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Abstract: We present the modification of ethylene-propylene rubber (EPM) with vinyltetra-
methydisiloxane (VTMDS) via reactive extrusion to create a new silicone-based material with the
potential for high-performance applications in the automotive, industrial and biomedical sectors.
The radical-initiated modification is achieved with a peroxide catalyst starting the grafting reaction.
The preparation process of the VTMDS-grafted EPM was systematically investigated using process
analytical technology (in-line Raman spectroscopy) and the statistical design of experiments (DoE).
By applying an orthogonal factorial array based on a face-centered central composite experimental
design, the identification, quantification and mathematical modeling of the effects of the process
factors on the grafting result were undertaken. Based on response surface models, process windows
were defined that yield high grafting degrees and good grafting efficiency in terms of grafting agent
utilization. To control the grafting process in terms of grafting degree and grafting efficiency, the
chemical changes taking place during the modification procedure in the extruder were observed in
real-time using a spectroscopic in-line Raman probe which was directly inserted into the extruder.
Successful grafting of the EPM was validated in the final product by 1H-NMR and FTIR spectroscopy.

Keywords: reactive extrusion; silane modification; hydride modification; vinyltetramethyldi-siloxane
(VTMDS); response surface analysis; ethylene-propylene copolymer (EPM); grafting; process analyti-
cal technology (PAT); in-line spectroscopy; in situ analysis

1. Introduction

High-performance polymers receive considerable attention due to their special pro-
perty profiles, enabling their usage in highly demanding application fields. Although
standard thermoplastic materials like polyolefins are as such often insufficient, their per-
formance can be enhanced by crosslinking them using various physical and chemical
methods [1]. By grafting organosilanes onto them, an addition-crosslinkable system is
produced that allows the formation of covalent crosslinkages via the grafted silane func-
tionalities. Prominent examples include the vinyl trimethoxysilane (VTMS) grafted poly-
olefines ethylene propylene (EPM-g-VTMS) [2] and ethylene octene (EOC-g-VTMS) [3,4],
co-polymers that combine the performance characteristics of poly-olefinic systems with
silicon-containing polymers.

In the crosslinked state, high-performance synthetic elastomers are obtained that can
be used, for instance, as sealants in the automotive and construction industries due to their
extraordinary chemical stability, mechanical performance and durability. These properties
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make them also suitable as membrane materials for polymer electrolyte membrane (PEM)
fuel cells [5–10]. Due to their chemical inertness and inherent biocompatibility, such
elastomers may also be well suited as implant materials for biomedical applications, among
many other applications [11–13]. Silicone rubbers are, for example, well known as breast
implant materials [14].

In this work, a new addition-crosslinkable base-polymer with the potential for high-
performance applications as synthetic rubber was produced and the possibility for in-line
process control via in situ Raman spectroscopy was demonstrated. EPM was grafted
with vinyltetramethyldisiloxane (VTMDS) via a reactive extrusion process to yield EPM-
g-VTMDS. Before grafting, VTMDS was freshly prepared and subsequently purified via
distillation.

The reactive extrusion process was monitored in-line by means of in situ Raman
spectroscopy via a probe integrated in the extrusion line. Multivariate calibration of the
Raman spectra with chemical properties was carried out based on principal component
analysis (PCA) and partial least squares regression (PLS-R). With in-line Raman/PCA it
was possible to quantify the amounts of grafting monomer during reactive extrusion. The
grafting degree was determined using 1H-NMR spectroscopy. These data were used to
calibrate the in-line Raman spectra to build a quantitative PLS-R model for predicting
the grafting degree based on Raman signals. Thus, it is shown that both raw material
consumption and formation of the grafted material can be monitored using in-line Raman
spectroscopic probes directly in the process.

2. Materials and Methods
2.1. Chemicals

The liquid ethylene-propylene copolymer (EPM; Trilene® CP-80) was purchased
from Lion Elastomers, LLC (Geismar, Los Angeles, CA, USA). The peroxide initiator
2,5-dimethyl-2,5-di(tert-butylperoxy)hexane (DTBPH; Luperox® 101) was supplied from
Arkema (Colombes, France). Tetramethyldisiloxane (M1) and divinyltetramethyldisiloxane
(M2) were kindly donated by CHT Germany GmbH (Tübingen, Germany). Vinyltetram-
ethyldisiloxane (VTMDS, M3) was synthesized and purified via fractional distillation prior
to the grafting reaction. Deuterated chloroform (99.8%) was purchased from Deutero
GmbH (Kastellaun, Germany) and dried over 3 Å molecular sieves. Benzyl benzoate,
trifluoromethanesulfonic acid and sodium hydrogen carbonate were received from Sigma-
Aldrich Chemie GmbH (Taufkirchen, Germany).

2.2. Synthesis of Vinyltetramethyldisiloxane (VTMDS, M3)

The synthesis of vinyltetramethyldisiloxane (VTMDS, M3) was performed in a 5-L
round-bottom flask. The equilibration reaction is shown in Figure 1. For the reaction,
1675.23 g tetramethyldisiloxane (M1, 134.32 g/mol) and 2324.77 g divinyltetramethyldis-
iloxane (M2, 186.40 g/mol) were combined in a 1:1 molar ratio, then 4.00 g acid was added
and the mixture was stirred. At-line monitoring via infrared spectroscopy showed rapid
equilibration within less than 1 min at a starting temperature of 25 ◦C without external
heating. The equilibrium reaction was stopped by removing the catalyst. For this purpose,
40 g of each water and sodium hydrogen carbonate were added until the solution was
neutral to slightly alkaline. The phases were separated via a separating funnel. VTMDS
was purified by fractional distillation before further use.
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The peroxide-initiated grafting reaction of VTMDS onto EPM was done with a co-

rotating twin-screw extruder (Coperion ZSK 18, Stuttgart, Germany) with a screw diam-
eter of 18 mm and a length/diameter (L/D) ratio of 48. The chemical reaction is shown in 
Figure 2. 2,5-dimethyl-2,5-di(tert-butylperoxy)hexane (DTBPH) was used as the peroxide 
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Figure 2. Peroxide-initiated grafting reaction of VTMDS onto ethylene-propylene rubber (EPM). 

Figure 3 shows schematically the reactive extrusion setup with the feeding arrange-
ment and Raman-probe. The liquid EPM was fed using a heated melt pump (Beinlich 
Pumpen GmbH, Gevelsberg ,Germany). Argon was used as a protective gas and was also 
added at the feeding zone (FZ). At position 1, VTMDS and DTBPH were fed into the ex-
truder via syringe pumps. Six temperature zones and the feeding zone (FZ) were heated 
and controlled separately. At position 7 the Raman-probe was inserted. This extruder seg-
ment was not heated. 

