Nano-Assemblies from Amphiphilic PnBA-b-POEGA Copolymers as Drug Nanocarriers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of PnBA-b-POEGA Diblock Copolymers
2.3. Preparation of Self-Assembled PnBA-b-POEGA Diblock Copolymers
2.4. FBS Interactions with PnBA-b-POEGA Diblock Copolymers
2.5. Preparation of LSR-Loaded PnBA-b-POEGA Nanocarriers
2.6. Drug Loading and Encapsulation Efficiency Calculations of LSR
2.7. Ultrasound Release Studies
2.8. NMR Sample Preparation
2.9. Evaluation
3. Results
3.1. Synthesis and Molecular Characterization of PnBA-b-POEGA Diblock Copolymers
3.2. Physicochemical Characterization of the PnBA-b-POEGA Micelles
3.3. FBS Interactions with PnBA-b-POEGA Block Copolymers
3.4. Physicochemical Characterization of the LSR-Loaded PnBA-b-POEGA Nanocarriers
3.5. Stability Studies of LSR-Loaded PnBA-b-POEGA Nanocarriers
3.6. 1H-NMR Studies on PnBA-b-POEGA Micelles and LSR-Loaded PnBA-b-POEGA Nanocarriers
3.7. 2D-COSY Studies on LSR-Loaded PnBA-b-POEGA Nanocarriers
3.8. 2D-NOESY Studies on LSR-Loaded PnBA-b-POEGA Nanocarriers
3.9. 2D-DOSY Studies on LSR-Loaded PnBA-b-POEGA Nanocarriers
3.10. 1H-NMR Temperature Dependence Studies on POEGA Homopolymer and PnBA-b-POEGA Copolymer
3.11. Encapsulation and Ultrasound Release Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cabral, H.; Miyata, K.; Osada, K.; Kataoka, K. Block copolymer micelles in nanomedicine applications. Chem. Rev. 2018, 118, 6844–6892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.R.; del Pilar Rodriguez-Torres, M.; Acosta-Torres, L.S.; Diaz-Torres, L.A.; Grillo, R.; Swamy, M.K.; Sharma, S.; et al. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnol. 2018, 16, 71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kowalczuk, A.; Trzcinska, R.; Trzebicka, B.; Müller, A.H.; Dworak, A.; Tsvetanov, C.B. Loading of polymer nanocarriers: Factors, mechanisms and applications. Prog. Polym. Sci. 2014, 39, 43–86. [Google Scholar] [CrossRef]
- Ge, Z.; Liu, S. Functional block copolymer assemblies responsive to tumor and intracellular microenvironments for site-specific drug delivery and enhanced imaging performance. Chem. Soc. Rev. 2013, 42, 7289–7325. [Google Scholar] [CrossRef] [PubMed]
- Martinho, N.; Damgé, C.; Reis, C.P. Recent advances in drug delivery systems. J. Biomater. Nanobiotechnol. 2011, 2, 510–526. [Google Scholar] [CrossRef] [Green Version]
- Jahangirian, H.; Lemraski, E.G.; Webster, T.J.; Rafiee-Moghaddam, R.; Abdollahi, Y. A review of drug delivery systems based on nanotechnology and green chemistry: Green nanomedicine. Int. J. Nanomed. 2017, 12, 2957–2978. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trivedi, R.; Kompella, U.B. Nanomicellar formulations for sustained drug delivery: Strategies and underlying principles. Nanomedicine 2010, 5, 485–505. [Google Scholar] [CrossRef] [Green Version]
- Mohammadinejad, R.; Dehshahri, A.; Madamsetty, V.S.; Zahmatkeshan, M.; Tavakol, S.; Makvandi, P.; Khorsandi, D.; Pardakhty, A.; Ashrafizadeh, M.; Afshar, E.G.; et al. In vivo gene delivery mediated by non-viral vectors for cancer therapy. J. Control. Release 2020, 325, 249–275. [Google Scholar] [CrossRef]
- Abasian, P.; Ghanavati, S.; Rahebi, S.; Khorasani, S.N.; Khalili, S. Polymeric nanocarriers in targeted drug delivery systems: A review. Polym. Adv. Technol. 2020, 31, 2939–2954. [Google Scholar] [CrossRef]
