A.; Smith, S.A.; Bradley-Smith, L. A methodology for precision additive manufacturing through compensation. Precis. Eng. 2017, 50, 269–274. [Google Scholar] [CrossRef]
- Afazov, S.; Denmark, W.; Toralles, B.L.; Holloway, A. Distortion prediction and compensation in selective laser melting. Addit. Manuf. 2017, 17, 15–22. [Google Scholar] [CrossRef]
- Hartmann, C.; Lechmer, P.; Himmel, B.; Krieger, Y.; Lueth, T.C.; Volk, W. Compensation for Geometrical Deviations in Additive Manufacturing. Technologies 2019, 7, 83. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Li, L.; Anand, S. Distortion prediction and NURBS based geometry compensation for reducing part errors in additive manufacturing. Procedia Manuf. 2020, 48, 706–717. [Google Scholar] [CrossRef]
- Li, X.; Marsh, B. Optimizing quality in precision additive manufacturing: A systematic approach. Am. J. Adv. Res. 2020, 4, 9–14. [Google Scholar]
- Lin, W.; Shen, H.; Fu, J.; Wu, S. Online quality monitoring in material extrusion additive manufacturing processes based on laser scanning technology. Precis. Eng. 2019, 60, 76–84. [Google Scholar] [CrossRef]
- ISO 2768-1:1989. General Tolerances—Part 1: Tolerances for Linear and Angular Dimensions without Individual Tolerance INDICATIONS; ISO: Geneva, Switzerland, 1989. [Google Scholar]
- Minetola, P.; Galati, M. A challenge for enhancing the dimensional accuracy of a low-cost 3D printer by means of self-replicated parts. Addit. Manuf. 2018, 22, 256–264. [Google Scholar] [CrossRef]
- ISO 286-1:2010. Geometrical Product Specifications (GPS)—ISO Code System for Tolerances on Linear Sizes—Part 1: Basis of Tolerances, Deviations and Fits; ISO: Geneva, Switzerland, 2010. [Google Scholar]
- ISO 14405-1:2016. Geometrical Product Specifications (GPS)—Dimensional Tolerancing—Part 1: Linear Sizes; ISO: Geneva, Switzerland, 2016. [Google Scholar]
- Beltrán, N.; Blanco, D.; Álvarez, B.J.; Noriega, A.; Fernández, P. Dimensional and geometrical quality enhancement in additively manufactured parts: Systematic framework and a case study. Materials 2019, 12, 3937. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maurya, N.K.; Rastogi, V.; Singh, P. Comparative Study and Measurement of Form Errors for the Component Printed by FDM and PolyJet Process. Instrum. Mes. Métrologie 2019, 18, 353–359. [Google Scholar] [CrossRef]
- Pilipović, A.; Baršić, G.; Katić, M.; Havstad, M.R. Repeatability and Reproducibility Assessment of a PolyJet Technology Using X-ray Computed Tomography. Appl. Sci. 2020, 10, 7040. [Google Scholar] [CrossRef]
- Dardzinska, A.; Fiedorczuk, K. Geometric accuracy of rapid prototyping technologies using laser scanner and coordinate measurement machine. IOP Conf. Ser. Mater. Sci. Eng. 2020, 770, 012086. [Google Scholar] [CrossRef]
- Kechagias, J.; Stavropoulos, P.; Koutsomichalis, A.; Ntintakis, I.; Vaxevanidis, N. Dimensional accuracy optimization of prototypes produced by PolyJet direct 3D printing technology. Adv. Eng. Mech. Mater. 2014, 61–65. [Google Scholar]
- Brajlih, T.; Drstvensek, I.; Valentan, B.; Balic, J. Improving the accuracy of rapid prototyping procedures by genetic programming. In Proceedings of the 5th International DAAAM Baltic Conference “Industrial Engineering—Adding Innovation Capacity of Labour Force and Entrepreneurs”, Tallinn, Estonia, 20–22 April 2006. [Google Scholar]
- ISO 12180-2:2011. Geometrical Product Specifications (GPS)—Cylindricity—Part 2: Specification Operators; ISO: Geneva, Switzerland, 2011. [Google Scholar]
- ISO 10360-2:2009. Geometrical Product Specifications (GPS)—Acceptance and Reverification Tests for Coordinate Measuring Machines (CMM)—Part 2: CMMs Used for Measuring Size; ISO: Geneva, Switzerland, 2009. [Google Scholar]
- ISO 12181-2:2011. Geometrical Product Specifications (GPS)—Roundness—Part 2: Specification Operators; ISO: Geneva, Switzerland, 2011. [Google Scholar]
- ISO 12780-2:2012. Geometrical Product Specifications (GPS)—Straightness—Part 2: SPECIFICATION Operators; ISO: Geneva, Switzerland, 2012. [Google Scholar]
Property | Test Method | Value |
---|---|---|
Color | Black | |