 
Figure 3. Schematic reactive extrusion setup with feeding arrangement and Raman in situ probe. 

The factor-level settings were adjusted to the factor-level combinations as required 
by the face-centered experimental design (FCD). The in-situ Raman spectroscopic probe 
placed slightly before the extruder die was used to indicate when the continuous process 
had stabilized after each change in factor-level settings. This guaranteed that the analyzed 
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Figure 1. Synthesis of vinyltetramethyldisiloxane (M3; VTMDS) by equilibration of tetramethyldis-
iloxane (M1) and divinyltetramethyldisiloxane (M2) with trifluoromethanesulfonic acid as a catalyst.
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2.3. Silane Grafting by Reactive Extrusion

The peroxide-initiated grafting reaction of VTMDS onto EPM was done with a co-
rotating twin-screw extruder (Coperion ZSK 18, Stuttgart, Germany) with a screw diameter
of 18 mm and a length/diameter (L/D) ratio of 48. The chemical reaction is shown in
Figure 2. 2,5-dimethyl-2,5-di(tert-butylperoxy)hexane (DTBPH) was used as the peroxide
initiator.
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Figure 2. Peroxide-initiated grafting reaction of VTMDS onto ethylene-propylene rubber (EPM).

Figure 3 shows schematically the reactive extrusion setup with the feeding arrange-
ment and Raman-probe. The liquid EPM was fed using a heated melt pump (Beinlich
Pumpen GmbH, Gevelsberg, Germany). Argon was used as a protective gas and was
also added at the feeding zone (FZ). At position 1, VTMDS and DTBPH were fed into the
extruder via syringe pumps. Six temperature zones and the feeding zone (FZ) were heated
and controlled separately. At position 7 the Raman-probe was inserted. This extruder
segment was not heated.
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Figure 3. Schematic reactive extrusion setup with feeding arrangement and Raman in situ probe.

The factor-level settings were adjusted to the factor-level combinations as required
by the face-centered experimental design (FCD). The in-situ Raman spectroscopic probe
placed slightly before the extruder die was used to indicate when the continuous process
had stabilized after each change in factor-level settings. This guaranteed that the analyzed
material samples adequately reflected the composition at a certain set of factor-level combi-
nations. To ensure the quantitative removal of excess initiator and VTMDS residues, the
material samples were placed in a vacuum-drying oven at 80 ◦C and dried under an argon
stream for 24 h prior to further analysis.

2.4. Design of Experiments

A face-centered experimental design (FCD) with three varied factors was performed
to determine the grafting degree and grafting efficiency. The factors studied were VTMDS
feed rate (factor A), DTBPH feed rate (factor B) and relative temperature increase (factor
C). The values used are listed in Table 1. The molar ratio between the peroxide initiator
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and grafting monomer was varied from 1:6 to 1:100. The EPM polymer feed was set at
1300 g/h: this value ensured the best possible extruder loading and feeding. All factor
settings were selected to obtain the feasible limits of reactive extrusion and were determined
by preliminary experiments.

Table 1. Factors studied and factor levels used in the face-centered experimental design (FCD).

Factor Name Unit Low-Setting
(−1)

Centerpoint
(0)

High-Setting
(+1)

A VTMDS feed mol/h 0.1 0.2 0.3
B DTBPH feed mol/h 0.003 0.010 0.017
C temperature

The detailed settings for the heating segments in the extruder, depending on the
respective FCD settings, are given in Table 2.

Table 2. Temperature levels employed in the various segments of the extruder to achieve the desired temperature profiles
as required by the FCD.

Setting Temperature
Increase Unit Segment

1
Segment

2
Segment

3
Segment

4
Segment

5
Segment

6

(−1) 0 ◦C 80 100 130 160 180 180
(0) 10 ◦C 100 120 150 180 200 200

(+1) 20 ◦C 120 140 170 200 220 220

For planning and analyzing the experiments, the computer program Design Expert
(Version: 11.1.2.0 and 12.0.12.0, Stat-Ease, Inc., Minneapolis, MN, USA) was used. To
determine the relevant factors and factor interactions, an analysis of variance (ANOVA)
was calculated. Only statistically significant effect terms were used to build the response
surface models. As a criterion for statistical significance, a significance level of 5% (p-value
of <0.05) was used.

2.5. Multivariate Data Analysis

Multivariate data analysis (MVA) was performed with “The Unscrambler X 10.5”
software (Camo Analytics, Oslo, Norway). All in-line Raman spectra were pre-processed
using the Savitzky–Golay 1st (smoothed) derivative (symmetric 21 points, 2nd polynomial
order).

The principal component analysis (PCA) used to determine the proportion of the
VTMDS feed was calculated with mean centering, cross validation (20 random segments)
and the Nonlinear Iterative Partial Least Squares (NIPALS)-algorithm. Model outliers were
identified in the influence plot of Hotelling’s T2 values versus F-residuals (outlier limits 5%
each). The wavenumbers ranged from 1800–300 cm−1 obtained with all 19 sample sets was
used for the model.

Partial least squares regression (PLS-R) for prediction of the in-line grafting degree was
performed for four factors using mean centering, cross validation (random 20 segments)
and the kernel algorithm. All 19 sample sets were divided into calibration set samples (sets
number 1–8, 10, 12–19) to develop the PLS-R model and the external validation samples
(sets number 9 and 11) to validate the PLS-R model; here, the spectral range 900–300 cm−1

was used.

2.6. Differential Scanning Calorimetry (DSC) for Boiling Point Determination

All DSC measurements were performed on a DSC 204 F1 Phoenix from Netzsch
(Selb, Germany). Thirteen- to fifteen-milligram samples were weighed into aluminum
DSC crucibles (Concavus®, Netzsch, Selb, Germany) and covered with a pierced lid. The
temperature interval ranged from −10 ◦C to 200 ◦C; the heating rate was 15.0 K/min. The
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measurements were performed with a temperature and heat flow calibration. Nitrogen was
used as a purge gas with a gas flow of 40 mL/min and as a protective gas with a gas flow
of 60 mL/min. Data analysis was done using Netzsch Proteus-Thermal Analysis-software
version 7.1.0.