- Hill, J.P.; Shrestha, L.K.; Ishihara, S.; Ji, Q.; Ariga, K. Self-assembly: From amphiphiles to chromophores and beyond. Molecules 2014, 19, 8589–8609. [Google Scholar] [CrossRef] [Green Version]
- Holder, S.J.; Sommerdijk, N.A.J.M. New micellar morphologies from amphiphilic block copolymers: Disks, toroids and bicontinuous micelles. Polym. Chem. 2011, 2, 1018–1028. [Google Scholar] [CrossRef]
- Denkova, A.G.; Bomans, P.H.H.; Coppens, M.-O.; Sommerdijk, N.A.N.; Mendes, E. Complex morphologies of self-assembled block copolymer micelles in binary solvent mixtures: The role of solvent–solvent correlations. Soft Matter 2011, 7, 6622–6628. [Google Scholar] [CrossRef]
- Ashrafizadeh, M.; Hushmandi, K.; Moghadam, E.R.; Zarrin, V.; Kashani, S.H.; Bokaie, S.; Najafi, M.; Tavakol, S.; Mohammadinejad, R.; Nabavi, N.; et al. Progress in delivery of siRNA-based therapeutics employing nano-vehicles for treatment of prostate cancer. Bioengineering 2020, 7, 91. [Google Scholar] [CrossRef] [PubMed]
- Adams, M.L.; Lavasanifar, A.; Kwon, G.S. Amphiphilic block copolymers for drug delivery. J. Pharm. Sci. 2003, 92, 1343–1355. [Google Scholar] [CrossRef] [PubMed]
- Han, G.; Ju, Y.; Zhao, H. Synthesis of amphiphilic block-type macromolecular brushes with cleavable pendant chains and fabrication of micelle-templated polymer nanocapsules. Polym. Chem. 2015, 7, 1197–1206. [Google Scholar] [CrossRef]
- Ivanov, I.V.; Meleshko, T.K.; Kashina, A.V.; Yakimansky, A.V. Amphiphilic multicomponent molecular brushes. Russ. Chem. Rev. 2019, 88, 1248–1290. [Google Scholar] [CrossRef]
- Skandalis, A.; Pispas, S. PLMA-b-POEGMA amphiphilic block copolymers: Synthesis and self-assembly in aqueous media. J. Polym. Sci. Part A Polym. Chem. 2016, 55, 155–163. [Google Scholar] [CrossRef]
- Ozer, I.; Tomak, A.; Zareie, H.M.; Baran, Y.; Bulmus, V. Effect of molecular architecture on cell interactions and stealth properties of PEG. Biomacromolecules 2017, 18, 2699–2710. [Google Scholar] [CrossRef] [PubMed]
- Karanikolopoulos, N.; Choinopoulos, I.; Pitsikalis, M. Poly{dl-lactide-b-[oligo(ethylene glycol) methyl ether (meth)acrylate)]} block copolymers. Synthesis, characterization, micellization behavior in aqueous solutions and encapsulation of model hydrophobic compounds. J. Appl. Polym. Sci. 2020, 58, 1582–1600. [Google Scholar] [CrossRef]
- Pippa, N.; Kaditi, E.; Pispas, S.; Demetzos, C. PEO-b-PCL–DPPC chimeric nanocarriers: Self-assembly aspects in aqueous and biological media and drug incorporation. Soft Matter 2013, 9, 4073–4082. [Google Scholar] [CrossRef]
- Palchetti, S.; Colapicchioni, V.; Digiacomo, L.; Caracciolo, G.; Pozzi, D.; Capriotti, A.L.; La Barbera, G.; Laganà, A. The protein corona of circulating PEGylated liposomes. Biochim. Biophys. Acta 2016, 1858, 189–196. [Google Scholar] [CrossRef]
- Kim, J.-H.; Yoon, J.-Y. Protein adsorption on polymer particles. Encycl. Surf. Colloid Sci. 2002, 1, 4373–4381. [Google Scholar]
- Tziampazis, E.; Kohn, J.; Moghe, P.V. PEG-variant biomaterials as selectively adhesive protein templates: Model surfaces for controlled cell adhesion and migration. Biomaterials 2000, 21, 511–520. [Google Scholar] [CrossRef]