Tensile Strength | ASTM D638 | 58 MPa |
Elongation at Break | ASTM D638 | 10–25% |
Modulus of Elasticity | ASTM D638 | 2500 MPa |
Flexural Strength | ASTM D790 | 93 MPa |
Flexural Modulus | ASTM D790 | 2700 MPa |
Shore D Hardness | 85 D | |
Tensile Strength | ASTM D638 | 58 MPa |
Heat Deflection Temperature | ASTM D648 @ 264 psi | 48 °C |
Run Order | Block | X | Y | Type | ∆S [mm] | j [mm] | a [mm] |
---|---|---|---|---|---|---|---|
1 | 1 | 1 | 1 | External | 0.046 | 0.030 | |
2 | 1 | 1 | 2 | External | 0.039 | 0.044 | |
3 | 1 | 2 | 1 | External | 0.037 | 0.032 | |
4 | 1 | 2 | 2 | External | 0.034 | 0.042 | |
5 | 1 | 1 | 1 | Internal | −0.041 | 0.041 | 0.031 |
6 | 1 | 1 | 2 | Internal | −0.049 | 0.035 | 0.015 |
7 | 1 | 2 | 1 | Internal | −0.043 | 0.040 | 0.030 |
8 | 1 | 2 | 2 | Internal | −0.048 | 0.033 | 0.016 |
9 | 2 | 1 | 1 | External | 0.047 | 0.029 | |
10 | 2 | 1 | 2 | External | 0.040 | 0.041 | |
11 | 2 | 2 | 1 | External | 0.039 | 0.026 | |
12 | 2 | 2 | 2 | External | 0.035 | 0.041 | |
13 | 2 | 1 | 1 | Internal | −0.042 | 0.039 | 0.025 |
14 | 2 | 1 | 2 | Internal | −0.050 | 0.038 | 0.019 |
15 | 2 | 2 | 1 | Internal | −0.044 | 0.043 | 0.025 |
16 | 2 | 2 | 2 | Internal | −0.050 | 0.034 | 0.017 |
Source | DF | Adj SS | Adj MS | F-Value | p-Value | ||
---|---|---|---|---|---|---|---|
Model | 8 | 0.029489 | 0.003686 | 3686.09 | 0.000 | ||
Blocks | 1 | 0.000000 | 0.000000 | 0.00 | 1.000 | ||
Linear | 3 | 0.029441 | 0.009814 | 9813.75 | 0.000 | ||
x | 1 | 0.000144 | 0.000144 | 144.00 | 0.000 | ||
y | 1 | 0.000056 | 0.000056 | 56.25 | 0.000 | ||
Type | 1 | 0.029241 | 0.029241 | 29241.00 | 0.000 | ||
2-Way Interactions | 3 | 0.000047 | 0.000016 | 15.75 | 0.002 | ||
x*y | 1 | 0.000009 | 0.000009 | 9.00 | 0.020 | ||
x*Type | 1 | 0.000002 | 0.000002 | 2.25 | 0.177 | ||
y*Type | 1 | 0.000036 | 0.000036 | 36.00 | 0.001 | ||
3-Way Interactions | 1 | 0.000000 | 0.000000 | 0.25 | 0.632 | ||
x*y*Type | 1 | 0.000000 | 0.000000 | 0.25 | 0.632 | ||
Error | |||||||
7 | 0.000007 | 0.000001 | |||||
Total | 15 | 0.029496 |
ID | Tray | X | Y | Type | ∆S [mm] | j[mm] | a [mm] |
---|---|---|---|---|---|---|---|
1 | 1 | 1 | 1 | External | −0.012 | 0.028 | |
2 | 1 | 1 | 2 | External | −0.012 | 0.024 | |
3 | 1 | 2 | 1 | External | −0.002 | 0.032 | |
4 | 1 | 2 | 2 | External | −0.007 | 0.027 | |
5 | 1 | 1 | 1 | Internal | −0.004 | 0.036 | 0.010 |
6 | 1 | 1 | 2 | Internal | −0.006 | 0.041 | 0.008 |
7 | 1 | 2 | 1 | Internal | −0.004 | 0.033 | 0.017 |
8 | 1 | 2 | 2 | Internal | −0.003 | 0.037 | 0.008 |
9 | 2 | 1 | 1 | External | −0.008 | 0.027 | |
10 | 2 | 1 | 2 | External | −0.002 | 0.037 | |
11 | 2 | 2 | 1 | External | 0.001 | 0.044 | |
12 | 2 | 2 | 2 | External | 0.001 | 0.027 | |
13 | 2 | 1 | 1 | Internal | −0.009 | 0.034 | 0.009 |
14 | 2 | 1 | 2 | Internal | −0.009 | 0.039 | 0.008 |
15 | 2 | 2 | 1 | Internal | −0.006 | 0.036 | 0.012 |
16 | 2 | 2 | 2 | Internal | −0.004 | 0.034 | 0.003 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beltrán, N.; Álvarez, B.J.; Blanco, D.; Peña, F.; Fernández, P. A Design for Additive Manufacturing Strategy for Dimensional and Geometrical Quality Improvement of PolyJet-Manufactured Glossy Cylindrical Features. Polymers 2021, 13, 1132. https://doi.org/10.3390/polym13071132
Beltrán N, Álvarez BJ, Blanco D, Peña F, Fernández P. A Design for Additive Manufacturing Strategy for Dimensional and Geometrical Quality Improvement of PolyJet-Manufactured Glossy Cylindrical Features. Polymers. 2021; 13(7):1132. https://doi.org/10.3390/polym13071132
Chicago/Turabian StyleBeltrán, Natalia, Braulio J. Álvarez, David Blanco, Fernando Peña, and Pedro Fernández. 2021. "A Design for Additive Manufacturing Strategy for Dimensional and Geometrical Quality Improvement of PolyJet-Manufactured Glossy Cylindrical Features" Polymers 13, no. 7: 1132. https://doi.org/10.3390/polym13071132
APA StyleBeltrán, N., Álvarez, B. J., Blanco, D., Peña, F., & Fernández, P. (2021). A Design for Additive Manufacturing Strategy for Dimensional and Geometrical Quality Improvement of PolyJet-Manufactured Glossy Cylindrical Features. Polymers, 13(7), 1132. https://doi.org/10.3390/polym13071132