2.7. Attenuated Total Reflection Fourier Transform Infrared Spectroscopy (ATR-FTIR) for
Distillation Monitoring

Attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) was
used for monitoring the distillation (PerkinElmer Inc., Waltham, MA, USA). Spectra were
collected in the wavelength range from 4000–600 cm−1. For each single spectrum, 16 scans
were accumulated.

2.8. Raman Spectroscopy for In-Line Monitoring, Process Control and Off-Line Spectra

A modified Alpha300 SR (WITec GmbH, Ulm, Germany) as described in [14] was
used for the Raman spectroscopic off-line measurements using a 20× objective (Zeiss,
EC Epiplan 20×/0.4 M27); excitation was at 532 nm. The spectra were acquired with
integration time 1 s and 10 accumulations.

An extruder-compatible immersion probe with a flat sapphire window (Dynisco Inc.,
Franklin, MA 02038, USA) connected to a spectrometer (RXN1, Kaiser Optical Systems, Ann
Arbor, MI 48104, USA) was used for the in-line Raman measurements. The spectra were
acquired with an exposure time of 10 s, two accumulations and a cosmic ray removal unit.

2.9. Nuclear Magnetic Resonance Spectroscopy

The equilibration synthesis and grafting products were characterized by proton nu-
clear magnetic resonance spectroscopy (1H-NMR) measurements. Approximately 25 mg of
sample and an additional reference for determination of the grafting degree were weighed
into a sampling tube and dissolved in 1.0 mL deuterated chloroform (CDCl3). The measure-
ments were performed on a Bruker AvanceTM III spectrometer (Bruker BioSpin GmbH,
Rheinstetten, Karlsruhe, Germany) with a resonance frequency of 400.13 MHz, an acquisi-
tion time of 4.089 s, a relaxation delay between pulses of 1 s, a pulse width of 14 µs and a
temperature of 298 K.

The NMR spectra processing and analysis was done with the software package
MestreNova (Version: 14.0.1-23559, Mestrelab Research, Santiago de Compostela, Spain).
Phase correction and baseline correction were performed and all spectra were referenced
to CDCl3 at 7.26 ppm.

2.10. Calculation of Grafting Degree and Grafting Efficiency

Determination of grafting degree and grafting efficiency was performed in an analo-
gous way as described in previous studies on grafting silane coupling agents onto ethylene
propylene (EPM) and ethylene-octene copolymer (EOC) polyolefins [2,4]. The grafting
degree as a weight percentage (wt%) was calculated according to Equation (1) [2]. Inte-
gration areas (I) of reference proton shifts of the reference standards (R) at 5.37 ppm and
the grafting product (S) at 4.69 ppm were used. N is the number of protons of the hydride
group, m the weighed mass, M the molar mass and P the purity of the benzyl benzoate
reference standard [2].

VTMDS grafting degree (wt%) =
I(S)
I(R)

× N(R)
N(S)

× m(S)
m(R)

× M(S)
M(R)

× P(R)× 100% (1)

Grafting efficiency in wt% was calculated using Equation (2). For this, the measured
VTMDS grafting degree was divided by the grafting degree theoretically expected under
the assumption of 100% conversion [2,4].

VTMDS grafting efficiency (%) =
measured grafting degree VTMDS
theoretical grafting degree VTMDS

× 100% (2)
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3. Results and Discussion
3.1. Vinyltetramethyldisiloxane (VTMDS) as Grafting Monomer for Reactive Extrusion

The 1H-NMR spectra of the equilibration reaction are shown in Figure 4. Tetramethyl-
disiloxane (M1), divinyltetramethyldisiloxane (M2) and vinyltetramethyldisiloxane (M3;
VTMDS) are the pure substances and EQ is the unpurified reaction product. In EQ, all
single substances are present in a molar ratio of 1:1:1. At 7.26 ppm the CDCl3 peak of the
solvent can be observed, and at 1.56 ppm the water peak of the water which diffused into
the sample due to air humidity can be seen. The SiCH3 methyl groups are in the range of
0–0.35 ppm, the SiH hydride group at 4.5–4.9 ppm and the vinyl groups in the range of
5.55–6.3 ppm.
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Figure 4. 1H-NMR spectra of tetramethyldisiloxane (M1), divinyltetramethyldisiloxane (M2), vinyl-
tetramethyldisiloxane (M3; VTMDS) and the equilibration reaction (EQ).

To be able to separate the substances by means of fractional distillation, the boiling
points of all three compounds were determined using differential scanning calorimetry
(DSC). For this purpose, DSC curves of the three pure substances were measured and the
boiling points were determined over the onset, as shown in Figure 5. The following boiling
points were determined: M1 = 72 ◦C, M2 = 142 ◦C and M3 = 109 ◦C. The boiling point
determination for M3 was the most relevant as there were no standardized values available
in the scientific literature for this. Due to the boiling point differences, distillation was
performed without a vacuum.
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Figure 5. Differential scanning calorimetry (DSC) traces of tetramethyldisiloxane (M1), vinyltetram-
ethyldisiloxane (M3; VTMDS) and divinyltetramethyldisiloxane (M2) used to determine the boiling
points for distillation. A heating rate of 15.0 K/min was used and nitrogen was used as purge gas
with a gas flow of 40 mL/min and as protective gas with a gas flow of 60 mL/min.

At-line monitoring via ATR, FTIR was performed during distillation to achieve the
maximum yield and purity of VTMDS (M3). Figure 6a shows the infrared spectra from
1200 cm−1 to 600 cm−1 of the pure substances tetramethyldisiloxane (M1), divinyltetram-
ethyldisiloxane (M2) and vinyltetramethyldisiloxane (M3; VTMDS). Figure 6b shows a
time series of infrared spectra from the distillation process. M1 is mainly characterized
by medium to strong Si-H deformation vibrations at 903 cm−1 and 837 cm−1. At the
beginning of the distillation, the 837 cm−1 vibration, denoted by (1), decreases (Figure 6b).
The increase of band (2) at 814 cm−1 in the spectrum describes the increase in the Si-H
group in the product M3, determined by the Si-H deformation vibration. When band (1)
was minimal and band (2) was maximal, the extraction of M3 was started [15,16].
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Figure 6. Attenuated total reflection (ATR)-FTIR spectra of (a) tetramethyldisiloxane (M1), divinyl-
tetramethyldisiloxane (M2) and vinyltetramethyldisiloxane (M3; VTMDS) and (b) the distillation
process of vinyltetramethyldisiloxane (M3; VTMDS). (1) M1 decreases and upon its complete removal
separation of M3 took place. (2) M3 increases. (3) and (4) M2 increases.