- Sharma, V.; Blackwood, K.A.; Haddow, D.; Hook, L.; Mason, C.; Dye, J.F.; García-Gareta, E. Method for estimating protein binding capacity of polymeric systems. Biochim. Open 2015, 1, 40–50. [Google Scholar] [CrossRef] [Green Version]
- Moad, G. RAFT polymerization to form stimuli-responsive polymers. Polym. Chem. 2017, 8, 177–219. [Google Scholar] [CrossRef]
- Pellecchia, M. Solution nuclear magnetic resonance spectroscopy techniques for probing intermolecular interactions. Chem. Biol. 2005, 12, 961–971. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Michel, M.C.; Foster, C.; Brunner, H.R.; Liu, L. A systematic comparison of the properties of clinically used angiotensin II type 1 receptor antagonists. Pharmacol. Rev. 2013, 65, 809–848. [Google Scholar] [CrossRef] [Green Version]
- Muszalska, I.; Sobczak, A.; Dołhań, A.; Jelińska, A. Analysis of sartans: A review. J. Pharm. Sci. 2014, 103, 2–28. [Google Scholar] [CrossRef]
- Kellici, T.F.; Tzakos, A.G.; Mavromoustakos, T. Rational drug design and synthesis of molecules targeting the angiotensin ii type 1 and type 2 receptors. Molecules 2015, 20, 3868–3897. [Google Scholar] [CrossRef] [Green Version]
- Kellici, T.F.; Liapakis, G.; Tzakos, A.G.; Mavromoustakos, T. Pharmaceutical compositions for antihypertensive treatments: A patent review. Expert Opin. Ther. Patents 2015, 25, 1305–1317. [Google Scholar]
- Peng, H.; Liu, X.; Wang, G.; Li, M.; Bratlie, K.M.; Cochran, E.W.; Wang, Q. Polymeric multifunctional nanomaterials for theranostics. J. Mater. Chem. B 2015, 3, 6856–6870. [Google Scholar] [CrossRef] [Green Version]
- Zervou, M.; Cournia, Z.; Potamitis, C.; Patargias, G.; Durdagi, S.; Grdadolnik, S.G.; Mavromoustakos, T. Insights into the molecular basis of action of the AT1 antagonist losartan using a combined NMR spectroscopy and computational approach. Biochim. Biophys. Acta 2014, 1838, 1031–1046. [Google Scholar] [CrossRef] [Green Version]
- Xia, T.; He, Q.; Shi, K.; Wang, Y.; Yu, Q.; Zhang, L.; Zhang, Q.; Gao, H.; Ma, L.; Liu, J. Losartan loaded liposomes improve the antitumor efficacy of liposomal paclitaxel modified with pH sensitive peptides by inhibition of collagen in breast cancer. Pharm. Dev. Technol. 2018, 23, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.; Liu, X.; Ran, W.; Meng, J.; Zhai, Y.; Zhang, P.; Yin, Q.; Yu, H.; Zhang, Z.; Li, Y. Regulating cancer associated fibroblasts with losartan-loaded injectable peptide hydrogel to potentiate chemotherapy in inhibiting growth and lung metastasis of triple negative breast cancer. Biomaterials 2017, 144, 60–72. [Google Scholar] [CrossRef] [PubMed]
- Coulson, R.; Liew, S.H.; Connelly, A.A.; Yee, N.S.; Deb, S.; Kumar, B.; Vargas, A.C.; O’Toole, S.A.; Parslow, A.C.; Poh, A.; et al. The angiotensin receptor blocker, Losartan, inhibits mammary tumor development and progression to invasive carcinoma. Oncotarget 2017, 8, 18640–18656. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, T.C. Micellar systems: Nuclear magnetic resonance spectroscopy. Encycl. Surf. Colloid Sci. 2015, 5, 4391–4409. [Google Scholar] [CrossRef]
- Chroni, A.; Mavromoustakos, T.; Pispas, S. Biocompatible PEO-b-PCL Nanosized micelles as drug carriers: Structure and drug-polymer interactions. Nanomaterials 2020, 10, 1872. [Google Scholar] [CrossRef] [PubMed]