The vibrations at 1007 cm−1 (trans CH wagging) and 954 cm−1 (CH2 wagging) are
associated with the vinyl group Si–CH=CH2 of the reactant M2. At the end of the distilla-
tion, the increase of shoulder (3) and the increase of band (4) are crucial for M2 (Figure 6b).
As soon as bands (3) and (4) increase and, thus, more M2 is present again, pure M3 is no
longer present and the distillation is ended. Shoulder (3) at 797 cm−1 is caused by the
medium to strong Si–CH3 or Si-C rocking vibrations. Band (4) at 610 cm−1 describes the
broad symmetric Si-O-Si stretching band for disiloxanes. Both bands are present only in
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M2 at these wavenumbers (see Figure 6a). Minor shifts in the bands during the reaction
and distillation process are caused by changes in the overall electric dipole moment of the
molecules and their interaction with the surrounding molecules. Due to the progressive
reaction and the formation of M3, which contains both Si-H and Si–CH=CH2 as functional
groups, the net electric dipole moment of M3 changes, despite the stoichiometric conserva-
tion of the Si-H and Si–CH=CH2 functional groups. As a result, in the basic structure of
the molecule M3, the Si–CH3 and Si-O-Si vibrations are also affected, and these bands are
slightly shifted. Due to the decrease in the concentration of M3 during the course of the
reaction and the resulting change in molecular composition, the direction of this shift is
reversed [15,16]. VTMDS (M3) was further used in the grafting reactions.

3.2. Structural Characterization of the Reaction Products

The successful grafting reaction of VTMDS onto EPM, as monitored by 1H-NMR,
is shown in Figure 7. Figure 7a shows the EPM polymer. Figure 7b shows the grafted
product, EPM-g-VTMDS. The relevant ranges are 0–1.8 ppm for the mainly polyolefinic
CH/CH2/CH3 groups and −0.25–0.5 ppm for the Si–CH2/Si–CH3 groups. The signal
at a chemical shift of 4.69 ppm is characteristic for the SiH hydride group and indicates
successful hydride modification of the polyolefin.
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3.3. Quantitative Determination of Grafting Degree and Grafting Efficiency

The results of the experimental design are summarized in Table 3. The grafting
degree was calculated with Equation (1) and the grafting efficiency was calculated using
Equation (2). All experiments were performed in one block. The experiments are listed in
the actual run order. To determine the experimental error with high accuracy, six center
point (CP) experiments at intermediate factor-level settings were performed.

For all experiments the overall range of grafting degrees achieved was between
0.33 wt% and 1.92 wt%. The grafting efficiency for all experiments was between 16.14%
and 85.03%. This is well within the expected range of grafting degrees observed with
similar grafting reactions performed via reactive extrusion in earlier studies [2,4]. All
experiments were included in the model building.
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Table 3. Experimental data for response surface analysis of the face-centered experimental design with three-level factor
settings for the three factors. The experiments are shown in the randomized order in which the single runs were actually
performed.

Serial No.
Factor Pattern Independent Variable Response Variable

A B C A: VTMDS
Feed (mol/h)

B: DTBPH
Feed (mol/h)

C: Temp.
Increase (K)

Grafting
Degree (wt%)

Relative
Grafting (%)

1 −1 1 −1 0.1 0.017 0 0.67 68.00
2 1 1 −1 0.3 0.017 0 1.43 37.21
3 0 0 0 0.2 0.010 20 1.35 54.50
4 −1 0 0 0.1 0.010 20 0.76 77.27
5 −1 −1 1 0.1 0.003 40 0.46 46.12
6 −1 1 1 0.1 0.017 40 0.84 85.03
7 1 1 1 0.3 0.017 40 1.92 50.05
8 0 0 1 0.2 0.010 40 1.22 49.36
9 0 0 0 0.2 0.010 20 1.36 55.22
10 0 0 0 0.2 0.010 20 1.22 49.31
11 0 1 0 0.2 0.017 20 1.39 56.40
12 1 0 0 0.3 0.010 20 1.52 39.56
13 0 −1 0 0.2 0.003 20 0.72 28.95
14 0 0 0 0.2 0.010 20 1.22 49.56
15 0 0 0 0.2 0.010 20 1.26 50.88
16 0 0 −1 0.2 0.010 0 0.93 37.55
17 1 −1 −1 0.3 0.003 0 0.62 16.14
18 −1 −1 −1 0.1 0.003 0 0.33 33.45
19 0 0 0 0.2 0.010 20 1.25 50.40
20 1 −1 1 0.3 0.003 40 0.83 21.70

3.4. Effect of Process Variables on Grafting Degree

To determine the effect of the varied process parameters on the grafting degree,
ANOVA was performed (Table 4). Six effect terms with a p-value less than 0.05 were
obtained to build a response surface model containing only statistically significant model
terms. The various coefficients of determination calculated for model evaluation in-
dicate that the model fits the data very well (R2 = 0.9690), contains an appropriate
number of model terms (R2

adjusted = 0.9546) and allows good and robust predictions
(R2

predicted = 0.9114).

Table 4. ANOVA for response surface analysis of grafting degree.

Source Degree of
Freedom (df)

Sum of
Squares

Mean
Square F-Value p-Value

Model 2.99 6 0.4984 67.65 <0.0001
A-VTMDS feed 1.06 1 1.06 144.26 <0.0001
B-DTBPH feed 1.08 1 1.08 146.93 <0.0001

C-temperature increase 0.1664 1 0.1664 22.59 0.0004
AB 0.174 1 0.174 23.63 0.0003
B2 0.1125 1 0.1125 15.27 0.0018
C2 0.0898 1 0.0898 12.19 0.004

Residual 0.0958 13 0.0074
Lack of Fit 0.076 8 0.0095 2.41 0.174
Pure Error 0.0197 5 0.0039
Cor Total 3.09 19 − − −

The linear contributions of the factor effects VTMDS feed rate (factor A) and DTBPH
feed rate (factor B) on the grafting degree are the most important effects that mainly
determine the system behavior. They are both in the same order of magnitude and about
three times higher than the linear impact of temperature increase (factor C). In addition,



Polymers 2021, 13, 1246 10 of 22

changes in the DTBPH feed rate result in non-linear response behavior of the grafting
degree, as indicated by the significant non-linear effect term B2. The positive values indicate
that an increase in factor level leads to a higher grafting degree. VTMDS and DTBPH feed
rates are involved in a second-order interaction (the two-factor interaction term AB). This
means that the effects of changes in VTMDS feed rate depend on the settings of DTBPH
feed rate at which the changes in VTMDS feed rate are made, or, in other words, that
VTMDS and DTBPH feed rates must be adjusted together in a coordinated manner in order
to achieve a desired grafting degree. The temperature increase also induces a non-linear
response of the grafting degree. This shows that there is an optimum value for DTBPH
feed rate and temperature increase, whereas an increase in VTMDS feed rate always leads
to higher grafting degrees. The model equation in terms of coded values summarizes
the relative importance of factor effect terms: grafting degree VTMDS (wt%) = 1.24 +
0.3260 × A + 0.3290 × B + 0.1290 × C + 0.1475 × AB − 0.1875 × B2 − 0.1675 × C2.