- Chroni, A.; Pispas, S.; Forys, A.; Trzebicka, B. pH-driven morphological diversity in Poly[n-butyl acrylate-block-(2-(dimethylamino)ethyl acrylate)] amphiphilic copolymer solutions. Macromol. Rapid Commun. 2019, 40, e1900477. [Google Scholar] [CrossRef] [PubMed]
- Papagiannopoulos, A.; Meristoudi, A.; Pispas, S.; Radulescu, A. Micelles from HOOC-PnBA-b-PAA-C12H15Diblock amphiphilic polyelectrolytes as protein nanocarriers. Biomacromolecules 2016, 17, 3816–3827. [Google Scholar] [CrossRef] [Green Version]
- Skandalis, A.; Pispas, S. pH- and thermo-responsive solution behavior of amphiphilic, linear triblock terpolymers. Polymer 2018, 157, 9–18. [Google Scholar] [CrossRef]
- Chroni, A.; Pispas, S. Hydrophilic/hydrophobic modifications of a PnBA-b-PDMAEA copolymer and complexation behaviour with short DNA. Eur. Polym. J. 2020, 129, 109636. [Google Scholar] [CrossRef]
- Skvarla, J.; Zedník, J.; Šlouf, M.; Pispas, S.; Štěpánek, M. Poly (N-isopropyl acrylamide)-block-poly (n-butyl acrylate) thermoresponsive amphiphilic copolymers: Synthesis, characterization and self-assembly behavior in aqueous solutions. Eur. Polym. J. 2014, 61, 124–132. [Google Scholar] [CrossRef]
- Perrier, S. 50th Anniversary perspective: RAFT Polymerization—A user guide. Macromolecules 2017, 50, 7433–7447. [Google Scholar] [CrossRef]
- Al-Majed, A.-R.A.; Assiri, E.; Khalil, N.Y.; Abdel-Aziz, H.A. Losartan: Comprehensive profile. In Profiles of Drug Substances, Excipients and Related Methodology; Elsevier: Amsterdam, The Netherlands, 2015; Volume 40, pp. 159–194. [Google Scholar]
- Goyal, R.; Nagpal, M.; Arora, S.; Dhingra, G.A. Development and optimization of fast dissolving tablets of losartan potassium using natural gum mucilage. J. Pharm. Technol. Res. Manag. 2013, 1, 153–169. [Google Scholar] [CrossRef]
- Zheng, Y.; Xu, D.; Tian, S.; Li, M.; Wang, W.; Liu, K. Polar poly (n-butyl acrylate)-g-polyacrylonitrile elastomer with high temperature elasticity and healability as flexible electronic substrate. Fash. Text. 2021, 8, 1–11. [Google Scholar] [CrossRef]
- Pawar, H.A.; Lalitha, K.G. Development and Validation of a Novel RP-HPLC Method for Estimation of Losartan Potassium in Dissolution Samples of Immediate and Sustained Release Tablets. Chromatogr. Res. Int. 2014, 2014, 736761. [Google Scholar] [CrossRef]
- Maggio, R.M.; Castellano, P.M.; Kaufman, T.S. A multivariate approach for the simultaneous determination of losartan potassium and hydrochlorothiazide in a combined pharmaceutical tablet formulation. Anal. Bioanal. Chem. 2008, 391, 2949–2955. [Google Scholar] [CrossRef]
- Antoun, S.; Gohy, J.-F.; Jérôme, R. Micellization of quaternized poly (2-(dimethylamino) ethyl methacrylate)-block-poly (methyl methacrylate) copolymers in water. Polymer 2001, 42, 3641–3648. [Google Scholar] [CrossRef]
- Colombani, O.; Ruppel, M.; Schubert, F.; Zettl, H.; Pergushov, D.V.; Müller, A.H.E. Synthesis of Poly (n-butyl acrylate)-block-poly (acrylic acid) Diblock copolymers by ATRP and their micellization in water. Macromolecules 2007, 40, 4338–4350. [Google Scholar] [CrossRef]