The molar ratio between VTMDS monomer and peroxide has no effect on the grafting
degree. Specific values for the target response grafting degree can be calculated using the factor
effects equation in actual terms: grafting degree VTMDS (wt%) = −0.137224 + 1.15286 ×
A + 81.38776 × B + 0.023200 × C + 210.71429 × AB − 3826.53061 × B2 − 0.000419 × C2.

Figure 8 depicts an interaction plot illustrating the second order interaction between
the VTMDS feed rate and the DTBPH feed rate (Figure 8). This is the only interaction
affecting the grafting degree in this grafting reaction. The obvious effect of this synergism
is that the positive effect of increasing VTMDS feed rate on the grafting degree is further
enhanced by using higher feed rates of peroxide initiator, suggesting that overall a higher
number of radicals is generated, initiating the grafting reaction.
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The effects of the two most important process factors on the grafting degree are
visualized in Figure 9 as 3D response surface and contour line plots. Figure 9a,b shows
the effects of VTMDS and DTBPH feed rates at the highest value used for the temperature
increase, whereas Figure 9c,d shows these effects at the lowest value for the temperature
increase.
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at the low level for the factor “temperature increase”.

The effects of process factor variations (i.e., the coefficients in the factor effects equa-
tion in terms of coded values) on grafting degree are in good agreement with the factor
effects obtained in earlier studies of similar systems, in which the grafting reactions of
vinyltrimethoxysilane (VTMS) onto ethylene-propylene (EPM) [2] and ethylene-octene
copolymer (EOC) [4] via reactive extrusion were investigated using response surface
methodology. The same overall trends were found in all three systems. All three reac-
tive extrusion processes are governed by non-linear factor effects and the same types of
second-order interaction effects. For instance, the linear components of the temperature
effect on the degree of grafting were in a comparable order of magnitude in all systems:
EPM-g-VTMS: 0.10 [2]; EOC-g-VTMS: 0.10 [4]; EPM-g-VTMDS: 0.13 (this work), although
in [4] the temperature was varied within a slightly narrower range from 100 ◦C–220 ◦C
instead of 80 ◦C to 220 ◦C. Although most effects were similar, some notable differences
should be pointed out. While the linear factor effect of variations in the silane monomer
feed rate on the grafting degree in the EPM-g-VTMDS system studied in the present work
(0.33) is practically the same as that for the EPM-g-VTMS system (0.35), [2], it is only about
25% of the factor effect found for the EOC-g-VTMS system in Ulitzsch et al. [4] (1.17).
Obviously, in the ethylene-octene copolymer (EOC) H is abstracted more readily and this
seems to have a positive effect on the obtainable grafting degrees. The linear effect term
for the peroxide feed rate, as another interesting difference, was of comparable magnitude
in the EPM-g-VTMS (0.60) [2] and EOC-g-VTMS (0.66) [4] systems but is almost twice as
large as the effect found for the EPM-g-VTMDS system (0.33) in the present study. This
difference can be attributed to the nature of the grafting monomer VTMDS. Unlike VTMDS,
VTMS carries three methoxy groups that exhibit a positive electron-inducing effect. This
makes the double bond of VTMS more reactive. These differences illustrate the importance
of considering the nature of the polymer backbone (type of polyolefin) and the nature of
the grafting monomer (silane coupling reagent) when designing the grafting process. In all
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three systems, the interaction between the grafting monomer and peroxide initiator feed
rates (AB) was highly significant [2,4].

3.5. Effect of Process Variables on Grafting Efficiency

To predict grafting efficiency, response surface analysis yielded a model containing
seven relevant factor effect terms. Again, only terms with a p−value less than 0.05 were in-
cluded. The ANOVA is presented in Table 5. With coefficients of determination R2 = 0.9772,
R2

adjusted = 0.9638 and R2
predicted = 0.9206, the model displayed good experimental fit, was

not overfitted and yielded robust predictions.

Table 5. ANOVA for response surface analysis of grafting efficiency.

Source Degree of
Freedom (df)

Sum of
Squares

Mean
Square F-Value p-Value

Model 5275.04 7 753.58 73.34 <0.0001
A-VTMDS feed 2108.59 1 2108.59 205.22 <0.0001
B-DTBPH feed 2259.91 1 2259.91 219.94 <0.0001

C-temperature increase 358.92 1 358.92 34.93 <0.0001
AB 72.24 1 72.24 7.03 0.0211
A2 177.2 1 177.2 17.25 0.0013
B2 163.59 1 163.59 15.92 0.0018
C2 132.17 1 132.17 12.86 0.0037

Residual 123.3 12 10.28
Lack of Fit 90.43 7 12.92 1.97 0.2372
Pure Error 32.87 5 6.57
Cor Total 5398.34 19

Grafting efficiency depends non-linearly on VTMS and DTBTH feed rates. These two
factors are also the most important effects that mainly determine the system’s behavior.
They are both in the same order of magnitude. Increasing the VTMDS feed rate has a
negative effect on grafting efficiency, whereas grafting efficiency is improved when the
DTBPH feed rate is increased. Again, VTMDS and DTBPH feed rates are involved in a
second-order interaction. Grafting efficiency also depends non-linearly on the temperature
increase, although its overall effect is slightly smaller than the effects of the feed rates. The
relative magnitudes of the significant effects are summarized in the factor effects equation
in terms of coded factors: grafting efficiency VTMDS (%) = 51.14 − 14.52 × A + 15.03 ×
B + 5.99 × C − 3.01 × AB + 8.03 × A2 − 7.71 × B2 − 6.93 × C2.

The molar ratio between silane grafting agent and peroxide initiator had no effect on
the grafting efficiency. Specific values for the grafting efficiency can be calculated from
the factor effects equation in terms of actual values: grafting efficiency VTMDS (%) =
+53.56777− 423.37234×A+ 6154.19481×B+ 0.992823×C− 4292.85714×AB+ 802.72727
× A2 − 157403 × B2 − 0.017332 × C2.

The interaction between VTMDS and DTBPH feed rates is visualized in the interaction
plot presented in Figure 10.

The effects of the process factors on grafting efficiency are illustrated in Figure 11.
The non-linear effects of all three factors and the second-order interaction effect cause the
response surface to have the form of a twisted saddle, which is shown in the 3D response
surface plot in Figure 11a. The contour line plot shown in Figure 11b enables quantitative
conclusions to be drawn by projecting the response surface in two dimensions. In Figure 11,
a scenario is depicted in which the level of the factor ”temperature increase” is set to an
intermediate level (the center point settings).
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As with the grafting degree, the factor effects on grafting efficiency (i.e., the coefficients
of the factor effects equation in terms of coded factors) are also in good agreement with
effects found earlier with the EPM-g-VTMS [2] and EOC-g-VTMS [4] systems. Again, the
linear factor effect of peroxide feed rate is comparable in all three systems, with EPM-g-
VTMS: 17.8 [2], EOC-g-VTMS: 14.4 [4] and EPM-g-VTMDS: 15.0 (this work). The effect of
silane monomer feed rate, however, although in the same order of magnitude with the
VTMS systems (−10.0 [2] and −9.6) [4], was about 1.5 times larger in the EPM-g-VTMDS
system (this work). Since in [2] and [4] VTMS was used as the grafting reagent, this
difference is attributed to the chemical nature of VTMDS.



Polymers 2021, 13, 1246 14 of 22

The effect of temperature increases noticeably in the series EOC-g-VTMS [4] < EPM-g-
VTMS, [2] < EPM-g-VTMDS. In [2], liquid EPM was used, whereas in [4], EOC was applied
as a solid granulate. Since in the present study and [2] the backbone polymer was the same,
the additional positive effect on grafting efficiency observed is due to the different grafting
monomer. Thus, VTMDS is more favorable for obtaining higher grafting efficiency than
VTMS [2,4].

3.6. Process Window for the Grafting Reaction at Reactive Extrusion

Both models, the one for the grafting degree and the one for the grafting efficiency
are sufficiently good and can be used to define a process window which accounts for a
good compromise between grafting degree and grafting efficiency. The hydride content of
silicones is often given in terms of molality (mmol/g) in order to facilitate the dosage of ap-
propriate molar ratios of the vinyl and hydride components for the hydrosilylation reaction.
To obtain the hydride content in wt% the grafting degree is divided by 160 (M(H) = 1 g/mol;
M(VTMDS) = 160 g/mol). hydride content (wt%) =

M(H)
M(VTMDS) ·grafting degree (wt%). The

molality is calculated by molality (mmol/g) =hydride content (wt%)
M(H)

× 1
100% × 1000 mmol

1 mol . Op-
timization of the reactive extrusion process is targeted at 0.1 mmol hydride/g. This amount
is favorable for subsequent crosslinking of the hydrosilylated polyolefin. This molality of
0.1 mmol hydride/g corresponds to a grafting degree of 1.6%.

Figure 12 shows the overlay plot defining the process window to obtain a grafting
degree 1.55 wt%–1.64 wt% at a grafting efficiency > 50%. In this optimization scenario,
reactive extrusion is run at the intermediate setting for the temperature increase (i.e., the CP
setting). This corresponds to a temperature range from 100 ◦C to 200 ◦C. The area colored
in yellow highlights all possible combinations of VTMDS and DTBPH feed rates at this
temperature increase that yield satisfactory grafting degrees and grafting efficiencies.
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The process parameters calculated for the validation experiment are shown in Figure 13.
The selected combination was calculated to achieve a molality of 0.1 mmol hydride/g,
which corresponds to a grafting efficiency of 1.6 wt% VTMDS. The grafting efficiency here
was expected to be maximized and was predicted to be 52%. The temperature increase
covered a temperature range of 100 ◦C–200 ◦C. The VTMDS feed was set to 0.2478 mol/h
and the DTBPH feed was set to 0.0162 mol/h.
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The validation experiment resulted in a grafting degree of 1.64 wt%, corresponding
to a molality of 0.10 mmol hydride/g. The grafting efficiency was also within the target
range, at 53.17%, indicating that the models for both target responses are valid and lead to
reliable predictions.

3.7. Data Selection and Pre-Processing for Multivariate Analysis

In this work, in-line Raman spectroscopy was combined with multivariate data anal-
ysis for the characterization of the process to determine the proportions of VTMDS and
to predict the grafting degree of the final product. A total of 20 trials were run in a rando-
mized trial sequence. During each experimental run, Raman spectra were continuously
recorded in-line every 30 s, to monitor the entire process. All spectra distorted by measur-
ing artefacts, caused for instance by gas bubbles, were eliminated from the data set. The
dataset contained only spectra obtained under stable process conditions after adjusting the
pre-defined process factor-level settings.

Principal component analysis (PCA) with 188 spectra from all 19 experiments was
used to quantify the VTMDS concentration. Spectra from 17 experiments were used for
the calibration model for the PLS-R of the grafting degree. For a low and a high grafting
degree, two randomly selected experiments were taken for external validation. The details
of the respective experiments and models can be found in Table 6.

All Raman spectra were preprocessed using the Savitzky−Golay 1st derivative (smoothed,
symmetric 21 points, 2nd polynomial order). They are shown in Figure 14.

To interpret the in-line Raman spectra, which contained superimposed information of
the entire process, they were compared with off-line Raman spectra obtained from the pure
substances of the reactants (EPM and VTMDS) and the product EPM-g-VTMDS (Figure 15).
The in-line process spectra contain information not only on the mixture of the three pure
substances, but also on the initiator present in traces and other potential by-products. They
also reflect the effects of all variations in process parameter settings introduced during
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the factorial experiment. Shifts in the bands are possible while comparing the in-line and
off-line spectra since the surrounding matrix has an influence on the polarizability of the
electron shell of the molecule and thus on the position of the Raman bands. In addition,
different Raman instruments were used for recording the in-line and the off-line spectra.
Therefore, spectral ranges of Raman oscillations instead of specific single values for the
Raman vibration bands are given for the relevant signals in the in-line spectra.

Table 6. Calibration set for determination of VTMDS and grafting degree via in-line Raman spec-
troscopy.