- Jakubowski, W.; Juhari, A.; Best, A.; Koynov, K.; Pakula, T.; Matyjaszewski, K. Comparison of thermomechanical properties of statistical, gradient and block copolymers of isobornyl acrylate and n-butyl acrylate with various acrylate homopolymers. Polymer 2008, 49, 1567–1578. [Google Scholar] [CrossRef]
Sample | Mw a (×103 g/mL) | Mw/Mn a | Mw a (PnBA) (×103 g/mL) | wt.% PnBA b |
---|---|---|---|---|
PnBA-1 | 4.1 | 1.1 | - | - |
PnBA-2 | 7.8 | 1.27 | - | - |
PnBA30-b-POEGA70 | 12.900 | 1.29 | 4.1 | 30 |
PnBA27-b-POEGA73 | 28.600 | 1.47 | 7.8 | 27 |
Sample | Rh a (nm) | PDI a | Intensity a (a.u) | Nagg b | CMC c (g/mL) | ζpot d (mV) | L e (nm) |
---|---|---|---|---|---|---|---|
PnBA30-b-POEGA70 | 10 | 0.12 | 167 | 25 | 1.09 × 10−5 | −1 | 12 |
PnBA27-b-POEGA73 | 24 | 0.15 | 960 | 133 | 1.26 × 10−6 | −7 | 25 |
Sample | Protocol | Rh (nm) | PDI | Intensity (a.u) |
---|---|---|---|---|
FBS | - | 4 23 170 | 0.50 | 5760 |
PnBA30-b-POEGA70 + FBS:PBS (1:9 v/v) | 1 | 3 10 96 | 0.46 | 1032 |
PnBA27-b-POEGA73 + FBS:PBS (1:9 v/v) | 1 | 8 60 | 0.47 | 1061 |
PnBA30-b-POEGA70 + FBS:PBS (1:9 v/v) | 2 | 3 10 80 | 0.49 | 1019 |
PnBA27-b-POEGA73 + FBS:PBS (1:9 v/v) | 2 | 4 17 | 0.47 | 964 |
PnBA30-b-POEGA70 + FBS:PBS (1:1 v/v) | 2 | 4 17 120 | 0.49 | 3740 |
PnBA27-b-POEGA73 + FBS:PBS (1:1 v/v) | 2 | 18 | 0.48 | 3880 |
Sample | Rh a (nm) | PDI a | Intensity a (a.u) | ζpot b (mV) |
---|---|---|---|---|
PnBA30-b-POEGA70 + 20%LSR | 12 | 0.36 | 116 | −13 |
PnBA30-b-POEGA70 + 50%LSR | 30 | 0.30 | 215 | −23 |
PnBA27-b-POEGA73 + 20%LSR | 28 | 0.19 | 471 | −14 |
PnBA27-b-POEGA73 + 50%LSR | 22 | 0.22 | 396 | −16 |
1H-NMR Chemical Shifts (ppm) | ||
---|---|---|
Protons of the Copolymer Structure | (a) Proton Signals of PnBA30-b-POEGA70 in the Absence of LSR | (b) Proton Signals of PnBA30-b-POEGA70 in the Presence of LSR |
Ha–b | 2.13 | 2.07 |
Hc | 3.94 | 3.89 |
Hd | 1.51 | 1.46 |
He | 1.34 | 1.28 |
Hf | 0.86 | 0.81 |
Hg | 4.17 | 4.11 |
Hh | 3.60 | 3.54 |
Hi | 3.28 | 3.22 |
Reference | D2O: 4.69 |
1H-NMR Chemical Shifts (ppm) | ||
---|---|---|
Protons of LSR Structure | (a) Proton Signals of LSR in PnBA30-b-POEGA70 | (b) Proton Signals of LSR in SDS Micelles |
H1 | 0.63 | 0.77 |
H2 | 1.13 | 1.22 |
H3 | 1.32 | 1.5 |
H4 | 2.43 | 2.52 |
H5 | 4.35 | 4.39 |
H7 | 5.11 | 5.15 |
H8−H9 | 6.78 | 6.85 |
H10–H11 | 6.93 | 6.99 |
H12–H13 | 7.45 | 7.64 |
H14–H15 | 7.38 | 7.34–7.41 |
Reference | D2O: 4.69 |
Sample | %DL | %EE | %Maximum Release Rate of LSR |
---|---|---|---|
PnBA30-b-POEGA70 + 50%LSR | 1 | 6 | 17 |
PnBA27-b-POEGA73 + 50%LSR | 4 | 25 | 5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chroni, A.; Mavromoustakos, T.; Pispas, S. Nano-Assemblies from Amphiphilic PnBA-b-POEGA Copolymers as Drug Nanocarriers. Polymers 2021, 13, 1164. https://doi.org/10.3390/polym13071164
Chroni A, Mavromoustakos T, Pispas S. Nano-Assemblies from Amphiphilic PnBA-b-POEGA Copolymers as Drug Nanocarriers. Polymers. 2021; 13(7):1164. https://doi.org/10.3390/polym13071164
Chicago/Turabian StyleChroni, Angeliki, Thomas Mavromoustakos, and Stergios Pispas. 2021. "Nano-Assemblies from Amphiphilic PnBA-b-POEGA Copolymers as Drug Nanocarriers" Polymers 13, no. 7: 1164. https://doi.org/10.3390/polym13071164
APA StyleChroni, A., Mavromoustakos, T., & Pispas, S. (2021). Nano-Assemblies from Amphiphilic PnBA-b-POEGA Copolymers as Drug Nanocarriers. Polymers, 13(7), 1164. https://doi.org/10.3390/polym13071164