Set No. PCA VTMDS
mol/h

Partial Least Squares Regression (PLS-R)
Grafting Degree wt%

1 0.1 0.67
2 0.5 1.43
3 0.3 1.35
4 0.1 0.76
5 0.1 0.46
6 0.1 0.84
7 0.3 1.36
8 0.3 1.22
9 0.3 1.39 *

10 0.5 1.52
11 0.3 0.72 *
12 0.3 1.22
13 0.3 1.26
14 0.3 0.93
15 0.1 0.33
16 0.3 1.25
17 0.3 1.26
18 0.5 0.83
19 0.5 1.92

* not used for PLS-R calibration model, only for PLS-R validation.
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The predominant information visible in the in-line Raman data is very similar to that
of pure EPM. Since EPM forms the backbone for the grafted polymer and thus constitutes
the bulk of the reactant, this is reflected by the spectral signature of the process. Raman
active bands in EPM are mainly C−C−C, −CH2− or −CH3− vibrations. For example, the
C−C−C vibrations for aliphatic and branched polymers occur from 1100–1040 cm−1, at
970 cm−1, from 900–800 cm−1, from 540–485 cm−1 and at 300 cm−1. Between 1305 cm−1

and 1295 cm−1 is the medium-strength −(CH2)n− deformation vibration, and at 735 cm−1

the −(CH2)3− rocking vibration. In the spectral range between 560 cm−1 and 420 cm−1

the CH2 wagging, C−CH3 stretching and CH2 rocking vibrations are found with different
intensities. For the monomer VTMDS, the Si–CH=CH2 vibrations from 1615–1590 cm−1

(C=C stretching), from 1410–1390 cm−1 (CH2 in plan deformation), 1020–1000 cm−1 (trans
CH wagging) and from 980–940 cm−1 (CH2 wagging) are Raman-active. Moreover, be-
tween 985–800 cm−1 lies the Si−H wagging deformation. Furthermore, between 770 cm−1

and 675 cm−1 are different Si−C vibrations. The symmetric Si−O−Si vibration is most
pronounced between 625–480 cm−1 in the off-line spectra. However, since the monomer
is a much smaller molecule relative to EPM, these vibrations are strongly superimposed
by other signals in the in-line process spectra and are not clearly discernible. The same
applies to the subtle differences between EPM and the EPM-g-VTMDS product. The
spectral differences are only weakly pronounced even in the off−line spectra of the pure
substances. At 763 cm−1, an additional shoulder can be seen in the grafted product that is
not present in the EPM starting material. The strongly Raman-active Si−C stretching band
is located in this region. Additional signals can also be seen at 687 cm−1 and at 540 cm−1.
The signal at 687 cm−1 is assigned to the Si−C stretching vibration. Between 625 cm−1

and 480 cm−1 the very strong symmetric Si−O−Si stretching vibration occurs. Minimal
decreases in the signal intensities are also seen in EPM-g-VTMDS. These are observed
at 1454 cm−1, 1442 cm−1, 846 cm−1 and 820 cm−1. The signals between 1456–1440 cm−1

can be assigned to asymmetric −CH3 vibrations of aliphatic polymers. The changes at
846 cm−1 and 820 cm−1 are caused by changes in the polarizability of the electron shell of
the C−C−C backbone. Further details regarding band assignment and the location of the
bands found in the off-line Raman spectra are given in Table 7.
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Table 7. Relevant Raman bands for VTMDS, EPM and EPM-g-VTMDS.

Position Raman Band
Off-Line (cm−1)

Literature Range
(cm−1) Molecule Group Vibration

1597 1615–1590 Si–CH=CH2 C=C stretching
1442 1456–1440 −CH3 aliphatic asymmetric
1409 1410–1390 Si–CH=CH2 CH2 in plane deformation vibration
1305 1305–1295 −(CH2)n− CH2 deformation vibration
1274 1290–1240 Si−(CH3) Sharp symmetric CH3 deformation vibration
1153 1175–1120 C−C−C C−C−C vibration
1065 1100–1040 C−C−C aliphatic C−C−C vibration
1039 1100–1040 C−C−C branched C−C−C vibration
1008 1020–1000 Si–CH=CH2 Trans CH wagging vibration
970 973 C−C−C branched C−C−C stretching
958 980–940 Si–CH=CH2 CH2 wagging vibration
913 985–800 Si−H Si−H deformation vibration
846 900–800 C−C−C C−C−C vibration
839 870–760 Si–CH3 Si–CH3 rocking vibration
768 765 Si−C Si−C stretching
737 735–725 −(CH2)3− −(CH2)3− rocking vibration
701 705–670 Si−C Si−C stretching
678 705–670 Si−C Si−C stretching
628 624–580 Si−O−Si Si−O−Si broad symmetric stretching
554 555–530 C−CH3/−CH2 CH2 wagging, C−CH3 stretching, CH2 rocking
545 625–480 Si−O−Si Si−O−Si broad symmetric stretching
526 540–485 C−C−C C−C−C vibration
426 460–420 CH2 Wagging CH2
303 300 C−C−C broad C−C−C vibration

The use of an in situ real-time process analyzer for monitoring the grafting degree was
investigated. In order to extract and interpret the superimposed and relevant information,
multivariate methods PCA and PLS-R were applied.

3.8. Determination of VTMDS Content Using PCA

PCA was used to restructure the preprocessed spectroscopic data of all 19 sample sets
along the maximum variance. The range from 1800 cm−1 to 300 cm−1 was investigated.
The model based on two principal components explained the data variance sufficiently
well (at 97%) and was used for modeling the VTMDS feed. The model was verified by
random cross validation with 20 segments. Each dot shown in the graph in Figure 16a
represents a Raman spectrum. The closer the dots are in the scores plot (Figure 16a), the
more similar they are with respect to the PCs concerned. Conversely, samples that are
more distant from each other are spectroscopically more different. The plot can be used
to interpret differences and similarities among spectra. Together with the corresponding
loadings plots (Figure 16b–c) for the same two components it is possible to determine
which variables in the data set structured by the DoE plan are responsible for differences
between sample sets.

In PC1, no clear sample grouping was evident. Possibly, the maximum variance in
the data indicated the differences in the process settings and thus in the individual experi-
ments as a whole. Temperature, the amount of initiator used (peroxide content) and the
monomer feed of VTMDS were varied. Thus, the polymer was grafted to varying grafting
degrees. This sum of differences in the sample sets was expressed by PC1. Furthermore,
in the corresponding loadings for PC1 (Figure 16b), for example, the bands in the range
1460–1440 cm−1 (−CH3), 1310–1290 cm−1 (−(CH2)n−) and 1160–1130 cm−1 (C−C−C), in-
dicate changes in the polarizability of the electron shell of the molecule and its surrounding
matrix.
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In contrast, distinct sample groupings were identified in PC2. Along the PC2 axis,
clustering of the Raman spectra with respect to the applied variations in VTMDS feed rate
is visible. The different experimental settings are highlighted in Figure 16a with different
colors: 0.1 mol/h (blue), 0.2 mol/h (red) and 0.3 mol/h (green). This suggests that changes
visible in PC2 can be attributed to variations in VTMDS feed rates. In the loadings plot
for PC2 (Figure 16c) those bands where the largest changes upon variations in VTMDS
feed rate occur can be identified and interpreted. The loadings at around 1410 cm−1

are assigned to the CH2 in plane deformation vibrations of the Si–CH=CH2 group. The
loadings at around 800 cm−1 are characteristic for the Si−H deformation vibration. The
bands between 625 cm−1 and 580 cm−1 are assigned to the Si−O−Si stretching vibrations.
The characteristic bands with high loadings reflect variations in the concentration of the
silane monomer feed.

This allows the monitoring of the VTMDS feed concentration in-line during the process
and, in turn, allows real-time quality control of the extrusion process, helping to make
the process faster, more efficient and more cost-effective. It provides a knowledge basis
for quantifying the grafting monomer in-line using PLS-R and thus also to quantify the
grafting degree.

3.9. Determination of Grafting Degree via PLS-R

The in-line Raman data set preprocessed (smoothed, symmetric 21 points, 2nd poly-
nomial order) after the 1st Savitzky−Golay derivation was analyzed using PLS-R. In this
analysis, spectral features were extracted from the dataset via PLS-R according to the
degree of grafting, given in wt%, from the complex and superimposed information. To this
end, the in-line Raman spectra were correlated with the values for the grafting degree as
determined by NMR analysis. It was verified that in-line Raman spectroscopy provided an
alternative to the costly and time-consuming NMR off-line analysis, thus avoiding the time
lag between the process and subsequent analysis of the reaction product. PLS-R effectively
reduces the spectral data matrix to a set of orthogonal factors that are predictive of the
chemical composition and describes as much as possible of the observed variance in the
spectra [17].

As revealed by comparing the in-line and off-line Raman spectra of the pure sub-
stances, the main spectral differences between EPM and EPM-g-VTMDS are found in the
wavenumber range between 900 cm−1 and 300 cm−1. Focusing on these differences, the
grafting degree becomes observable in the spectra and consequently this spectral range
was used for the PLS−R analysis. The model, calculated with four factors, explained a total
of 95% of the data variance. The coefficient of correlation r between the predicted and the
reference values in the plot (Figure 17a) is 0.975 and the corresponding Pearson coefficient
of determination R2 is 0.950, illustrating that the calibration model for the grafting degree
wt% is sufficient. The good quality of the PLS-R model is also evident from the root mean
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square error of calibration (RMSEC), which describes the dispersion of the calibration
samples about the regression line and is satisfactorily low (RMSEC = 0.093 wt%). Similarly,
the standard error of calibration (SEC), which is RMSEC corrected for bias (i.e., by the
mean value over all data points that either lie systematically above or below the regression
line), is also very small (SEC = 0.093 wt%). With a difference between RMSEC and SEC of
zero, bias is clearly not significant.
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Figure 17. (a) Predicted vs. reference values of grafting degree for factor 4 and (b) regression
coefficients for factors 1–4.

The regression coefficients in Figure 17b summarize the relationship between all pre-
dictors, the spectral data and the “grafting degree” response in wt%. A large regression
coefficient has a large contribution to the modeled response value and hence the corre-
sponding spectral range is important for predicting the grafting degree. In Figure 17b
the relative importance of various wavelength ranges to the four model factors can be
discerned. It can be observed that all four factors are required to build the model.

The most important regression coefficients for predicting the grafting degree were
between 760 cm−1 and 680 cm−1. In this spectral range, changes in Si−C stretching
vibrations are observed. This suggests a positive correlation of the Raman spectra with the
grafting degree. A change in the Si−O−Si stretching vibrations is also observed between
610 cm−1 and 570 cm−1 and is described by the regression coefficients. The effect of
variations in the process conditions on the C−C−C framework is evident from the bands
around 540 cm−1. On this basis, a PLS-R model allowing the prediction of the grafting
degree in wt% during the reactive extrusion process was developed. The in-line Raman
spectra were regressed versus the known grafting degree in wt%, calculated from the
off-line NMR data.

For external model validation, spectra from two material samples with different
grafting degrees that were not included in the model building were used and processed
with data pre-processing as before in the PLS-R model. The values predicted by the Raman-
based model for the grafting degree of these samples were, for the low grafting degree,
0.72 wt% on average, with a standard deviation of ±0.07 wt%. For the high grafting degree,
the value was 1.42 wt% ± 0.10 wt%. During the in-line measurements, small variations in
grafting degree were observed. For the subsequent off-line 1H NMR analysis, these samples
were already homogenized by diffusion in the melt. 1H NMR spectroscopy yielded grafting
degrees of 0.72 wt% for the low-grade grafting and 1.39 wt% for the higher-grade grafting.
These values are in good agreement with the ones predicted by the PLS-R model based on
the in-line Raman spectra and yield very accurate predictions. Since the off-line NMR data
correlate very well with the in-line Raman spectra, it is concluded that the grafting process
can be monitored in real-time based on in-line Raman spectroscopy. Thus, the complex and
costly NMR spectroscopic off-line quality control with a large time-lag can be substituted
by real-time in-line Raman measurements.
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4. Conclusions

We have presented the synthesis of a novel addition-crosslinkable synthetic rubber
based on VTMDS-modified EPM with potential application as a high performance material
in various areas. The reactive extrusion process was monitored in-line using a Raman
spectroscopic in-situ probe embedded in the extrusion equipment in close proximity to the
die tip. It was shown that both the consumption of silane grafting reagent and grafting
degree in the EPM-g-VTMDS rubber can be well measured and controlled by process
ana-lytical methods in real-time. Process windows for producing this new material with
a high grafting efficiency were defined using response surface methodology. The effects
and interaction effects of the most relevant process factors were identified and quantified
by applying an orthogonal experimental design. It was found that the extrusion process
depended in a non-linear and synergistic way on all studied process factors. The VTMDS
and DTBPH feed rates were the most important process factors and were involved in
synergistic interactions.
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